Почвоведение, 2023, № 9, стр. 1190-1202

Оценка направленности и механизмов влияния внесения биоугля на субстрат-индуцированное дыхание почв в длительном лабораторном эксперименте

Е. В. Смирнова a*, К. Г. Гиниятуллин a, Р. В. Окунев a, А. А. Валеева a, С. С. Рязанов b

a Казанский федеральный университет
420008 Казань, ул. Кремлевская, 18, Россия

b Институт проблем экологии и недропользования Академии наук Республики Татарстан
420087 Казань, ул. Даурская, 28, Россия

* E-mail: tutinkaz@yandex.ru

Поступила в редакцию 28.02.2023
После доработки 15.05.2023
Принята к публикации 16.05.2023

Аннотация

В лабораторном эксперименте изучали влияние биоугля (БУ) на субстрат-индуцированное дыхание (СИД) почв. В опыте использовали 10 образцов БУ, полученных из древесных и травянистых материалов в двух режимах пиролиза. Интенсивность СИД определяли через 3 сут, 3 и 6 мес. инкубации. При кратковременной инкубации не наблюдалось влияния БУ на СИД. Исключением был вариант с внесением БУ на основе кукурузы, в котором наблюдалось увеличение СИД на 34.6%. При инкубации в течение 3 мес. обнаруживалось значимое увеличение СИД (от 30.4 до 54.8%) при внесении пяти БУ. При инкубации в течение 6 мес. значимое увеличение СИД (от 30.4 до 65.9%) наблюдалось при внесении восьми БУ. Для оценки свойств БУ, оказывающих влияние на СИД, использовали Лассо регрессию и 23 показателя свойств БУ в качестве потенциальных предикторов. Обнаружено, что при трехдневной инкубации положительное влияние на СИД оказывают следующие свойства БУ: содержание окисляемого органического вещества, обменного кальция и рН водной суспензии, а слабое отрицательное – содержание обменного натрия. При инкубации в течение 3 мес. наблюдается положительное влияние окисляемого органического вещества, а через 6 мес. – содержания золы. Поскольку в опытах наблюдалось только положительное статистически значимое влияние БУ на СИД, cделаy вывод, что для объективной оценки эффективности их использования для секвестрации СО2 в почвах необходимы балансовые расчеты, в которых наряду с количеством внесенного в почвы с БУ устойчивого углерода, должно учитываться потенциальное увеличение эмиссии СО2 из почв за счет активации почвенной сапрофитной микробиоты.

Ключевые слова: секвестрация атмосферного углерода, биоуголь, субстрат-индуцированное дыхание почв, регрессионный анализ

Список литературы

  1. Ананьева Н.Д., Благодатская Е.В., Орлинский Д.Б., Мякшина Т.Н. Методические аспекты определения скорости субстрат-индуцированного дыхания почвенных микроорганизмов // Почвоведение. 1993. № 11. С. 72–77.

  2. Ананьева Н.Д., Сусьян Е.А., Гавриленко Е.Г. Особенности определения углерода микробной биомассы почвы методом субстрат индуцированного дыхания // Почвоведение. 2011. № 11. С. 1327–1333.

  3. Журавлева А.И., Якимов А.С., Демкин В.А., Благодатская Е.В. Минерализация почвенного органического вещества, инициированная внесением доступного субстрата, в профиле современных и погребенных подзолистых почв // Почвоведение. 2012. № 4. С. 490–499.

  4. Когут Б.М., Семенов В.М., Артемьева З.С., Данченко Н.Н. Дегумусирование и почвенная секвестрация углерода // Агрохимия. 2021. № 5. С. 3–13. https://doi.org/10.31857/S0002188121050070

  5. Красильников П.В. Устойчивые соединения углерода в почвах: происхождение и функции // Почвоведение. 2015. № 9. С. 1131–114. https://doi.org/10.1134/S1064229315090069

  6. Кудеяров В.Н. Эмиссия закиси азота из почв в условиях применения удобрений (аналитический обзор) // Почвоведение. 2020. № 10. С. 1192–1205. https://doi.org/10.1134/S1064229320100105

