Журнал общей биологии, 2023, T. 84, № 2, стр. 83-97

Роль человеческого сывороточного альбумина в профилактике и лечении болезни Альцгеймера

М. П. Шевелёва 1, Е. И. Дерюшева 1, Е. Л. Немашкалова 1, А. В. Мачулин 2, Е. А. Литус 1*

1 Институт биологического приборостроения с опытным производством РАН, обособленное подразделение ФИЦ “Пущинский научный центр биологических исследований РАН”
142290 Московская обл., Пущино, Пр-т Науки, 3, Россия

2 Институт биохимии и физиологии микроорганизмов им. Г.К. Скрябина РАН, обособленное подразделение ФИЦ “Пущинский научный центр биологических исследований РАН”
142290 Московская обл., Пущино, Пр-т Науки, 3, Россия

* E-mail: ealitus@gmail.com

Поступила в редакцию 19.08.2022
После доработки 08.01.2023
Принята к публикации 22.03.2023

Аннотация

Болезнь Альцгеймера (БА) была и остается основной причиной развития деменции у возрастных пациентов. Данное нейродегенеративное заболевание характеризуется прогрессивным течением и относится к группе социально значимых. Существует несколько гипотез развития БА: тау-гипотеза, амилоидная гипотеза, холинергическая гипотеза, гипотезы окислительного стресса и воспаления. Отсутствие общепринятого представления об этиологии и патогенезе БА препятствует разработке новых эффективных способов ее лечения и профилактики. В клинической практике широко используются ингибиторы холинэстеразы, облегчающие симптомы заболевания, но не влияющие на его течение. В 2021 г. впервые был одобрен препарат для проведения патогенетической терапии БА (адуканумаб), способствующий снижению содержания β-амилоидного пептида (Аβ) в головном мозге пациентов. Другим перспективным подходом к терапии БА, направленным на выведение Аβ из центральной нервной системы пациента, является воздействие на человеческий сывороточный альбумин (ЧСА), который переносит 90% Аβ в сыворотке крови и 40–90% Аβ в цереброспинальной жидкости. В клинической практике уже был апробирован и показал свою эффективность плазмаферез с заменой собственного ЧСА на очищенный терапевтический препарат альбумина. Еще одним вариантом такого подхода является усиление взаимодействия ЧСА с Аβ посредством воздействия экзогенных и эндогенных лигандов ЧСА, таких как серотонин, ибупрофен и некоторые ненасыщенные жирные кислоты. Исследования in vivo подтверждают ассоциацию данной группы лигандов с патогенезом БА. Перечисленные вещества относятся к хорошо изученным естественным метаболитам или лекарственным препаратам, что существенно упрощает разработку новых методов терапии и профилактики БА с их использованием. В целом, новое направление научных исследований, посвященных изучению ЧСА в качестве переносчика и депо Аβ в крови и цереброспинальной жидкости, позволит расширить наши представления о метаболизме Аβ и его роли в патогенезе БА.

Список литературы

  1. Algamal M., Milojevic J., Jafari N., Zhang W., Melacini G., 2013. Mapping the interactions between the Alzheimer’s Aβ-peptide and human serum albumin beyond domain resolution // Biophys. J. V. 105. № 7. P. 1700–1709. https://doi.org/10.1016/j.bpj.2013.08.025

  2. Algamal M., Ahmed R., Jafari N., Ahsan B., Ortega J., Melacini G., 2017. Atomic-resolution map of the interactions between an amyloid inhibitor protein and amyloid β (Aβ) peptides in the monomer and protofibril states // J. Biol. Chem. V. 292. № 42. P. 17158–17168. https://doi.org/10.1074/jbc.M117.792853

  3. Ali M.M., Ghouri R.G., Ans A.H., Akbar A., Toheed A., 2019. Recommendations for anti-inflammatory treatments in Alzheimer’s disease: A comprehensive review of the literature // Cureus. V. 11. № 5. Art. e4620. https://doi.org/10.7759/cureus.4620

