Теплоэнергетика, 2024, № 1, стр. 50-72

Малоэмиссионные камеры сгорания ГТУ. Современные тренды, диагностика и оптимизация (обзор)

Л. М. Чикишев ab*, Д. М. Маркович a

a Институт теплофизики им. С.С. Кутателадзе СО РАН
630090 г. Новосибирск, просп. Академика Лаврентьева, д. 1, Россия

b Новосибирский государственный университет
630090 г. Новосибирск, ул. Пирогова, д. 2, Россия

* E-mail: chlm@itp.nsc.ru

Поступила в редакцию 26.04.2023
После доработки 21.08.2023
Принята к публикации 30.08.2023

Аннотация

Приведен краткий обзор конструкций малоэмиссионных камер сгорания газотурбинного типа на примере авиационных двигательных установок. Наиболее перспективная технология, способствующая снижению выбросов вредных веществ, – это сжигание обедненной предварительно перемешанной топливовоздушной смеси, однако ее применение ограничено нестационарными явлениями, оказывающими существенное влияние на стабилизацию пламени и приводящими к возникновению термоакустического резонанса. В настоящее время для двигателей большой мощности данная технология реализована только двумя компаниями – General Electric и Rolls-Royce. Работы по созданию двигателя большой тяги в России ведутся в АО “ОДК-Авиадвигатель” в рамках программы ПД-35. Задачи разработки малоэмиссионных камер сгорания для газоперекачивающих агрегатов успешно решаются в АО “ОДК-Авиадвигатель” совместно с ЦИАМ им. П.И. Баранова (ГТУ-16П). Одним из ключевых направлений развития энергетики является также разработка газовых турбин большой мощности классов ГТЭ-65, ГТЭ-170 (ПАО “Силовые машины”), ГТД-110М (ОДК “Сатурн”), и здесь необходимо решать те же проблемы, что и для газотурбинных двигателей. Наиболее актуальными проблемами являются прогнозирование возникновения термоакустических автоколебаний газа в камерах сгорания и управление ими с помощью обратной связи как в номинальных режимах, так и в режимах малой мощности. Представлен обзор технологий с использованием малоэмиссионных камер сгорания, рассмотрено современное состояние экспериментальных исследований структуры течения и процессов переноса в модельных камерах сгорания. Приведены примеры передовых экспериментальных стендов, моделирующих течение и горение в камерах сгорания газотурбинного типа, указаны необходимые режимные параметры и используемые технические решения, позволяющие эффективно проводить измерения современными методами оптической диагностики.

Ключевые слова: камера сгорания, панорамные методы, горение, газотурбинная установка, малоэмиссионные камеры сгорания, оптическая диагностика процессов горения, авиационные двигательные установки

Список литературы

  1. Mongia H.C., Dodds W.G.A.E. Low emissions propulsion engine combustor technology evolution past, present and future // 24th Congress of International Council of the Aeronautical Sciences. Yokohama, Japan, 29 Aug.–03 Sept. 2004.

  2. Mongia H.C. TAPS: a fourth generation propulsion combustor technology emissions // AIAA International Air and Space Symposium and Next 100 Years. Dayton, Ohio. 14–17 July 2003.

  3. Madden P. CAEP combustion technology. Review process and CAEP NOx goals, FORUM-AE. 2 July 2014, Rolls-Royce.

  4. Pollution reduction technology program small jet engines – Phase I. Final Report / T.W. Bruce, F.G. Davis, T.E. Kuhn, H.C. Mongia // NASA CR-135214. AZ, Phoenix, USA, Sept. 1977.

  5. Bahr D.W., Gleason C.C. Experimental clean combustor program – Phase I. Final Report. GE-74AEG380, General Electric Company, NASA CR-134737. June 1975.

  6. Pollution reduction technology program, turboprop engines – Phase I. Final Report / R.D. Anderson, A.S. Herman, J.G. Tomlinson, J.M. Vaught, A.J. Verdouw // NASA CR-135040. 01 March 1976.

