Журнал аналитической химии, 2023, T. 78, № 10, стр. 883-896

Современные подходы к извлечению и концентрированию биологически активных веществ из растительных объектов с применением методов микроэкстракции для их хромато-масс-спектрометрического определения

Е. А. Бессонова a*, Д. А. Карпицкий a, Л. А. Карцова a

a Санкт-Петербургский государственный университет
198504 Санкт-Петербург, Университетский просп., 26, Петродворец, Россия

* E-mail: lena_pol@inbox.ru

Поступила в редакцию 10.04.2023
После доработки 28.05.2023
Принята к публикации 28.05.2023

Аннотация

В обзоре рассмотрены основные тенденции активно развивающихся методов твердофазной и жидкостной микроэкстракции для извлечения, очистки и концентрирования аналитов из лекарственных растений и растительных материалов, применение новых экстрагентов и подходов к пробоподготовке объектов растительного происхождения, совместимость их с масс-спектрометрическим детектированием. Особое внимание уделено аналитическим возможностям, достоинствам и ограничениям каждого из подходов для извлечения аналитов из растительных материалов для последующего хромато-масс-спектрометрического анализа полученных экстрактов.

Ключевые слова: микроэкстракционные методы, растительные объекты, ВЭЖХ-МС, ГХ-МС, концентрирование, биологически активные вещества.

Список литературы

  1. Galuszka A., Migaszewski Z., Namieśnik J. The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices // Trends Anal. Chem. 2013. V. 50. P. 78.

  2. Ramos L. Use of new tailored and engineered materials for matrix solid-phase dispersion // Trends Anal. Chem. 2019. V. 118. P. 751.

  3. Câmara J.S., Perestrelo R., Berenguer C.V., Andrade C.F.P., Gomes T.M., Olayanju B., Kabir A., M R Rocha C., Teixeira J.A., Pereira J.A.M. Green extraction techniques as advanced sample preparation approaches in biological, food, and environmental matrices: A review // Molecules. 2022. V. 27. № 9. P. 2953.

  4. Zhang Q.-W., Lin L.-G., Ye W.-C. Techniques for extraction and isolation of natural products: A comprehensive review // Chin. Med. 2018. V. 13. № 1. P. 20.

  5. Krakowska-Sieprawska A., Kielbasa A., Rafińska K., Ligor M., Buszewski B. Modern methods of pre-treatment of plant material for the extraction of bioactive compounds // Molecules. 2022. V. 27. № 3. P. 730.

  6. Da Silva R.F., Carneiro C.N., de Sousa C.B. do C., Gomez F.J.V., Espino M., Boiteux J., Fernández M. de los Á., Silva M.F., Dias F. de S. Sustainable extraction bioactive compounds procedures in medicinal plants based on the principles of green analytical chemistry: A review // Microchem. J. 2022. V. 175. Article 107184.

  7. Armenta S., Garrigues S., de la Guardia M. The role of green extraction techniques in green analytical chemistry // Trends Anal. Chem. 2015. V. 71. P. 2.

  8. Kissoudi M., Samanidou V. Recent advances in applications of ionic liquids in miniaturized microextraction techniques // Molecules. 2018. V. 23. № 6. P. 1437.

  9. Zilfidou E., Kabir A., Furton K.G., Samanidou V. Fabric phase sorptive extraction: Current state of the art and future perspectives // Separations. 2018. V. 5. № 3. P. 40.

  10. Manousi N., Zachariadis G.A., Deliyanni E.A., Samanidou V.F. Applications of metal-organic frameworks in food sample preparation // Molecules. 2018. V. 23. № 11. P. 2896.

  11. Manousi N., Sarakatsianos I., Samanidou V. Extraction techniques of phenolic compounds and other bioactive compounds from medicinal and aromatic plants / Engineering Tools in the Beverage Industry. Elsevier, 2019. P. 283.