  4. Alonso A.C., Zaidi T., Grundke-Iqbal I., Iqbal K., 1994. Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease // Proc. Natl. Acad. Sci. V. 91. № 12. P. 5562–5566. https://doi.org/10.1073/pnas.91.12.5562

  5. Andreasen N., Hesse C., Davidsson P., Minthon L., Wallin A. et al., 1999. Cerebrospinal fluid beta-amyloid 1-42 in Alzheimer disease: differences between early- and late-onset Alzheimer disease and stability during the course of disease // Arch. Neurol. V. 56. № 6. P. 673–680. https://doi.org/10.1001/archneur.56.6.673

  6. Arvanitakis Z., Shah R.C., Bennett D.A., 2019. Diagnosis and management of dementia: Review // JAMA. V. 322. № 16. P. 1589–1599. https://doi.org/10.1001/jama.2019.4782

  7. Azizi G., Navabi S.S., Al-Shukaili A., Seyedzadeh M.H., Yazdani R., Mirshafiey A., 2015. The role of inflammatory mediators in the pathogenesis of Alzheimer’s disease // Sultan Qaboos Univ. Med. J. V. 15. № 3. P. e305–316. https://doi.org/10.18295/squmj.2015.15.03.002

  8. Bagheri S., Squitti R., Haertlé T., Siotto M., Saboury A.A., 2017. Role of copper in the onset of Alzheimer’s disease compared to other metals // Front. Aging Neurosci. V. 9. Art. 446. https://doi.org/10.3389/fnagi.2017.00446

  9. Bal W., Sokołowska M., Kurowska E., Faller P., 2013. Binding of transition metal ions to albumin: sites, affinities and rates // Biochim. Biophys. Acta. V. 1830. № 12. P. 5444–5455. https://doi.org/10.1016/j.bbagen.2013.06.018

  10. Bali J., Gheinani A.H., Zurbriggen S., Rajendran L., 2012. Role of genes linked to sporadic Alzheimer’s disease risk in the production of β-amyloid peptides // Proc. Natl. Acad. Sci. USA. V. 109. № 38. P. 15307–15311. https://doi.org/10.1073/pnas.1201632109

  11. Baumketner A., Bernstein S.L., Wyttenbach T., Bitan G., Teplow D.B. et al., 2006. Amyloid beta-protein monomer structure: a computational and experimental study // Protein Sci. V. 15. № 3. P. 420–428. https://doi.org/10.1110/ps.051762406

  12. Bernstein S.L., Wyttenbach T., Baumketner A., Shea J.-E., Bitan G. et al., 2005. Amyloid β-Protein: Monomer structure and early aggregation states of Aβ42 and its Pro 19 alloform // J. Am. Chem. Soc. V. 127. № 7. P. 2075–2084. https://doi.org/10.1021/ja044531p

  13. Biere A.L., Ostaszewski B., Stimson E.R., Hyman B.T., Maggio J.E., Selkoe D.J., 1996. Amyloid β-Peptide is transported on lipoproteins and albumin in human plasma // J. Biol. Chem. V. 271. № 51. P. 32916–32922. https://doi.org/10.1074/jbc.271.51.32916

  14. Bitan G., Kirkitadze M.D., Lomakin A., Vollers S.S., Benedek G.B., Teplow D.B., 2003. Amyloid beta-protein (Abeta) assembly: Abeta 40 and Abeta 42 oligomerize through distinct pathways // Proc. Natl. Acad. Sci. USA. V. 100. № 1. P. 330–335. https://doi.org/10.1073/pnas.222681699

  15. Boada M., Ortiz P., Anaya F., Hernández I., Muñoz J. et al., 2009. Amyloid-targeted therapeutics in Alzheimer’s disease: Use of human albumin in plasma exchange as a novel approach for Abeta mobilization // Drug News Perspect. V. 22. № 6. P. 325–339. https://doi.org/10.1358/dnp.2009.22.6.1395256