  7. Tacina M.K., Wey C. NASA Glenn high pressure low nox emissions research. NASA/TM-2008-214974, 01 Febr. 2008.

  8. A mechanism of combustion instability in lean premixed gas turbine combustors / T. Lieuwen, H. Torres, C. Johnson, B.T. Zinn // J. Eng. Gas Turbines Power. 2001. V. 123. No. 1. P. 182–189. https://doi.org/10.1115/1.1339002

  9. The Pratt and Whitney Talon X low emission combustor: revolutionary results with evolutionary technology / R. McKinney, A. Cheung, W. Sowa, D. Sepulveda // AIAA Aerospace Sciences Meeting and Exhibition. Reno, Nevada, 8–11 Jan. 2007. https://doi.org/10.2514/6.2007-386

  10. Lefebvre A.H., Ballal D.R. Gas turbine combustion: Alternative fuels and emissions. 3rd ed. CRC Press, 2010. https://doi.org/10.1201/9781420086058

  11. NOx scaling characteristics for industrial gas turbine fuel injectors / D.W. Kendrick, A. Bhargava, M.B. Colket, W.A. Sowa, D.J. Maloney, K.H. Casleton // Proc. of ASME Turbo Expo 2000: Power for Land, See and Air. Munich, Germany, 08–11 May 2000. Paper No. 2000-GT-0098. P. V002T02A018. https://doi.org/10.1115/2000-GT-0098

  12. Penanhoat O. Low emission combustor technology developments in the European programmes LOPOCOTEP and TLC // Proc. of the 25th ICAS. Hamburg, Germany, 03–08 Sept. 2006. http://www.icas.org/ICAS_ARCHIVE/ICAS2006/PAPERS/483.PDF

  13. Colantuoni S., Bake S., Badet J.P. Low emission combustors development for new aero-engine core applications // Proc. of 5th European Congress on Computational Methods in Applied Science and Engineering. ECCOMAS 2008. Lido Island, Venice, Italy, 30 June–05 July, 2008.

  14. Advanced core engine technologies assessment & validation / R. Bank, S. Donnerhack, A. Rae, F. Poutriquet, A. Lundbladh, A. Schweinberger // Proc of 11th European Conference on Turbomachinery, Fluid Dynamics and Thermodynamics. Madrid, Spain, 23–27 March 2015.

  15. Mongia H.C. GE Aviation emission combustion technology evolution // SAE Technical Paper No. 2007-01-3924, 2007. https://doi.org/10.4271/2007-01-3924

  16. NASA environmentally responsible aviation project develops next-generation low-emission combustion technologies (phase I) / C.T. Chang, C.M. Lee, J.T. Herbon, S.K. Kramer // J. Aeronaut. Aerosp. Eng. 2013. V. 2. Is. 4. https://doi.org/10.4172/2168-9792.1000116

  17. A new test rig for laser optical investigations of lean jet engine burners / D. Schneider, U. Meier, W. Quade, J. Koopman, T. Aumeier, A. Langfeld, T. Behrendt, C. Hassa, L. Rackwitz // Proc. of the 27th Congress of the International Council of the Aeronautical Sciences 2010. ICAS 2010. Nice, France, 19–24 Sept. 2010.

  18. Simultaneous PIV/OH-PLIF, Rayleigh thermometry/OH-PLIF and stereo PIV measurements in a low-swirl flame / P. Petersson, J. Olofsson, C. Brackman, H. Seyfried, J. Zetterberg, M. Richter, M. Alden, M.A. Linne, R.K. Cheng, A. Nauert, D. Geyer, A. Dreizler // Appl. Opt. 2007. V. 46. No. 19. P. 3928–3936. https://doi.org/10.1364/AO.46.003928

  19. CORIA aeronautical combustion facilities and associated optical diagnostics / F. Grisch, A. Boukhalfa, G. Cabot, B. Renou, A. Vandel // J. AerospaceLab. 2016. Is. 11. P. 13. https://doi.org/10.12762/2016.AL11-02

  20. Janus B., Dreizler A., Janicka J. Experimental study on stabilization of lifted swirl flames in a model GT combustor // Flow, Turbul. Combust. 2005. V. 75. No. 1–4. P. 293–315. https://doi.org/10.1007/s10494-005-8583-4