  12. Manousi N., Rosenberg E., Deliyanni E., Zachariadis G.A., Samanidou V. Magnetic solid-phase extraction of organic compounds based on graphene oxide nanocomposites // Molecules. 2020. V. 25. № 5. P. 1148.

  13. Lashgari M., Singh V., Pawliszyn J. A critical review on regulatory sample preparation methods: Validating solid-phase microextraction techniques // Trends Anal. Chem. 2019. V. 119. Article 115618.

  14. Hansen F.A., Pedersen-Bjergaard S. Emerging extraction strategies in analytical chemistry // Anal. Chem. 2020. V. 92. № 1. P. 2.

  15. Psillakis E. Vortex-assisted liquid-liquid microextraction revisited // Trends Anal. Chem. 2019. V. 113. P. 332.

  16. Kalogiouri N.P., Samanidou V.F. Recent trends in the development of green microextraction techniques for the determination of hazardous organic compounds in wine // Curr. Anal. Chem. 2019. V. 15. № 7. P. 788.

  17. Abdel-Rehim M., Pedersen-Bjergaard S., Abdel-Rehim A., Lucena R., Moein M.M., Cárdenas S., Miró M. Microextraction approaches for bioanalytical applications: An overview // J. Chromatogr. A. 2020. V. 1616. Article 460790.

  18. Tartaglia A., Locatelli M., Samanidou V. Trends in the analysis of biopharmaceuticals by HPLC // Curr. Anal. Chem. 2020. V. 16. № 1. P. 52.

  19. Nastić N., Švarc-Gajić J., Delerue-Matos C., Barroso M.F., Soares C., Moreira M.M., Morais S., Mašković P., Srčekd V.G., Slivac I., Radošević K., Radojković M. Subcritical water extraction as an environmentally-friendly technique to recover bioactive compounds from traditional Serbian medicinal plants // Ind. Crops Prod. 2018. V. 111. P. 579.

  20. Pereira J.A.M., Casado N., Porto-Figueira P., Câmara J.S. The potential of microextraction techniques for the analysis of bioactive compounds in food // Front. Nutr. 2022. V. 9. Article 825519.

  21. Soares da Silva Burato J., Vargas Medina D.A., de Toffoli A.L., Vasconcelos Soares Maciel E., Mauro Lanças F. Recent advances and trends in miniaturized sample preparation techniques // J. Sep. Sci. 2020. V. 43. № 1. P. 202.

  22. Billiard K.M., Dershem A.R., Gionfriddo E. Implementing green analytical methodologies using solid-phase microextraction: A review // Molecules. 2020. V. 25. № 22. P. 5297.

  23. Дмитриенко С.Г., Апяри В.В., Толмачева В.В., Горбунов М.В. Дисперсионная жидкостно-жидкостная микроэкстракция органических соединений. Обзор обзоров // Журн. аналит. химии. 2020. Т. 75. № 10. С. 867.

  24. Дмитриенко С.Г., Апяри В.В., Толмачева В.В., Горбунова М.В. Жидкостная экстракция органических соединений в каплю экстрагента. Обзор обзоров // Журн. аналит. химии. 2021. Т. 76. № 8. С. 675.

  25. Дмитриенко С.Г., Апяри В.В., Горбунова М.В., Толмачева В.В., Золотов Ю.А. Гомогенная жидкостная микроэкстракция органических соединений // Журн. аналит. химии. 2020. Т. 75. № 11. С. 963.

  26. Дмитриенко С.Г., Апяри В.В., Толмачева В.В., Горбунова М.В. Жидкофазное микроэкстракционное концентрирование органических соединений / Под ред. Золотова Ю.А. М.: Наука, 2020. 133 с.

  27. Arthur C.L., Pawliszyn J. Solid phase microextraction with thermal desorption using fused silica optical fibers // Anal. Chem. 1990. V. 62. № 19. P. 2145.

  28. Wang H.-Y., Zhang W., Dong J.H., Wu H., Wang Y.-H., Xiao H.-X. Optimization of SPME–GC–MS and characterization of floral scents from Aquilegia japonica and A. amurensis flowers // BMC Chem. 2021. V. 15. № 1. P. 26.