  16. Boada M., Anaya F., Ortiz P., Olazarán J., Shua-Haim J.R. et al., 2017. Efficacy and safety of plasma exchange with 5% albumin to modify cerebrospinal fluid and plasma amyloid-β concentrations and cognition outcomes in Alzheimer’s disease patients: Amulticenter, randomized, controlled clinical trial // J. Alzheimers Dis. V. 56. № 1. P. 129–143. https://doi.org/10.3233/JAD-160565

  17. Boada M., López O.L., Olazarán J., Núñez L., Pfeffer M. et al., 2020. A randomized, controlled clinical trial of plasma exchange with albumin replacement for Alzheimer’s disease: Primary results of the AMBAR Study // Alzheimers Dement. V. 16. № 10. P. 1412–1425. https://doi.org/10.1002/alz.12137

  18. Bode D.C., Stanyon H.F., Hirani T., Baker M.D., Nield J., Viles J.H., 2018. Serum albumin’s protective inhibition of amyloid-β fiber formation is suppressed by cholesterol, fatty acids and warfarin // J. Mol. Biol. V. 430. № 7. P. 919–934. https://doi.org/10.1016/j.jmb.2018.01.008

  19. Bohrmann B., Tjernberg L., Kuner P., Poli S., Levet-Trafit B. et al., 1999. Endogenous proteins controlling amyloid beta-peptide polymerization. Possible implications for beta-amyloid formation in the central nervous system and in peripheral tissues // J. Biol. Chem. V. 274. № 23. P. 15990–15995. https://doi.org/10.1074/jbc.274.23.15990

  20. Brier M.R., Gordon B., Friedrichsen K., McCarthy J., Stern A. et al., 2016. Tau and Aβ imaging, CSF measures, and cognition in Alzheimer’s disease // Sci. Transl. Med. V. 8. № 338. Art. 338ra66. https://doi.org/10.1126/scitranslmed.aaf2362

  21. Brinkman S.D., Gershon S., 1983. Measurement of cholinergic drug effects on memory in alzheimer’s disease // Neurobiol. Aging. V. 4. № 2. P. 139–145. https://doi.org/10.1016/0197-4580(83)90038-6

  22. Bunin M.A., Wightman R.M., 1998. Quantitative evaluation of 5-hydroxytryptamine (serotonin) neuronal release and uptake: An investigation of extrasynaptic transmission // J. Neurosci. V. 18. № 13. P. 4854–4860. https://doi.org/10.1523/JNEUROSCI.18-13-04854.1998

  23. Butterfield D.A., Lauderback C.M., 2002. Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: Potential causes and consequences involving amyloid β-peptide-associated free radical oxidative stress // Free Radic. Biol. Med. V. 32. № 11. P. 1050–1060. https://doi.org/10.1016/S0891-5849(02)00794-3

  24. Butterfield D.A., Reed T., Newman S.F., Sultana R., 2007. Roles of amyloid β-peptide-associated oxidative stress and brain protein modifications in the pathogenesis of Alzheimer’s disease and mild cognitive impairment // Free Radic. Biol. Med. V. 43. № 5. P. 658–677. https://doi.org/10.1016/j.freeradbiomed.2007.05.037

  25. Carrillo-Mora P., Luna R., Colín-Barenque L., 2014. Amyloid beta: Multiple mechanisms of toxicity and only some protective effects? // Oxid. Med. Cell. Longev. V. 2014. Art. 795375. https://doi.org/10.1155/2014/795375

  26. Cheignon C., Tomas M., Bonnefont-Rousselot D., Faller P., Hureau C., Collin F., 2018. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease // Redox Biol. V. 14. P. 450–464. https://doi.org/10.1016/j.redox.2017.10.014