  7. Кудеяров В.Н. Почвенно-биогеохимические аспекты состояния земледелия в Российской Федерации // Почвоведение. 2019. № 1. С. 109–121. https://doi.org/10.1134/S1064229319010095

  8. Кудеяров В.Н. Современное состояние углеродного баланса и предельная способность почв к поглощению углерода на территории России // Почвоведение. 2015. № 9. С. 1049–1060. https://doi.org/10.1134/S1064229315090070

  9. Рижия Е.Я., Бучкина Н.П., Мухина И.М., Белинец А.С., Балашов Е.В. Влияние биоугля на свойства образцов дерново-подзолистой супесчаной почвы с разной степенью окультуренности (лабораторный эксперимент) // Почвоведение. 2015. № 2. С. 211–220. https://doi.org/10.1134/S1064229314120084

  10. Смирнова Е.В., Гиниятуллин К.Г., Валеева А.А., Ваганова Е.С. Пироугли как перспективные почвенные мелиоранты: оценка содержания и спектральные свойства их липидных фракций // Ученые записки Казанского университета. Сер. Естественные науки. 2018. № 160. С. 259–275.

  11. Шульц Е., Деллер Б., Хофман Г. Методы исследования органического вещества почв. М.: Россельхозакадемия, 2005. 521 с.

  12. Alburquerque J.A., Calero J.M., Barron V., Torrent J., Campillo M.C., Gallardo A., Villar R. Effects of biochars produced from different feedstocks on soil properties and sunflower growths // J. Plant Nutr. Soil Sci. 2014. V. 177. P. 16–25. https://doi.org/10.1002/jpln.201200652

  13. Anderson I.F.E., Domsch K.M. A physiological method for the quantitative measurement of microbial biomass in soils // Soil Biol. Biochem. 1978. V. 10. № 3. P. 215–221.

  14. Batjes N.H. Total carbon and nitrogen in the soils of the world // Eur. J. Soil Sci. 2014. V. 65. P. 10–21. https://doi.org/10.1111/EJSS.12114_2

  15. Batjes N.H., Bridges E.M. Potential emissions of radiatively active gases from soil to atmosphere with special reference to methane: Development of a global database (WISE) // J. Geophys. Res. 1994. V. 99. P. 16479–16489. https://doi.org/10.1029/93JD03278

  16. Blagodatskaya E., Kuzyakov Y. Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review // Biol. Fertil. Soils. 2008. V. 45. P. 115–131.

  17. Blagodatskaya E., Kuzyakov Y. Active microorganisms in soil: Critical review of estimation criteria and approaches // Soil Biol. Biochem. 2013. V. 67. P. 192–211. https://doi.org/10.1016/j.soilbio.2013.08.024

  18. Brodowski S., Amelung W., Haumaiera L., Abetz C., Zech W. Morphological and chemical properties of black carbon in physical soil fractions as revealed by scanning electron microscopy and energy-dispersive X-ray spectroscopy // Geoderma. 2005. V. 128. P. 116–129. https://doi.org/10.1016/j.geoderma.2004.12.019

  19. Case S.D.C., McNamara N.P., Reay D.S., Whitaker J. Can biochar reduce soil greenhouse gas emissions from a miscanthus bioenergy crop? // GCB Bioenergy. 2014. V. 6. P. 76–89. https://doi.org/10.1111/gcbb.1205

  20. Chambers A., Lal R., Paustian R. Soil carbon sequestration potential of US croplands and grasslands: implementing the 4 per thousand initiative // J. Soil Water Conserv. 2016. V. 71. P. 68–74. https://doi.org/10.2489/jswc.71.3.68A

  21. Chan K.Y., Bowman A., Oates A. Oxidizable organic carbon fractions and soil quality changes in an oxic paleustalf under different pature leys // Soil Sci. 2001. V. 166. P. 61–67.

  22. Chatterjee R., Sajjadi B., Chen W.-Y., Mattern D.L., Hammer N., Raman V., Dorris A. Effect of Pyrolysis Temperature on Physico Chemical Properties and Acoustic-Based Amination of Biochar for Efficient CO2 Adsorption // Front. Energy Res. 2020. V. 8. P. 85. https://doi.org/10.3389/fenrg.2020.00085

  23. Cheng C.-H., Lehmann J., Thies J.E., Burton S.D., Engelhard M.H. Oxidation of black carbon by biotic and abiotic processes // Org. Geochem. 2006. V. 37. P. 1477–1488.