  29. Lee Y.-G., Choi W.S., Yang S.O., Hwang-Bo J., Kim H.G., Fang M., Yi T.H., Kang S.C., Lee Y.H., Baek N.I. Volatile profiles of five variants of Abeliophyllum distichum flowers using headspace solid-phase microextraction gas chromatography–mass spectrometry (HS-SPME-GC-MS) analysis // Plants. 2021. V. 10. № 2. P. 224.

  30. Baky M.H., Farag M.A., Rasheed D.M. Metabolome-based analysis of herbal cough preparations via headspace solid-phase microextraction GC/MS and multivariate data analyses: A prospect for its essential oil equivalency // ACS Omega. 2020. V. 5. № 48. P. 31370.

  31. Ibrahim M., Agarwal M., Yang J.O., Abdulhussein M., Du X., Hardy G., Ren Y. Plant growth regulators improve the production of volatile organic compounds in two rose varieties // Plants. 2019. V. 8. № 2. P. 35.

  32. Fung A.G., Yamaguchi M.S., McCartney M.M., Aksenov A.A., Pasamontes A., Davis C.E. SPME-based mobile field device for active sampling of volatiles // Microchem. J. 2019. V. 146. P. 407.

  33. Zhu F., Xu J., Ke Y., Huang S., Zeng F., Luan T., Ouyang G. Applications of in vivo and in vitro solid-phase microextraction techniques in plant analysis: A review // Anal. Chim. Acta. 2013. V. 794. P. 1.

  34. Zhang Q.-H., Zhou L., Chen H., Wang C.Z., Xia Z., Yuan C.S. Solid-phase microextraction technology for in vitro and in vivo metabolite analysis // Trends Anal. Chem. 2016. V. 80. P. 57.

  35. Wang Y., Wang D., Lv Z., Zeng Q., Fu X., Chen Q., Luo Z, Luo C., Wang D., Zhang W. Analysis of the volatile profiles of kiwifruits experiencing soft rot using E-nose and HS-SPME/GC–MS // LWT. 2023. V. 173. P. 114405.

  36. Ma X.-L. Wang X.C., Zhang J.N., Liu J.N., Ma M.H., Ma F.L., Lv Y., Yu Y.J., She Y. A study of flavor variations during the flaxseed roasting procedure by developed real-time SPME GC–MS coupled with chemometrics // Food Chem. 2023. V. 410. Article 135453.

  37. Zhao Q., Wang X.C., Zhang J.N., Liu J.N., Ma M.H., Ma F.L., Lv Y., Yu Y.J., She Y. A comparative HS-SPME/GC-MS-based metabolomics approach for discriminating selected japonica rice varieties from different regions of China in raw and cooked form // Food Chem. 2022. V. 385. Article 132701.

  38. Wang Y., Wang D., Lv Z., Zeng Q., Fu X., Chen Q., Luo Z., Luo C., Wang D., Zhang W. Analysis of the volatile profiles of kiwifruits experiencing soft rot using E-nose and HS-SPME/GC–MS // LWT. 2023. V. 173. Article 114405.

  39. Shao Y., Liu X., Zhang Z., Wang P., Li K., Li C. Comparison and discrimination of the terpenoids in 48 species of huajiao according to variety and geographical origin by E-nose coupled with HS-SPME-GC-MS // Food Res. Int. 2023. V. 167. Article 112629.

  40. Huang T., Sun Y., Guo Y., Wang W., He T., Cao J. Application of HS-SPME-GC-MS combined with electronic nose technology in the odor recognition of pseudostellariae radix // Nat. Prod. Res. 2022. P. 1.

  41. Hanif M., Xie B., Wei Sh., Li J., Gao C., Wang R., Ali S., Xiao X., Yu J., Al-Hashimi A., Brestic M. Characterization of the volatile profile from six different varieties of Chinese chives by HS-SPME/GC–MS coupled with E. NOSE // J. King Saud Univ. – Sci. 2022. V. 34. № 4. Article 101971.