  21. Laser diagnostics of atomization and combustion of kerosene in a model combustion chamber / O.G. Chelebyan, A.Y. Vasiliev, A.A. Sviridenkov, A.A Loginova, V.D Kobtsev, D.N Kozlov, S.A Kostritsa, V.V Smirnov, V.I Fabelinsky // Laser Phys. 2020. V. 30. No. 11. P. 115602. https://doi.org/10.1088/1555-6611/abbe0f

  22. Zare R.N., Dagdigian P.J. Tunable laser fluorescence method for product state analysis // Science. 1974. V. 185. Is. 4153. P. 739–747. https://doi.org/10.1126/science.185.4153.739

  23. Visualization and understanding of combustion processes using spatially and temporally resolved laser diagnostic techniques / M. Aldén, J. Bood, Z. Li, M. Richter // Proc. Combust. Inst. 2011. V. 33. Is. 1. P. 69–97. https://doi.org/10.1016/j.proci.2010.09.004

  24. Dyer M.J., Crosley D.R. Two-dimensional imaging of OH laser-induced fluorescence in a flame // Opt. Lett. 1982. V. 7. Is. 8. P. 382–384. https://doi.org/10.1364/OL.7.000382

  25. Leipertz A., Pfadler S., Schiesel R. An overview of combustion diagnostics. Handbook of Combustion: Online. Wiley-VCH Verlag GmbH & Co., KGaA, 2010. https://doi.org/10.1002/9783527628148.hoc021

  26. Hanson R.K., Seitzman J.M., Paul P.H. Planar laser-fluorescence imaging of combustion gases // Appl. Phys. B. 1990. V. 50. No. 6. P. 441–454. https://doi.org/10.1007/BF00408770

  27. Daily J. Laser-induced fluorescence spectroscopy in flames // Prog. Energy Combust. Sci. 1997. V. 23. Is. 2. P. 133–199. https://doi.org/10.1016/s0360-1285(97)00008-7

  28. Kohse-Höinghaus K. Laser techniques for the quantitative detection of reactive intermediates in combustion systems // Prog. Energy Combust. Sci. 1994. V. 20. Is. 3. P. 203–279. https://doi.org/10.1016/0360-1285(94)90015-9

  29. Experimental study on the effect of equivalence ratio and injector position on flow structure and flame development in the scramjet combustor / Y. Tian, X. Zeng, S. Yang, F. Zhong, J. Le // Aerosp. Sci. Technol. 2018. V. 82–83. P. 9–19. https://doi.org/10.1016/j.ast.2018.08.026

  30. Investigation of combustion and flame stabilization modes in a hydrogen fueled scramjet combustor / Y. Tian, S. Yang, J. Le, T. Su, M. Yue, F. Zhong, X. Tian // Int. J. Hydrogen Energy. 2016. V. 41. Is. 42. P. 19218–19230. https://doi.org/10.1016/j.ijhydene.2016.07.219

  31. Sadanandan R., Stöhr M., Meier W. Simultaneous OH-PLIF and PIV measurements in a gas turbine model combustor // Appl. Phys. 2008. V. 90. No. 3. P. 609–618. https://doi.org/10.1007/s00340-007-2928-8

  32. Simultaneous CH–OH PLIF and stereoscopic PIV measurements of turbulent premixed flames / M. Tanahashi, S. Murakami, G.-M. Choi, Y. Fukuchi, T. Miyauchi // Proc. Combust. Inst. 2005. V. 30. Is. 1. P. 1665–1672. https://doi.org/10.1016/j.proci.2004.08.270

  33. Thermo-acoustic velocity coupling in a swirl stabilized gas turbine model combustor / V. Caux-Brisebois, A.M. Steinberg, C.M. Arndt, W. Meier // Combust. Flame. 2014. V. 161. Is. 12. P. 3166–3180. https://doi.org/10.1016/j.combustflame.2014.05.020

  34. Multi-species PLIF study of the structures of turbulent premixed methane/air jet flames in the flame let and thin-reaction zones regimes / J. Rosell, X.-S. Bai, J. Sjoholm, Z. Bo, L. Zheming, Z. W. Zhenkan, P. Pettersson, L. Zhongshan, M. Richter, M. Alden // Combust. Flame. 2017. V. 182. P. 324–338. https://doi.org/10.1016/j.combustflame.2017.04.003