  24. Cross A., Sohi S.P. The priming potential of biochar products in relation to labile carbon contents and soil organic matter status // Soil Biol. Biochem. 2011. V. 43. P. 2127–2134.

  25. Crow S.E., Lajtha K., Bowden R.D., Yano Y., Brant J.B., Caldwell B.A., Sulzman E.W. Increased coniferous needle inputs accelerate decomposition of soil carbon in an old-growth forest // Forest Ecol. Managem. 2009. V. 258. P. 2224–2232. https://doi.org/10.1016/j.foreco.2009.01.014

  26. Ding F., Van Zwieten L., Zhang W., Weng Z., Shi S., Wang J., Meng J. A meta-analysis and critical evaluation of influencing factors on soil carbon priming following biochar amendment // J. Soils Sediments. 2018. V. 18(4). https://doi.org/10.1007/s11368-017-1899-6

  27. Ding Y., Liu Y., Liu S. Biochar to improve soil fertility. A review // Agron. Sustain. Dev. 2016. V. 36. P. 36. https://doi.org/10.1007/s13593-016-0372-z

  28. Fang Y., Singh B.P., Singh B. Temperature sensitivity of biochar and native carbon mineralization in biochar-amended soils // Agric. Ecosyst. Environ. 2014. V. 191. P. 158–167.

  29. Gaskin J.W., Steiner C., Harris K., Das K.C., Bibens B. Effect of low-temperature pyrolysis conditions on biochar for agricultural use // Am. Soc. Agricult. Biol. Eng. 2008. V. 51. P. 2061–2069.

  30. Giniyatullin K.G., Smirnova E.V., Grigoryan B.R., Valeeva A.A. The Possibility of Use Research Methods of Soil Organic Matter for Assess the Biochar Properties // Res. J. Pharmaceutical, Biol. Chem. Sci. 2015. V. 6(4). P. 194–201.

  31. Glaser B., Lehmann J., Zech W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal – a review // Biol. Fertil. Soils. 2002. V. 35. 219–230. https://doi.org/10.1007/s00374-002-0466-4

  32. Gross A., Bromm T., Glaser B. Soil Organic Carbon Sequestration after Biochar Application: A Global Meta-Analysis // Agronomy. 2021. V. 11. P. 2474. https://doi.org/10.3390/agronomy11122474

  33. Haumaier L., Zech W. Black carbon–possible source of highly aromatic components of soil humic acids // Org. Geochem. 1995. V. 23. P. 191–196. https://doi.org/10.1016/0146-6380(95)00003-W

  34. IPCC. Intergovernmental panel on climate change. Special report: climatechange and land. 2019.

  35. Islam S., Ang B.C., Gharehkhani S., Afifi A.B.M. Adsorption capability of activated carbon synthesized from coconut shell // Carbon. 2016. V. 20. P. 1–9. https://doi.org/10.5714/cl.2016.20.001

  36. James G., Witten D., Hastie T., Tibshirani R. An Introduction to Statistical Learning with Applications in R. N.Y.: Springer, 2013. 440 p.

  37. Jiang P., Xiao L.Q., Wan X. Research Progress on Microbial Carbon Sequestration in Soil: a Review. // Eurasian Soil Sc. 2022. V. 55. P. 1395–1404. https://doi.org/10.1134/S1064229322100064

  38. Jien S.H., Wang C.C., Lee C.H., Lee T.Y. Stabilization of organic matter by biochar application in compost-amended soils with contrasting pH values and textures (Switzerland) // Sustainability. 2015. V. 7. P. 13317–13333. https://doi.org/10.3390/su71013317

  39. Jones D.L., Murphy D.V., Khalid M., Ahmad W., Edwards-Jones G., DeLuca T.H. Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated // Soil Biol. Biochem. 2011. V. 43. P. 1723–1731. https://doi.org/10.1016/j.soilbio.2011.04.018

  40. Kapoor A., Sharma R., Kumar A., Sepehya S. Biochar as a means to improve soil fertility and crop productivity: a review // J. Plant Nutrition. 2022. V. 45(15). P. 2380–2388. https://doi.org/10.1080/01904167.2022.2027980

  41. Keith A., Singh B., Singh B.P. Interactive priming of biochar and labile organic matter mineralization in a smectite-rich soil // Environ. Sci. Technol. 2011. V. 45. P. 9611–9618.