  27. Choi T.S., Lee H.J., Han J.Y., Lim M.H., Kim H.I., 2017. Molecular insights into human serum albumin as a receptor of amyloid-β in the extracellular region // J. Am. Chem. Soc. V. 139. № 43. P. 15437–15445. https://doi.org/10.1021/jacs.7b08584

  28. Christen Y., 2000. Oxidative stress and Alzheimer disease // Am. J. Clin. Nutr. V. 71. № 2. P. 621S–629S. https://doi.org/10.1093/ajcn/71.2.621s

  29. Cirrito J.R., Disabato B.M., Restivo J.L., Verges D.K., Goebel W.D. et al., 2011. Serotonin signaling is associated with lower amyloid-β levels and plaques in transgenic mice and humans // Proc. Natl. Acad. Sci. USA. V. 108. № 36. P. 14968–14973. https://doi.org/10.1073/pnas.1107411108

  30. Costa M., Ortiz A.M., Jorquera J.I., 2012. Therapeutic albumin binding to remove amyloid-β // J. Alzheimers Dis. V. 29. № 1. P. 159–170. https://doi.org/10.3233/JAD-2012-111139

  31. Cuberas-Borrós G., Roca I., Boada M., Tárraga L., Hernández I. et al., 2018. Longitudinal neuroimaging analysis in mild-moderate Alzheimer’s disease patients treated with plasma exchange with 5% human albumin // J. Alzheimers Dis. V. 61. № 1. P. 321–332. https://doi.org/10.3233/JAD-170693

  32. Cunnane S.C., Schneider J.A., Tangney C., Tremblay-Mercier J., Fortier M. et al., 2012. Plasma and brain fatty acid profiles in mild cognitive impairment and Alzheimer’s disease // J. Alzheimers Dis. V. 29. № 3. P. 691–697. https://doi.org/10.3233/JAD-2012-110629

  33. Deane R., Bell R.D., Sagare A., Zlokovic B.V., 2009. Clearance of amyloid-beta peptide across the blood-brain barrier: Implication for therapies in Alzheimer’s disease // CNS Neurol. Disord. Drug Targets. V. 8. № 1. P. 16–30. https://doi.org/10.2174/187152709787601867

  34. DeMattos R.B., Bales K.R., Parsadanian M., O’Dell M.A., Foss E.M. et al., 2002. Plaque-associated disruption of CSF and plasma amyloid-beta (Abeta) equilibrium in a mouse model of Alzheimer’s disease // J. Neurochem. V. 81. № 2. P. 229–236. https://doi.org/10.1046/j.1471-4159.2002.00889.x

  35. Du X., Wang X., Geng M., 2018. Alzheimer’s disease hypothesis and related therapies // Transl. Neurodegener. V. 7. № 1. Art. 2. https://doi.org/10.1186/s40035-018-0107-y

  36. Ezra A., Rabinovich-Nikitin I., Rabinovich-Toidman P., Solomon B., 2016. Multifunctional effect of human serum albumin reduces Alzheimer’s disease related pathologies in the 3xTg mouse model // J. Alzheimers Dis. V. 50. № 1. P. 175–188. https://doi.org/10.3233/JAD-150694

  37. Fändrich M., 2007. On the structural definition of amyloid fibrils and other polypeptide aggregates // Cell. Mol. Life Sci. V. 64. № 16. P. 2066–2078. https://doi.org/10.1007/s00018-007-7110-2

  38. Fändrich M., Meinhardt J., Grigorieff N., 2009. Structural polymorphism of Alzheimer Aβ and other amyloid fibrils // Prion. V. 3. № 2. P. 89–93. https://doi.org/10.4161/pri.3.2.8859

  39. Fasano M., Curry S., Terreno E., Galliano M., Fanali G., et al., 2005. The extraordinary ligand binding properties of human serum albumin // IUBMB Life. V. 57. № 12. P. 787–796. https://doi.org/10.1080/15216540500404093