  35. On the flow structure and dynamics of methane and syngas lean flames in a model gas-turbine combustor / V.M. Dulin, L.M. Chikishev, D.K. Sharaborin, A.S. Lobasov, R.V. Tolstoguzov, Z. Liu, X. Shi, Y. Li, D.M. Markovich // Energies. 2021. V. 14. Is. 24. P. 8267. https://doi.org/10.3390/en14248267

  36. Grant I. Particle image velocimetry: A review // Proc. Inst. Mech. Eng. 1997. V. 211. Is. 1. P. 55–76. https://doi.org/10.1243/0954406971521665

  37. Dabiri D. Cross-correlation digital particle image velocimetry – A review. Department of Aeronautics & Astronautics, University of Washington, Seattle, US, 2006. https://www.aa.washington.edu/sites/aa/files/faculty/ dabiri/pubs/piV.Review.Paper.final.pdf

  38. Keane R.D., Adrian R.J. Theory of cross-correlation analysis of PIV images // Appl. Sci. Res. 1992. V. 49. No. 3. P. 191–215. https://doi.org/10.1007/BF00384623

  39. Particle image velocimetry: A practical guide / M. Raffel, C.E. Willert, F. Scarano, C.J. Kähler, S.T. Wereley, J. Kompenhans. Springer, 2007. https://doi.org/10.1007/978-3-319-68852-7

  40. Tropea C., Yarin A.L., Foss J.F. Springer handbook of experimental fluid mechanics. Berlin; Heidelberg: Springer, 2007. https://doi.org/10.1007/978-3-540-30299-5.

  41. Santhosh R., Basu S. Transitions and blowoff of unconfined non-premixed swirling flame // Combust. Flame. 2015. V. 164. P. 35–52. https://doi.org/10.1016/j.combustflame.2015.10.034

  42. Elbaz A.M., Roberts W.L. Experimental study of the inverse diffusion flame using high repetition rate OH/acetone PLIF and PIV // Fuel. 2015. V. 165. P. 447–461. https://doi.org/10.1016/j.fuel.2015.10.096

  43. Gupta A.K., Lilley D.G., Syred N. Swirl Flows. Tunbridge Wells, Abacus Press, England, 1984.

  44. Weber R., Dugue J. Combustion accelerated swirling flows in high confinements // Prog. Energy Combust. Sci. 1992. V. 18. Is. 4. P. 349–367. https://doi.org/10.1016/0360-1285(92)90005-L

  45. Tacina R.R. Combustor technology for future aircraft // Proc. of the 26th AIAA/SAE/ASME/ASEE Joint Propulsion Conf., Orlando, Florida, USA, 16–18 July 1990.

  46. Correa S.M. Power generation and aeropropulsion gas turbines: From combustion science to combustion technology // Proc. Combust. Inst. 1998. V. 27. Is. 2. P. 1793–1807. https://doi.org/10.1016/S0082-0784(98)80021-0

  47. Lefebvre A.H., Ballal D.R. Gas turbine combustion. 3rd ed. CRC Press, 2010. https://doi.org/10.1201/9781420086058

  48. Lean combustion: Technology and control / Ed. by D. Dunn-Rankin and P. Therkelsen. Academic Press, 2016. https://doi.org/10.1016/C2013-0-13446-0

  49. Billant P., Chomaz J.M., Huerre P. Experimental study of vortex breakdown in swirling jet // J. Fluid Mech. 1998. V. 376. P. 183–219. https://doi.org/10.1017/S0022112098002870

  50. Lucca-Negro O., O’Doherty T. Vortex breakdown: a review // Prog. Energy Combust. Sci. 2001. V. 27. Is. 4. P. 431–481. https://doi.org/10.1016/S0360-1285(00)00022-8

  51. Syred N. A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems // Prog. Energy Combust. Sci. 2006. Is. 2. No. 8. P. 93–161. https://doi.org/10.1016/j.pecs.2005.10.002

  52. Three-dimensional vortex breakdown in swirling jets and wakes: direct numerical simulation / M.R. Ruith, P. Chen, E. Meiburg, T. Maxworthy // J. Fluid Mech. 2003. V. 486. P. 331–378. https://doi.org/10.1017/S0022112003004749