  42. Kloss S., Zehetner F., Wimmer B., Buecker J., Rempt F., Soja G. Biochar application to temperate soils: Effects on soil fertility and crop growth under greenhouse conditions // J. Plant Nutr. Soil Sci. 2014. V. 177. P. 3–15. https://doi.org/10.1002/jpln.201200282

  43. Kononova M.M., Bel’cikova N.P. Speed up methods for humus determination // Pochvovedenie. 1961. V. 25. P. 125–129.

  44. Kopittke P.M., Menzies N.W., Wang P., McKenna B.A., Lombi E. Soil and the intensification of agriculture for global food security // Environ. Int. 2019. V. 1132. P. 105078. https://doi.org/10.1016/j.envint.2019.105078

  45. Kurt A.S. Impact of biochar field aging on laboratory greenhouse gas production potentials // GCB Bioenergy. 2013. V. 5. P. 165–176. https://doi.org/10.1111/gcbb.12005

  46. Kuzyakov Y., Subbotina I., Chen H., Bogomolova I., Xu X. Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling // Soil Biol. Biochem. 2009. V. 41. P. 210–219.

  47. Laird D.A., Chappell V.A., Martens D.A., Wershaw R.L., Thompson M. Distinguishing black carbon from biogenic humic substances in soil clay fractions // Geoderma. 2008. V. 143. P. 115–122. https://doi.org/10.1016/j.geoderma.2007.10.025

  48. Lal R. Beyond COP 21: potential and challenges of the “4 per Thousand” initiative // J. Soil Water Conserv. 2016. V. 71. P. 68A–74A. https://doi.org/10.2489/jswc71.1.20A

  49. Lal R. Challenges and opportunities in soil organic matter research // Eur. J. Soil Sci. 2009. V. 60. P. 158–169. https://doi.org/10.1111/j.1365-2389.2008.01114.x

  50. Lee J.M., Park D.G., Kang S.S., Choi E.J., Gwon H.S., Lee H.S., Lee S.I. Short-Term Effect of Biochar on Soil Organic Carbon Improvement and Nitrous Oxide Emission Reduction According to Different Soil Characteristics in Agricultural Land: A Laboratory Experiment // Agronomy. 2022. V. 12. P. 1879. https://doi.org/10.3390

  51. Lehmann J., Gaunt J., Rondon M. Bio-char sequestration in terrestrial ecosystems – a review // Mitigation and Adaptation Strategies for Global Change. 2006. V. 11. P. 403–427. https://doi.org/10.1007/s11027-005-9006-5

  52. Lehmann J., Joseph S. Biochar for environmental management science technology and implementation. N.Y.: Routledge, 2015.

  53. Lehmann J., Rillig M.C., Thies J., Masiello C.A., Hockaday W.C., Crowley D. Biochar Effects on Soil Biota-A Review // Soil Biol. Biochem. 2011. V. 43. P. 1812–1836. https://doi.org/10.1016/j.soilbio.2011.04.022

  54. Liang B., Lehmann J., Sohi S.P., Thies J.E., O’Neill B., Trujillo L., Gaunt J., Solomon D., Grossman J., Neves E.G., Luizão F.J. Black carbon affects the cycling of non-black carbon in soil // Org. Geochem. 2010. V. 41. P. 206–213. https://doi.org/10.1016/j.orggeochem.2009.09.007

  55. Liu X.H., Zhang X.C. Effect of biochar on pH of alkaline soils in the loess plateau: results from incubation experiments // Int. J. Agricult. Biol. 2012. V. 14. P. 745–750.