  42. Li Y., Zang X., Li Y., Zhang S., Wang C., Wang Z. Selective extraction of fungicides from fruit samples with defective UiO-66 as solid-phase microextraction fiber coating // Microchem. J. 2023. V. 190. Article 108608.

  43. Hashemi B., Zohrabi P., Shamsipur M. Recent developments and applications of different sorbents for SPE and SPME from biological samples // Talanta. 2018. V. 187. P. 337.

  44. Delińska K., Rakowska P.W., Kloskowski A. Porous material-based sorbent coatings in solid-phase microextraction technique: Recent trends and future perspectives // Trends Anal. Chem. 2021. V. 143. Article 116386.

  45. Paiva A.C., Crucello J., Porto N. de Aguiar, Hantao L. Fundamentals of and recent advances in sorbent-based headspace extractions // Trends Anal. Chem. 2021. V. 139. Article 116252.

  46. Musteata F.M., Musteata F.M., Sandoval M., Ruiz-Macedo J.C., Harrison K., McKenna D., Millington W. Evaluation of in vivo solid phase microextraction for minimally invasive analysis of nonvolatile phytochemicals in Amazonian plants // Anal. Chim. Acta. 2016. V. 933. P. 124.

  47. Luo Z., Chen G., Li X., Wang L., Shu H., Cui X., Chang C., Zeng A., Fu Q. Molecularly imprinted polymer solid-phase microextraction coupled with ultra high performance liquid chromatography and tandem mass spectrometry for rapid analysis of pyrrolizidine alkaloids in herbal medicine // J. Sep. Sci. 2019. V. 42. № 21. P. 3352.

  48. Zhang S., Zhang X., Chen X., Hu S., Bai X. Deep eutectic solvent-based hollow fiber liquid-phase microextraction for quantification of Q-markers of cinnamic acid derivatives in traditional Chinese medicines and research of their plasma protein binding rates // Microchem. J. 2020. V. 155. Article 104696.

  49. Peng L.-Q., Li Q., Chang Y.X., An M., Yang R., Tan Z., Hao J., Cao J., Xu J.J., Hu S.S. Determination of natural phenols in olive fruits by chitosan assisted matrix solid-phase dispersion microextraction and ultrahigh performance liquid chromatography with quadrupole time-of-flight tandem mass spectrometry // J. Chromatogr. A. 2016. V. 1456. P. 68.

  50. Majidi S.M., Hadjmohammadi M.R. Development of magnetic dispersive micro-solid phase extraction based on magnetic agarose nanoparticles and deep eutectic solvents for the isolation and pre-concentration of three flavonoids in edible natural samples // Talanta. 2021. V. 222. Article 121649.

  51. Li M.-J., Li N., Xu G., Zhao L.X., Chen X., Zhao Y., Zhao R.S. Magnetic boron nitride nanosheets as a novel magnetic solid-phase extraction adsorbent for the determination of plant growth regulators in tomatoes // Food Chem. 2021. V. 348. Article 129103.

  52. Zhang Q., Mao X., Yuan C., Zhao J., Hu H., Yan A., Wang Y., Xiao W. A simplified dispersive solid-phase extraction using a shaped zirconium-based metal–organic framework: Constructing a novel, facile and efficient method for detecting plant growth regulators in citrus fruits // Food Chem. 2023. V. 405. Article 134862.

  53. Wang X.-Y., Xiong C.-F., Ye T.-T., Ding J., Feng Y.-Q. Online polymer monolith microextraction with in-situ derivatization for sensitive detection of endogenous brassinosteroids by LC-MS // Microchem. J. 2020. V. 158. Article 105061.