  53. Akhmetov D.G., Nikulin V.V., Petrov V.M. Experimental study of self-oscillations developing in a swirling-jet flow // Fluid Dyn. 2004. V. 39. No. 3. P. 406–413. https://doi.org/10.1023/B:FLUI.0000038559.04814.4d57

  54. Three-dimensional coherent structures in a swirling jet undergoing vortex breakdown: Stability analysis and empirical mode construction / K. Oberleithner, M. Sieber, C.N. Nayeri, C.O. Paschereit, C. Petz, H.C. Hege, B.R. Noack, I. Wygnanski // J. Fluid Mech. 2011. V. 679. P. 383–414. https://doi.org/10.1017/jfm.2011.141

  55. Formation of turbulent vortex breakdown: Intermittency, criticality, and global instability / K. Oberleithner, C.O. Paschereit, R. Seele, I. Wygnanski // AIAA J. 2012. V. 50. No. 7. P. 1437–1452. https://doi.org/10.2514/1.J050642

  56. Coherent structures in unsteady swirling jet flow / C.E. Cala, E.C. Fernandes, M.V. Heitor, S.I. Shtork // Exp. Fluids. 2006. V. 40. No. 2. P. 267–276. https://doi.org/10.1007/s00348-005-0066-9

  57. Effect of high-amplitude forcing on turbulent combustion intensity and vortex core precession in a strongly swirling lifted propane/air flame / S.V. Alekseenko, V.M. Dulin, Yu.S. Kozorezov, D.M. Markovich // Combust. Sci. Technol. 2012. V. 184. Is. 10–11. P. 1862–1890.https://doi.org/10.1080/00102202.2012.695239

  58. Oberleithner K., Paschereit C., Wygnanski I. On the impact of swirl a on the growth of coherent structures // J. Fluid Mech. 2014. V. 741. P. 156–199. https://doi.org/10.1017/jfm.2013.669

  59. McManus K.R., Poinsot T., Candel S.M. A review of active control of combustion instabilities // Prog. Energy Combust. Sci. 2000. V. 19. Is. 1. P. 1–29. https://doi.org/10.1016/0360-1285(93)90020-F

  60. Lieuwen T.C. Unsteady combustor physics. Cambridge, UK: Cambridge Univ. Press, 2012. https://doi.org/10.1017/CBO9781139059961

  61. Nonlinear interaction between a precessing vortex core and e acoustic oscillations in a turbulent swirling flame / J.P. Moeck, J.-F. Bourgouin, D. Durox, T. Schuller, S. Candel // Combust. Flame. 2012. V. 159. Is. 8. P. 2650–2668. https://doi.org/10.1016/j.combustflame.2012.04.002

  62. Oberleithner K., Schimek S., Paschereit C.O. Shear flow instabilities in swirl-stabilized combustors and their impact on the amplitude dependent flame response: A linear stability analysis // Combust. Flame. 2014. V. 162. Is. 1. P. 86–99. https://doi.org/10.1016/j.combustflame.2014.07.012

  63. Suppression and excitation of the precessing vortex core by acoustic c velocity fluctuations: An experimental and analytical study / S. Terhaar, B. Ćosić, C. Paschereit, K. Oberleithner // Combust. Flame. 2016. V. 172. P. 234–251. https://doi.org/10.1016/j.combustflame.2016.06.013

  64. LES study of transverse acoustic instabilities in a swirled kerosene/air combustion chamber / A. Ghani, T. Poinsot, L. Gicquel, J.D. Müller // Flow, Turbul. Combust. 2016. V. 96. No. 1. P. 207–226. https://link. springer.com/article/10.1007/s10494-015-9654-9

  65. Stöhr M., Arndt C.M., Meier W. Transient effects of fuel–air mixing in a partially-premixed turbulent swirl flame // Proc. Combust. Inst. 2015. V. 35. Is. 3. P. 3327–3335. https://doi.org/10.1016/j.proci.2014.06.095

  66. Terhaar S., Krüger O., Paschereit C.O. Flow field and flame dynamics of swirling methane and hydrogen flames at dry and steam diluted conditions // J. Eng. Gas Turbines. Power. 2015. V. 137. Is. 4. P. 041503. https://doi.org/10.1115/1.4028392

  67. Reynolds W.C., Alonso J.J., Fatica M. Aircraft gas turbine engine simulations // Proc. of the 16th AIAA Computational Fluid Dynamics Conference. Orlando, FL, 23–26 June 2003.