  56. Liu Z., McNamara P., Zitomer D. Autocatalytic Pyrolysis of Wastewater Biosolids for Product Upgrading // Environ. Sci. Technol. 2017. V. 51. P. 9808–9816. https://doi.org/10.1021/acs.est.7b02913

  57. Lu W., Zhang H. Response of biochar induced carbon mineralization priming effects to additional nitrogen in a sandy loam soil // Appl. Soil Ecol. 2015. V. 96. P. 165–171. https://doi.org/10.5194/se-5-585-2014

  58. Luo Y., Durenkamp M., De Nobili M., Lin Q., Brookes P.C. Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH // Soil Biol. Biochem. 2011. V. 43. P. 2304–2314.

  59. Luo Y., Durenkamp M., De Nobili M., Lin Q., Devonshire B.J., Brookes P.C. Microbial biomass growth, following incorporation of biochars produced at 350°C or 700°C, in a silty-clay loam soil of high and low pH // Soil Biol. Biochem. 2013. V. 57. P. 513–523. https://doi.org/10.1016/j.soilbio.2012.10.033

  60. Luo Y., Lin Q., Durenkamp M. Does repeated biochar incorporation induce further soil priming effect? // J. Soils Sediments. 2018. V. 18. P. 128–135. https://doi.org/10.1007/s11368-017-1705-5

  61. Macdonald L.M., Farrell M., Zwieten L.V. et al. Plant growth responses to biochar addition: an Australian soils perspective // Biol. Fertil. Soils. 2014. V. 50. P. 1035–1045. https://doi.org/10.1007/s00374-014-0921-z

  62. Maestrini B., Nannipieri P., Abiven S. A meta-analysis on pyrogenic organic matter induced priming effect // Glob. Chang. Biol. Bioenergy. 2015. V. 7. P. 577–590. https://doi.org/10.1111/gcbb.12194

  63. Maestrini B., Herrmann A.M., Nannipieri P., Schmidt M.W.I., Abiven S. Ryegrass-derived pyrogenic organic matter changes organic carbon and nitrogen mineralization in a temperate forest soil // Soil Biol. Biochem. 2014. V. 69. P. 291–301. https://doi.org/10.1016/j.soilbio.2013.11.013

  64. Major J., Lehmann J., Rondon M., Goodale C. Fate of soil-applied black carbon: downward migration, leaching and soil respiration // Global Change Biology. 2010. V. 16. P. 1366–1379. https://doi.org/10.1111/j.1365-2486.2009.02044.x

  65. Majumder S., Neogi S., Dutta T., Powel M.A., Banik P. The impact of biochar on soil carbon sequestration: Meta-analytical approach to evaluating environmental and economic advantages // J. Environ. Manage. 2019. V. 15. P. 109466. https://doi.org/10.1016/j.jenvman.2019.109466

  66. Marquardt D., Snee R. Ridge Regression in Practice // Am. Statistician. 1975. V. 29. P. 3–20.

  67. Minasny B., Malone B.P., Mcbratney A.B., Angers D.A., Arrouays D. Soil carbon 4 per mille // Geoderma. 2017. V. 292. P. 59–86. https://doi.org/10.1016/j.geoderma.2017.01.002

  68. Naisse C., Girardin C., Davasse B., Chabbi A., Rumpel C. Effect of biochar addition on C mineralisation and soil organic matter priming in two subsoil horizons // J. Soils Sediments. 2014. V. 15. P. 825–832.

  69. Nam W.L., Phang X.Y., Su M.H., Liew R.K., Ma N.L., Rosli M.H.N.B., Lam S.S. Production of bio-fertilizer from microwave vacuum pyrolysis of palm kernel shell for cultivation of Oyster mushroom Pleurotus ostreatus // Sci. Total Environ. 2018. V. 624. P. 9–16. https://doi.org/10.1051/e3sconf/20172200122

  70. Nguyen B., Lehmann J., Hockaday W.C., Joseph S., Masiello C.A. Temperature sensitivity of black carbon decomposition and oxidation // Environ. Sci. Technol. 2010. V. 44. P. 3324–3331.