  54. Mousavi L., Tamiji Z., Khoshayand M. R. // Talanta. 2018. V. 190. P. 335. https://doi.org/10.1016/j.talanta.2018.08.002

  55. Diuzheva A., Locatelli M., Tartaglia A., Goga M., Ferrone V., Carlucci G., Andruch V. Application of liquid-phase microextraction to the analysis of plant and herbal samples // Phytochem. Anal. 2020. V. 31. № 6. P. 687.

  56. Ho T.D., Zhang C., Hantao L.W., Anderson J.L. Ionic Liquids in Analytical Chemistry: Fundamentals, Advances, and Perspectives // Anal. Chem. 2014. V. 86. № 1. P. 262.

  57. Passos H., Freire M.G., Coutinho J.A.P. Ionic liquid solutions as extractive solvents for value-added compounds from biomass // Green Chem. 2014. V. 16. № 12. P. 4786.

  58. Ventura S.P.M., E Silva F.A., Quental M.V., Mondal D., Freire M.G., Coutinho J.A.P. Ionic-Liquid-Mediated Extraction and Separation Processes for Bioactive Compounds: Past, Present, and Future Trends // Chem. Rev. 2017. V. 117. № 10. P. 6984.

  59. Amini T., Hashemi P. Preconcentration and GC–MS determination of caffeine in tea and coffee using homogeneous liquid–liquid microextraction based on solvents volume ratio alteration // J. Chromatogr. B. 2018. V. 1092. P. 252.

  60. Shalash M., Makahleh A., Salhimi S.M., Saad B. Vortex-assisted liquid-liquid–liquid microextraction followed by high performance liquid chromatography for the simultaneous determination of fourteen phenolic acids in honey, iced tea and canned coffee drinks // Talanta. 2017. V. 174. P. 428.

  61. Mocan A., Diuzheva A., Carradori S., Andruch V., Massafra C., Moldovan C., Sisea C., Petzer J.P., Petzer A., Zara S., Marconi G.D., Zengin G., Crișan G., Locatelli M. Development of novel techniques to extract phenolic compounds from Romanian cultivars of Prunus domestica L. and their biological properties // Food Chem. Toxicol. 2018. V. 119. P. 189.

  62. Diuzheva A., Carradori S., Andruch V., Locatelli M., De Luca E., Tiecco M., Germani R., Menghini L., Nocentini A., Gratteri P., Campestre C. Use of Innovative (Micro)Extraction Techniques to Characterise Harpagophytum procumbens Root and its Commercial Food Supplements // Phytochem. Anal. 2018. V. 29. № 3. P. 233.

  63. Ramirez D.A., Locatelli D.A., Torres-Palazzolo C.A., Altamirano J.C., Camargo A.B. Development of garlic bioactive compounds analytical methodology based on liquid phase microextraction using response surface design. Implications for dual analysis: Cooked and biological fluids samples // Food Chem. 2017. V. 215. P. 493.

  64. Ramirez D.A., Altamirano J.C., Camargo A.B. Multi-phytochemical determination of polar and non-polar garlic bioactive compounds in different food and nutraceutical preparations // Food Chem. 2021. V. 337. P. 127648.

  65. Sun J., Zhao X.E., Dang J., Sun X., Zheng L., You J., Wang X. Rapid and sensitive determination of phytosterols in functional foods and medicinal herbs by using UHPLC-MS/MS with microwave-assisted derivatization combined with dual ultrasound-assisted dispersive liquid-liquid microextraction // J. Sep. Sci. 2017. V. 40. № 3. P. 725.

  66. Ferrone V., Genovese S., Carlucci M., Tiecco M., Germani R., Preziuso F., Epifano F., Carlucci G., Taddeo V.A. A green deep eutectic solvent dispersive liquid-liquid micro-extraction (DES-DLLME) for the UHPLC-PDA determination of oxyprenylated phenylpropanoids in olive, soy, peanuts, corn, and sunflower oil // Food Chem. 2018. V. 245. P. 578.