  68. Stricker W.P. Measurement of temperature in laboratory flames and practical devices // Applied Combustion Diagnostics / Ed by K. Kohse-Hoinghaus. J. Jeffries. N.Y.: CRC Press, 2002. P. 155–193. https://doi.org/10.1201/9781498719414

  69. Temperature measurements in turbulent swirl flames: Thermocouples in comparison to laser Raman scattering / W. Meier, X.R. Duan, P. Weigand, B. Lehmann // Gas, Warme Int. 2004. V. 53. No. 3. P. 153–158.

  70. Stohr M., Sadanandan R., Meier W. Experimental study of unsteady flame structures of an oscillating swirl flame in a gas turbine model combustor // Proc. Combust. Inst. 2009. V. 32. Is. 2. P. 2925–2932. https://doi.org/10.1016/j.proci.2008.05.086

  71. Temporally resolved planar measurements of transient phenomena in a partially premixed swirl flame in a gas turbine model combustor / I. Boxx, M. Stohr, C. Carter, W. Meier // Comb. Flame. 2010. V. 157. Is. 8. P. 1510–1525. https://doi.org/10.1016/j.combustflame.2009.12.01575

  72. Laboratory studies of the flow field characteristics of low-swirl injectors for adaptation to fuel-flexible turbines / R.K. Cheng, D. Littlejohn, W.A. Nazeer, K.O. Smith // J. Eng. Gas Turbines Power. 2008. V. 130. Is. 2. P. 021501. https://doi.org/10.1115/1.2795786

  73. Laboratory investigations of a low-swirl injector with H2 and CH4 at gas turbine conditions / R.K. Cheng, D. Littlejohn, P.A. Strakey, T. Sidwell // Proc. Combust. Inst. 2008. V. 32. Is. 2. P. 3001–3009. https://doi.org/10.1016/j.proci.2008.06.141

  74. Effects of hydrogen on the thermo-acoustics coupling mechanisms of low-swirl injector flames in a model gas turbine combustor / D.W. Davis, P.L. Therkelsen, D. Littlejohn, R.K. Cheng // Proc. Combust. Inst. 2013. V. 34. Is. 2. P. 3135–3143. https://doi.org/10.1016/j.proci.2012.05.050

  75. Kim W.W., Menon S., Mongia H.C. Large-eddy simulation of a gas turbine combustor flow // Combust. Sci. Technol. 1999. V. 143. Is. 1–6. P. 25–62. https://doi.org/10.1080/00102209908924192

  76. Compressible large eddy simulation of turbulent combustion in complex geometry on unstructured meshes / L. Selle, G. Lartigue, T. Poinsot, R. Koch, K.-U. Schildmacher, W. Krebs, B. Prade, P. Kaufmann, D. Veynante // Combust. Flame. 2004. V. 137. Is. 4. P. 489–505. https://doi.org/10.1016/j.combustflame.2004.03.008

  77. Duwig C., Fuchs L. Large eddy simulation of vortex breakdown/flame interaction // Phys. Fluids. 2007. V. 19. Is. 7. P. 075103. https://doi.org/10.1063/1.2749812

  78. Moureau V., Domingo P., Vervisch L. From large-eddy simulation to direct numerical simulation of a lean premixed swirl flame: Filtered laminar flame-PDF modeling // Combust. Flame. 2011. V. 158. Is. 7. P. 1340–1357. https://doi.org/10.1016/j.combustflame.2010.12.004

  79. Vortex breakdown types and global modes in swirling combustor flows with axial injection / S. Terhaar, T.G. Reichel, C. Schrödinger, L. Rukes, C.O. Paschereit, K. Oberleithner // J. Propul. Power. 2015. V. 31. No. 1. P. 219–229. https://doi.org/10.2514/1.B35217

