Теплофизика высоких температур, 2023, T. 61, № 3, стр. 382-390

Первопринципное изучение переноса протона в металл-оксидном перовските

А. Е. Галашев 12*

1 ФГБУН Институт высокотемпературной электрохимии УрО РАН
Екатеринбург, Россия

2 Уральский федеральный университет им. первого президента России Б.Н. Ельцина
Екатеринбург, Россия

* E-mail: galashev@ihte.uran.ru

Поступила в редакцию 11.06.2022
После доработки 01.11.2022
Принята к публикации 06.12.2022

Аннотация

В настоящей работе методом ab initio молекулярной динамики исследуется механизм протонной проводимости бездефектного перовскита LaScO3. Рассмотрено влияние начальных местоположения и скорости протона, электрического поля и температуры системы на поведение протона в металлических оксидах перовскитного типа. Показано, что температура системы выступает основным фактором, влияющим на скорость перемещения протона. Установлено аррениусовское температурное поведение протонной проводимости. В отсутствие кислородных вакансий направление движения протона в кристалле со структурой перовскита определяется его взаимодействием с фононами решетки, т.е. миграция протона по металл-оксидному перовскиту имеет поляронный характер. Совершенствование механизма миграции протонов по совершенному перовскиту служит одним из путей улучшения характеристик устройств чистой энергии.

Список литературы

  1. Zhang W., Hu Y.H. Progress in Proton-conducting Oxides as Electrolytes for Low-temperature Solid Oxide Fuel Cells: From Materials to Devices // Energy Sci. Eng. 2021. V. 9. P. 984.

  2. Смирнов Б.М. Проблемы глобальной энергетики атмосферы // ТВТ. 2021. Т. 59. № 4. С. 589.

  3. Wang Q., Wei H.-H., Xu Q. A Solid Oxide Fuel Cell (SOFC)-based Biogas-from-waste Generation System for Residential Buildings in China: A Feasibility Study // Sustainability. 2018. V. 10. P. 2395.

  4. Хасхачих В.В., Ларина О.М., Сычев Г.А., Герасимов Г.Я., Зайченко В.М. Пиролитические методы термической переработки твердых коммунальных отходов // ТВТ. 2021. Т. 59. № 3. С. 467.

  5. Kreuer K.D., Paddison S.J., Spohr E., Schuster M. Transport in Proton Conductors for Fuel-cell Applications: Simulations, Elementary Reactions, and Phenomenology // Chem. Rev. 2004. V. 104. P. 4637.

  6. Горелов В.П., Строева А.Ю. Протонные твердые электролиты на основе LаScO3 // Электрохимия. 2012. Т. 48. № 10. С. 1044.

  7. Caramanico N., Di Florio G., Baratto M.C., Cigolotti V., Basosi R., Busi E. Economic Analysis of Hydrogen Household Energy Systems Including Incentives on Energy Communities and Externalities: A Case Study in Italy // Energies. 2021. V. 14. P. 5847.

  8. Inaguma Y., Liquan C., Itoh M., Nakamura T. High Ionic Conductivity in Lithium Lanthanum Titanate // Solid State Commun. 1993. V. 86. P. 689.

  9. Birke P., Scharner S., Huggins R.A., Weppner W. Electrolytic Stability Limit and Rapid Lithium Insertion in the Fast-ion-conducting Li0.29La0.57TiO3 Perovskite-type Compound // J. Electrochem. Soc. 1997. V. 144. P. L167.

  10. Stramare S., Thangadura V., Weppner W. Lithium Lanthanum Titanates: A Review // Chem. Mater. 2003. V. 15. P. 3974.

  11. Zhao G., Suzuki K., Hirayama M., Kanno R. Syntheses and Characterization of Novel Perovskite-type LaScO3-based Lithium Ionic Conductors // Molecules. 2021. V. 26. P. 299.

  12. Hellstrom E.E., Van Gool W. Li Ion Conduction in Li2ZrO3, Li4ZrO4, and LiScO2 // Solid State Ion. 1981. V. 2. P. 59.

  13. Hui W., Chao L., Lu H. et al. Stabilizing Black-phase Formamidinium Perovskite Formation at Room Temperature and High Humidity // Science. 2021. V. 371. № 6536. P. 1359.

  14. Fang Z., Jia L., Yan N. et al. Proton-transfer-induced in situ Defect Passivation for Highly Efficient Wide-bandgap Inverted Perovskite Solar Cells // InfoMat. 2022. V. 4. № 6. e12307.

  15. Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple // Phys. Rev. Lett. 1996. V. 77. P. 3865.

  16. Siesta-pro/siesta-pseudos-and-basis-database. https://www.simuneatomistics.com/siesta-pro/siesta-pseudos-and-basis-database/

  17. Monkhorst H.J., Pack J.D. Special Points for Brillouin-zone Integrations // Phys. Rev. B. 1976. V. 13. P. 5188.

  18. Belova K., Egorova A., Pachina S., Animits I. Crystal Structure, Electrical Conductivity and Hydration of the Novel Oxygen-deficient Perovskite La2ScZnO5.5, Doped with MgO and CaO // Appl. Sci. 2022. V. 12. P. 1181.

  19. Wang C., Xu B.B., Zhang X., Sun W., Chen J., Pan H., Yan M., Jiang Y. Ion Hopping: Design Principles for Strategies to Improve Ionic Conductivity for Inorganic Solid Electrolytes // Small. 2022. V. 18. № 43. 2107064.

  20. Pavone M., Muñoz-García A.B., Ritzmann A.M., Carter E.A. First-principles Study of Lanthanum Strontium Manganite: Insights into Electronic Structure and Oxygen Vacancy Formation // J. Phys. Chem. 2014. V. 118. P. 13346.

  21. Park M.H., Lee D.H., Yang K., Park J.-Y., Yu G.T., Park H.W., Materano M. et al. Review of Defect Chemistry in Fluorite-structure Ferroelectrics for Future Electronic Devices // J. Mater. Chem. 2020. V. 8. P. 10526.

  22. Жирифалько Л. Статистическая физика твердого тела / Под ред. Кресина В.З., Струнина Б.М. М.: Мир, 1975. 382 с.

  23. Zhang B., Tan R., Yang L. et al. Mechanisms and Properties of Ion-transport in Inorganic Solid Electrolytes // Energy Storage Mater. 2018. V. 10. P. 139.

  24. Yang H., Wu N. Ionic Conductivity and Ion Transport Mechanisms of Solid-state Lithium-ion Battery Electrolytes: A Review // Energy Sci. Eng. 2022. V. 10. № 5. P. 1643.

Дополнительные материалы отсутствуют.