  67. Mastellone G., Marengo A., Sgorbini B., Rubiolo P., Cagliero C. Development of a dispersive solid-liquid microextraction method using natural eutectic solvents for a greener extraction of phytochemicals from fiber-type Cannabis sp // Ind. Crops Prod. 2022. V. 187. P. 115476.

  68. Liu W., Zong B., Bi Y. Ultrasonic-Assisted Liquid-Liquid Microextraction Based on Natural Deep Eutectic Solvent for the HPLC-UV Determination of Tert-Butylhydroquinone from Soybean Oils // Food Anal. Methods. 2018. V. 11. № 6. P. 1797.

  69. Jahromi Z., Mostafavi A., Shamspur T., Mohamadim M. Magnetic ionic liquid assisted single-drop microextraction of ascorbic acid before its voltammetric determination // J. Sep. Sci. 2017. V. 40. № 20. P. 4041.

  70. Nia N.N., Hadjmohammadi M.R. Amino acids-based hydrophobic natural deep eutectic solvents as a green acceptor phase in two-phase hollow fiber-liquid microextraction for the determination of caffeic acid in coffee, green tea, and tomato samples // Microchem. J. 2021. V. 164. Article 106021.

  71. Armenta, S., Esteve-Turillas, F.A. Garrigues S., de la Guardia M. Smart materials for sample preparation in bioanalysis: A green overview // Sustain Chem. Parm. 2021. V. 21. Article 100411.

  72. Diuzheva A., Locatelli M., Tartaglia A., Goga M., Ferrone V., Carlucci G., Andruch V. Application of liquid-phase microextraction to the analysis of plant and herbal samples // Phytochem. Anal. 2020. V. 31. № 6. P. 687.

  73. Casado N., Morante-Zarcero S., Pérez-Quintanilla D., Câmara J.S., Sierra I. Two novel strategies in food sample preparation for the analysis of dietary polyphenols: Micro-extraction techniques and new silica-based sorbent materials // Trends Food Sci. Technol. 2020. V. 98. P. 167.

  74. Barker S.A. Matrix solid phase dispersion (MSPD) // J. Biochem. Biophys. Methods. 2007. V. 70. № 2. P. 151.

  75. Wu J., Xiao D., Zhao H., He H., Peng J., Wang C., Zhang C., He J. A nanocomposite consisting of graphene oxide and Fe3O4 magnetic nanoparticles for the extraction of flavonoids from tea, wine and urine samples // Microchim. Acta. 2015. V. 182. № 13–14. P. 2299.

  76. Speltini A., Scalabrini A., Maraschi F., Sturini M., Profumo A. Newest applications of molecularly imprinted polymers for extraction of contaminants from environmental and food matrices: A review // Anal. Chim. Acta. 2017. V. 974. P. 1.

  77. Sierra I., Morante-Zarcero S. New advances in food sample preparation with nanomaterials for organic contaminants analysis by liquid chromatography / Nanomaterials in Chromatography. Elsevier, 2018. P. 118.

  78. Augusto F., Carasek E., Silva R.G., Rivellino S.R., Batista A.D., Martendal E. New sorbents for extraction and microextraction techniques // J. Chromatogr. A. 2010. V. 1217. № 16. P. 2533.

  79. Filippou O., Bitas D., Samanidou V. Green approaches in sample preparation of bioanalytical samples prior to chromatographic analysis // J. Chromatogr. B. 2017. V. 1043. P. 44.

  80. Soltani R., Shahvar A., Dinari M., Saraji M. Environmentally-friendly and ultrasonic-assisted preparation of two-dimensional ultrathin Ni/Co-NO3 layered double hydroxide nanosheet for micro solid-phase extraction of phenolic acids from fruit juices // Ultrason. Sonochem. 2018. V. 40. P. 395.

  81. Cao W., Ye L.H., Cao J., Xu J.J., Peng L.Q., Zhu Q.Y., Zhang Q.Y., Hu S.S. Quantitative analysis of flavanones from citrus fruits by using mesoporous molecular sieve-based miniaturized solid phase extraction coupled to ultrahigh-performance liquid chromatography and quadrupole time-of-flight mass spectrometry // J. Chromatogr. A. 2015. V. 1406. P. 68.