  71. Padarian J., Minasny B., McBratney A., Smith P. Soil carbon sequestration potential in global croplands // PeerJ. 2022. V. 10. P. 13740. https://doi.org/10.7717/peerj.13740

  72. Pansu M., Gautheyrou J. Handbook of soil analysis. Mineralogical, organic and inorganic methods. Heidelberg: Springer-Verlag, 2006. 993 p.

  73. Piccolo A., Spaccini R., Cozzolino V., Nuzzo A., Droso M., Zavattaro L., Grignani C., Puglisi E., Trevisan M. Effective carbon sequestration in italian agricultural soils by in situ polymerization of soil organic matter under biomimetic photo-catalysis // Land Degradation end Development. 2018. V. 29. https://doi.org/10.1002/ldr.2877

  74. Preston C.M., Schmidt M.W.I. Black pyrogenic. carbon in boreal forests: a synthesis of current knowledge and uncertainties // Biogeosciences Discussions, European Geosciences Union, 2006. V. 3. P. 211–271.

  75. Sanderman J., Hengl T., Fiske G. Soil carbon debt of 12 000 years of human land use // Proceedings of the National Academy of Sciences. 2017. V. 114. P. 201706103. https://doi.org/10.1073/pnas.1706103114

  76. Schmidt M., Noack A. Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges // Global Biogeochem. Cycles. 2000. V. 14. 777–793.

  77. Shahnazarova V.Yu., Orlova N.E., Orlova E.E. et al. Influence of biochar on the taxonomic composition and structure of prokaryotic communities in agrosoddy-podzolic soil // Agricultural Biology. 2020. V. 55. P. 163–173. https://doi.org/10.15389/agrobiology.2020.1.163rus

  78. Skjemstad J.O., Reicosky D.C., Wilts A.R., McGowan J.A. Charcoal Carbon in U.S. Agricultural Soils // Soil Sci. Soc. Am. J. 2002. V. 66. P. 1249–1255. https://doi.org/10.2136/sssaj2002.1249

  79. Smith P., Soussana J.F., Angers D., Schipper L., Chenu C. How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal // Global Change Biol. 2020. V. 26. P. 219–241. https://doi.org/10.1111/gcb.14815

  80. Sohi S., Krull E., Lopez-Capel E., Bol R. A review of biochar and its use and function in soil // Advances in Agronomy. 2010. V. 105. P. 47–82. https://doi.org/ 10.05002-9https://doi.org/10.1016/S0065-2113

  81. Spaccini R., Piccolo A., Conte P., Haberhauer G., Gerzabek M.H. Increased soil organic carbon sequestration through hydrophobic protection by humic substances // Soil Biol. Biochem. 2002. V. 34. P. 1839–1851. https://doi.org/ 02.00197-9https://doi.org/10.1016/S0038-0717

  82. Sun X., Shan R., Li X., Pan J., Liu X., Deng R., Song J. Characterization of 60 types of Chinese biomass waste and resultant biochars in terms of their candidacy for soil application // GCB Bioenergy. 2017. V. 9. P. 1423–1435. https://doi.org/10.1111/gcbb.12435

  83. Sun T., Feng W., Shi L. et al. Microbial growth rates, carbon use efficiency and enzyme activities during post-agricultural soil restoration // Catena. 2022. V. 214. P. 106226. https://doi.org/10.1016/j.catena.2022.106226

  84. Tang Y., Gao W., Cai K., Chen Y., Li C., Lee X., Cheng H., Zhang Q., Cheng J. Effects of biochar amendment on soil carbon dioxide emission and carbon budget in the karst region of southwest China // Geoderma. 2021. V. 385. P. 114895. https://doi.org/10.1016/j.geoderma.2020.114895

  85. Thiessen S., Gleixner G., Wutzler T., Reichstein M. Both priming and temperature sensitivity of soil organic matter decomposition depend on microbial biomass–an incubation study // Soil Biol. Biochem. 2013. V. 57. P. 739–748. https://doi.org/10.1016/j.soilbio.2012.10.029

  86. Tibshirani R. Regression Shrinkage and Selection via the Lasso // J. Royal Statistical Society. Series B Methodological. 1996. V. 58(1). P. 267–288.