  80. Paschereit C.O., Gutmark E., Weisenstein W. Structure and control of thermoacoustic instabilities in a gas-turbine combustor // Combust. Sci. Technol. 1998. V. 138. Is. 1–6. P. 213–232. https://doi.org/10.1080/00102209808952069

  81. Paschereit C.O., Gutmark E., Weisenstein W. Coherent structures in swirling flows and their role in acoustic combustion control // Phys. Fluids. 1999. V. 11. Is. 9. P. 2667–2678. https://doi.org/10.1063/1.870128

  82. Paschereit C.O., Gutmark E., Weisenstein W. Excitation of thermoacoustic instabilities by interaction of acoustics and unstable swirling flow // AIAA J. 2000. V. 38. No. 6. P. 1025–1034. https://doi.org/10.2514/2.1063

  83. Külsheimer C., Büchner H. Combustion dynamics of turbulent swirling flames // Combust. Flame. 2002. V. 131. Is. 1–2. P. 70–84. https://doi.org/10.1016/S0010-2180(02)00394-2

  84. Experimental investigation of the nonlinear response of turbulent premixed flames to imposed inlet velocity oscillations / R. Balachandran, B.O. Ayoola, C.F. Kaminski, A.P. Dowling, E. Mastorakos // Combust. Flame. 2005. V. 143. Is. 1–2. P. 37–55. https://doi.org/10.1016/j.combustflame.2005.04.009

  85. Bellows B.D., Neumeier Y., Lieuwen T. Forced response of a swirling, premixed flame to flow disturbance // J. Propul. Power. 2006. V. 22. No. 5. P. 1075–1084. https://doi.org/10.2514/1.17426

  86. Flame transfer function saturation mechanisms in a swirl-stabilized combustor / B.D. Bellows, M.K. Bobba, A. Forte, J.M. Seitzman, T. Lieuwen // Proc. Combust. Inst. 2007. V. 31. Is. 2. P. 3181–3188. https://doi.org/10.1016/j.proci.2006.07.138

  87. System identification of a large-scale swirled partially premixed combustor using LES and measurements / A. Giauque, L. Selle, L. Gicquel, T. Poinsot, H. Buechner, P. Kaufmann, W. Krebs // J. Turbomach. 2005 V. 6. Is. 2005. https://doi.org/10.1080/14685240512331391985

  88. Kang D.M., Culick F.E.C., Ratner A. Combustion dynamics of a low-swirl combustor // Combust. Flame. 2007. V. 151. Is. 3. P. 412–425. https://doi.org/10.1016/j.combustflame.2007.07.017

  89. Spatiotemporal characterization of a conical swirler flow field under strong forcing / A. Lacarelle, T. Faustmann, D. Greenblatt, C.O. Paschereit, O. Lehmann, D.M. Luchtenburg, B.R. Noack // J. Eng. Gas Turbines Power. 2009. V. 131. Is. 3. P. 031504. https://doi.org/10.1115/1.2982139

  90. Temperature response of turbulent premixed flames to inlet velocity oscillations / B. Ayoola, G. Hartung, C.A. Armitage, J. Hult, R.S. Cant, C.F. Kaminski // Exp. Fluids. 2008. V. 46. P. 27–41. https://doi.org/10.1007/s00348-008-0534-0

  91. Thumuluru S.K., Lieuwen T. Characterization of acoustically forced swirl flame dynamics // Proc. Combust. Inst. 2009. V. 32. Is. 2. P. 2893–2900. https://doi.org/10.1016/j.proci.2008.05.037

  92. Response of partially premixed flames to acoustic velocity and equivalence ratio perturbations / K.T. Kim, J.G. Lee, Q. Quay, D.A. Santavicca // Combust. Flame. 2010. V. 157. Is. 9. P. 1731–1744. https://doi.org/10.1016/j.combustflame.2010.04.006

  93. Kim K.T., Hochgreb S. The nonlinear heat release response of stratified lean-premixed flames to acoustic velocity oscillations // Combust. Flame. 2011. V. 158. Is. 12. P. 2482–2499. https://doi.org/10.1016/j.combustflame.2011.05.016