  82. Peng L.-Q., Cao J. Modern microextraction techniques for natural products // Electrophoresis. 2020. V. 42. P. 219.

  83. Ding M., Bai Y., Li J., Yang X., Wang H., Gao X., Chang Y.-X. A diol-based-matrix solid-phase dispersion method for the simultaneous extraction and determination of 13 compounds from Angelicae Pubescentis Radix by ultra high-performance liquid chromatography // Front. Pharmacol. 2019. V. 10.

  84. Hao Y., Gao R., Liu D., He G., Tang Y., Guo Z. Selective extraction and determination of chlorogenic acid in fruit juices using hydrophilic magnetic imprinted nanoparticles // Food Chem. 2016. V. 200. P. 215.

  85. Alipanahpour Dil E., Asfaram A., Goudarzi A., Zabihi E., Javadian H. Biocompatible chitosan-zinc oxide nanocomposite based dispersive micro-solid phase extraction coupled with HPLC-UV for the determination of rosmarinic acid in the extracts of medical plants and water sample // Int. J. Biol. Macromol. 2020. V. 154. P. 528.

  86. Hao Y., Gao R., Liu D., Tang Y., Guo Z. Selective extraction of gallic acid in pomegranate rind using surface imprinting polymers over magnetic carbon nanotubes // Anal. Bioanal. Chem. 2015. V. 407. № 25. P. 7681.

  87. Pilipczuk T., Kusznierewicz B., Chmiel T., Przychodzeń W., Bartoszek A. Simultaneous determination of individual isothiocyanates in plant samples by HPLC-DAD-MS following SPE and derivatization with N-acetyl-l-cysteine // Food Chem. 2017. V. 214. P. 587.

  88. Casado N., Morante-Zarcero S., Pérez-Quintanilla D., Câmara J.S., Sierra I. Dispersive solid-phase extraction of polyphenols from juice and smoothie samples using hybrid mesostructured silica followed by ultra-high-performance liquid chromatography-ion-trap tandem mass spectrometry // J. Agric. Food Chem. 2019. V. 67. № 3. P. 955.

  89. Mao X., Xiao W., Wan Y., Li Z., Luo D., Yang H. Dispersive solid-phase extraction using microporous metal-organic framework UiO-66: Improving the matrix compounds removal for assaying pesticide residues in organic and conventional vegetables // Food Chem. 2021. V. 345. P. Article 128807.

  90. Majidi S.M., Hadjmohammadi M.R. Development of magnetic dispersive micro-solid phase extraction based on magnetic agarose nanoparticles and deep eutectic solvents for the isolation and pre-concentration of three flavonoids in edible natural samples // Talanta. 2021. V. 222. Article 121649.

  91. Ivanović M., Krajnc P., Mlinarič A., Razboršek M.I. Natural deep eutectic solvent-based matrix solid phase dispersion (MSPD) extraction for determination of bioactive compounds from sandy everlasting (Helichrysum arenarium L.): A case of stability study // Plants. 2022. V. 11. № 24. P. 3468.

  92. Jafari Z., Hadjmohammadi M.R. Development of magnetic solid phase extraction based on magnetic chitosan–graphene oxide nanoparticles and deep eutectic solvents for the determination of flavonoids by high performance liquid chromatography // Anal. Methods. 2021. V. 13. № 48. P. 5821.

  93. Xu J.J., Yang R., Ye L.H., Cao J., Cao W., Hu S.S., Peng L.Q. Application of ionic liquids for elution of bioactive flavonoid glycosides from lime fruit by miniaturized matrix solid-phase dispersion // Food Chem. 2016. V. 204. P. 167.