  87. Tran H.N., You S.J., Chao H.P. Effect of pyrolysis temperatures and times on the adsorption of cadmium onto orange peel derived biochar // Waste Management and Research. 2015. V. 34. P. 129–138. https://doi.org/10.1177/0734242X15615698

  88. USDA-NRCS. Soil Survey Laboratory Methods Manual. Soil Survey Investigations. 1996. Report No. 42, Version 3.0. P. 693.

  89. Valeeva A.A., Grigoryan B.R., Bayan M.R., Giniyatullin K.G., Vandyukov A.E., Evtygin V.G. Adsorption of Methylene Blue by Biochar Produced Through Torrefaction and Slow Pyrolysis from Switchgrass // Res. J. Pharmaceutical, Biol. Chem. Sci. 2015. V. 6(4). P. 8–17.

  90. Van Zwieten L., Kimber S., Morris S. et al. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility // Plant and Soil. 2009. V. 327. P. 235–246.

  91. Wang J., Xiong Z., Kuzyakov Y. Biochar stability in soil: meta-analysis of decomposition and priming effects // GCB Bioenergy. 2016. V. 8. P. 512–523. https://doi.org/10.1111/gcbb.12266

  92. Wardle D., Zackrisson O., Nilsson M.C. The charcoal effect in Boreal forests: mechanisms and ecological consequences // Oecologia. 1998. V. 115. P. 419–426. https://doi.org/10.1007/s004420050536

  93. Watzinger A., Feichtmair S., Kitzler B. et al. Soil microbial communities responded to biochar application in temperate soils and slowly metabolized 13C-labelled biochar as revealed by 13C PLFA analyses: results from a short-term incubation and pot experiment // Eur. J. Soil Sci. 2014. V. 65(1). P. 40–51.

  94. Weng Z., Van Zwieten L., Singh B.P., Kimber S., Morris S., Cowie A., Macdonald L.M. Plant-biochar interactions drive the negative priming of soil organic carbon in an annual ryegrass field system // Soil Biol. Biochem. 2015. V. 90. P. 111–121. https://doi.org/10.1016/j.soilbio.2015.08.005

  95. Whitman T.L., Enders A., Lehmann J. Pyrogenic carbon additions to soil counteract positive priming of soil carbon mineralization by plants // Soil Biol. Biochem. 2014. V. 73. P. 33–41. https://doi.org/10.1016/J.SOILBIO.2014.02.009

  96. Woolf D., Lehmann J., Joseph S., Campbell C., Christo F.C., Angenent L.T. An open-source biomass pyrolysis reactor // Biofuels, Bioproducts and Biorefining. 2017. V. 11. P. 945–954.

  97. Wu D., Senbayram M., Zang H., Ugurlar F., Aydemir S., Brüggemann N., Kuzyakov Y., Bol, R., Blagodatskaya E. Effect of biochar origin and soil pH on greenhouse gas emissions from sandy and clay soils // Appl. Soil Ecol. 2018. V. 129. P. 121–127. https://doi.org/10.1016/j.apsoil.2018.05.009

  98. Zavalloni C., Alberti G., Biasiol S., Vedove G.D., Fornasier F., Liu J., Peressotti A. Microbial mineralization of biochar and wheat straw mixture in soil: a short-term study // Applied Soil Ecology. 2011. V. 50. P.45–51. https://doi.org/10.1016/j.apsoil.2011.07.012

  99. Zhang Q., Xiao J., Xue J., Zhang L. Quantifying the Effects of Biochar Application on Greenhouse Gas Emissions from Agricultural Soils: A Global Meta-Analysis // Sustainability. 2020. V. 12. P. 3436. https://doi.org/10.3390/su12083436

  100. Zhang A., Liu Y., Pan G., Hussain Q., Li L., Zheng J., Zhang X. Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain // Plant Soil. 2011. V. 351. P. 263–275.

  101. Zimmerman A.R., Gao B., Ahn M.-Y. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils // Soil Boil. Biochem. 2011. V. 43. P. 1169–1179. https://doi.org/10.1016/j.soilbio.2011.02.005

Дополнительные материалы отсутствуют.