  94. The combined dynamics of swirler and turbulent premixed swirling flames / P. Palies, D. Durox, T. Schuller, S. Candel // Combust. Flame. 2010. V. 157. Is. 9. P. 1698–1717. https://doi.org/10.1016/j.combustflame.2010.02.011

  95. Acoustically perturbed turbulent premixed swirling flames / P. Palies, T. Schuller, D. Durox, L.Y.M. Gicquel, S. Candel // Phys. Fluids. 2011. V. 23. Is. 3. P. 037101. https://doi.org/10.1063/1.3553276

  96. Kim K.T., Santavicca D.A. Generalization of turbulent swirl flame transfer functions in gas turbine combustors // Combust. Sci. Technol. 2013. V. 185. Is. 7. P. 999–1015. https://doi.org/10.1080/00102202.2012.752734

  97. Phase-opposition control of the precessing vortex core in turbulent swirl flames for investigation of mixing and flame stability / F. Lückoff, M. Sieber, C.O. Paschereit, K. Oberleithner // J. Eng. Gas Turbines Power. 2019. V. 141. Is. 11. P. 111008. https://doi.org/10.1115/1.4044469102.

  98. Comparative analysis of low- and high-swirl confined flames and jets by proper orthogonal and dynamic mode decompositions / D.M. Markovich, S.S. Abdurakipov, L.M. Chikishev, V.M. Dulin, K. Hanjalic // Phys. Fluids. 2014. V. 26. Is. 6. P. 065109. https://doi.org/10.1063/1.4884915

  99. On impact of helical structures on stabilization of swirling flames with vortex breakdown / V.M. Dulin, A.S. Lobasov, L.M. Chikishev, D.M. Markovich, K. Hanjalic // Flow Turbul. Combust. 2019. V. 103. No. 4. P. 887–911. https://doi.org/10.1007/s10494-019-00063-7

  100. Mixing in a model gas turbine combustor studied by panoramic optical techniques / L.M. Chikishev, V.M. Dulin, O.A. Gobyzov, A.S. Lobasov, D.M. Markovich // Thermophys. Aeromech. 2017. V. 24. No. 3. P. 347–353. https://doi.org/10.1134/S0869864317030039

  101. Turbulent transport measurements in a model of GT-combustor / L.M. Chikishev, O.A. Gobyzov, D.K. Sharaborin, A.S. Lobasov, V.M. Dulin, D.M. Markovich, V.V. Tsatiashvili // AIP Conf. Proc.. 2016. V. 1770. Is. 1. P. 030028. https://doi.org/10.1063/1.4963970

  102. Turbulent transport measurements in a cold model of GT-burner at realistic flow rates / O.A. Gobyzov, L.M. Chikishev, A.S. Lobasov, D.K. Sharaborin, V.M. Dulin, A.V. Bilsky, V.V. Tsatiashvili, V.G. Avgustinovich, D.M. Markovich // EPJ Web Conf. 2016. V. 114. P. 02032. https://doi.org/10.1051/epjconf/201611402032

  103. PIV/PLIF investigation of unsteady turbulent flow and mixing behind a model gas turbine combustor / D.K. Sharaborin, A.G. Savitskii, G.Y. Bakharev, A.S. Lobasov, L.M. Chikishev, V.M. Dulin // Exp. Fluids. 2021. V. 62. Is. 5. Article 96. https://doi.org/10.1007/s00348-021-03181-z

  104. LES simulation of a model gas-turbine lean combustor: Impact of coherent flow structures on the temperature field and concentration of CO and NO / L.M. Chikishev, D.K. Sharaborin, A.S. Lobasov, Ar.A. Dekterev, R.V. Tolstoguzov, V.M. Dulin, D.M. Markovich // Energies. 2022. V. 15. Is. 12. P. 4362. https://doi.org/10.3390/en15124362

  105. Influence of a central jet on isothermal and reacting swirling flow in a model combustion chamber / E. Palkin, M.Y. Hrebtov, D.A. Slastnaya, R.I. Mullyadzhanov, L. Vervisch, D.K. Sharaborin, A.S. Lobasov, V.M. Dulin // Energies. 2022. V. 15. Is. 5. P. 1615. https://doi.org/10.3390/en15051615

Дополнительные материалы отсутствуют.