  94. Du K.Z., Chen Y., Li J., Tang G., Tian F., He J., Chang Y. Quantification of eight active ingredients in crude and processed radix polygoni multiflori applying miniaturized matrix solid-phase dispersion microextraction followed by UHPLC // J. Sep. Sci. 2018. V. 41. № 17. P. 3486.

  95. Anastassiades M., Lehotay S.J., Stajnbaher D., Schenck F.J. Fast and Easy Multiresidue Method Employing Acetonitrile Extraction/Partitioning and “Dispersive Solid-Phase Extraction” for the Determination of Pesticide Residues in Produce // J. AOAC Int. 2003. V. 86. № 2. P. 412.

  96. Perestrelo R., Silva P., Porto-Figueira P., Pereira J.A.M., Silva C., Medina S., Câmara J.S. QuEChERS – Fundamentals, relevant improvements, applications and future trends // Anal. Chim. Acta. 2019. V. 1070. P. 1.

  97. Bhattacharyya S., Poi R., Sen M.B., Hazra D.K., Ghosh R., Mandal S., Karmakar R. Establishment of modified QuEChERS-GC–MS-LC–MS/MS method for simultaneous screening of multi-class multi-pesticide residues in betelvine and consumer risk assessment // Microchem. J. 2022. V. 179. Article 107444.

  98. Álvarez-Ruiz R., Picó Y., Sadutto D., Campo J. Development of multi-residue extraction procedures using QuEChERS and liquid chromatography tandem mass spectrometry for the determination of different types of organic pollutants in mussel // Anal. Bioanal. Chem. 2021. V. 413. № 15. P. 4063.

  99. McManus M.M., Oates R.P., Subbiah S., Klein D., Cañas-Carrell J.E. Matrix-matched standards in the liquid chromatography–mass-spectrometry determination of neonicotinoids in soil and sediment // J. Chromatogr. A. 2019. V. 1602. P. 246.

  100. Xiu-Ping Z., Lin M., Lan-Qi H., Jian-Bo C., Li Z. The optimization and establishment of QuEChERS-UPLC–MS/MS method for simultaneously detecting various kinds of pesticides residues in fruits and vegetables // J. Chromatogr. B. 2017. V. 1060. P. 281.

  101. Casado N., Perestrelo R., Silva C.L., Sierra I., Câmara J.S. An improved and miniaturized analytical strategy based on μ-QuEChERS for isolation of polyphenols. A powerful approach for quality control of baby foods // Microchem. J. 2018. V. 139. P. 110.

  102. Izcara S., Perestrelo R., Morante-Zarcero S., Câmara J.S., Sierra I. High throughput analytical approach based on μQuEChERS combined with UHPLC-PDA for analysis of bioactive secondary metabolites in edible flowers // Food Chem. 2022. V. 393. Article 133371.

  103. Marques S.P.D., Owen R.W., da Silva A.M.A., Alves Neto M.L., Trevisan M.T.S. QuEChERS extraction for quantitation of bitter acids and xanthohumol in hops by HPLC-UV // Food Chem. 2022. V. 388. Article 132964.

  104. Rodrigues C.A., Zomer A.P.L., Rotta E.M., Visentainer J.V., Maldaner L. A μ-QuEChERS method combined with UHPLC-MS/MS for the analysis of phenolic compounds in red pepper varieties // J. Food Compos. Anal. 2022. V. 112. Article 104647.

  105. Wang Z., Wang X., Wang M., Li Z., Zhang X., Zhou L., Sun H., Yang M., Lou Z., Chen Z., Luo F. Establishment of a QuEChERS-UPLC-MS/MS method for simultaneously detecting tolfenpyrad and its metabolites in tea // Agronomy. 2022. V. 12. № 10. P. 2324.

  106. Izcara S., Casado N., Morante-Zarcero S., Pérez-Quintanilla D., Sierra I. Miniaturized and modified QuEChERS method with mesostructured silica as clean-up sorbent for pyrrolizidine alkaloids determination in aromatic herbs // Food Chem. 2022. V. 380. Article 132189.

Дополнительные материалы отсутствуют.