  40. GBD 2019 Dementia Forecasting Collaborators, 2022. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: An analysis for the Global Burden of Disease Study 2019 // Lancet. Public Heal. V. 7. № 2. P. e105–e125. https://doi.org/10.1016/S2468-2667(21)00249-8

  41. Gella A., Durany N., 2009. Oxidative stress in Alzheimer disease // Cell Adh. Migr. V. 3. № 1. P. 88–93. https://doi.org/10.4161/cam.3.1.7402

  42. Ghersi-Egea J.F., Gorevic P.D., Ghiso J., Frangione B., Patlak C.S., Fenstermacher J.D., 1996. Fate of cerebrospinal fluid-borne amyloid beta-peptide: Rapid clearance into blood and appreciable accumulation by cerebral arteries // J. Neurochem. V. 67. № 2. P. 880–883. https://doi.org/10.1046/j.1471-4159.1996.67020880.x

  43. Gibson G.L., Allsop D., Austen B.M., 2004. Induction of cellular oxidative stress by the beta-amyloid peptide involved in Alzheimer’s disease // Protein Pept. Lett. V. 11. № 3. P. 257–270. https://doi.org/10.2174/0929866043407101

  44. Goedert M., Spillantini M.G., 2001. Tau gene mutations and neurodegeneration // Biochem. Soc. Symp. V. 67. № 67. P. 59–71. https://doi.org/10.1042/bss0670059

  45. Gong Y., Chang L., Viola K.L., Lacor P.N., Lambert M.P. et al., 2003. Alzheimer’s disease-affected brain: Presence of oligomeric A beta ligands (ADDLs) suggests a molecular basis for reversible memory loss // Proc. Natl. Acad. Sci. USA. V. 100. № 18. P. 10417–10422. https://doi.org/10.1073/pnas.1834302100

  46. Hayden K.M., Zandi P.P., Khachaturian A.S., Szekely C.A., Fotuhi M. et al., 2007. Does NSAID use modify cognitive trajectories in the elderly? The Cache County Study // Neurology. V. 69. № 3. P. 275–282. https://doi.org/10.1212/01.wnl.0000265223.25679.2a

  47. Hirao K., Smith G.S., 2014. Positron emission tomography molecular imaging in late-life depression // J. Geriatr. Psychiatry Neurol. V. 27. № 1. P. 13–23. https://doi.org/10.1177/0891988713516540

  48. Ishima Y., Mimono A., Tuan Giam Chuang V., Fukuda T., Kusumoto K. et al., 2020. Albumin domain mutants with enhanced Aβ binding capacity identified by phage display analysis for application in various peripheral Aβ elimination approaches of Alzheimer’s disease treatment // IUBMB Life. V. 72. № 4. P. 641–651. https://doi.org/10.1002/iub.2203

  49. Kayed R., Head E., Thompson J.L., McIntire T.M., Milton S.C. et al., 2003. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis // Science. V. 300. № 5618. P. 486–489. https://doi.org/10.1126/science.1079469

  50. Kinney J.W., Bemiller S.M., Murtishaw A.S., Leisgang A.M., Salazar A.M., Lamb B.T., 2018. Inflammation as a central mechanism in Alzheimer’s disease // Alzheimers Dement. Transl. Res. Clin. Interv. V. 4. № 1. P. 575–590. https://doi.org/10.1016/j.trci.2018.06.014

  51. Kirkitadze M.D., Condron M.M., Teplow D.B., 2001. Identification and characterization of key kinetic intermediates in amyloid beta-protein fibrillogenesis // J. Mol. Biol. V. 312. № 5. P. 1103–1119. https://doi.org/10.1006/jmbi.2001.4970

  52. Kirschner D.A., Abraham C., Selkoe D.J., 1986. X-ray diffraction from intraneuronal paired helical filaments and extraneuronal amyloid fibers in Alzheimer disease indicates cross-beta conformation // Proc. Natl. Acad. Sci. USA. V. 83. № 2. P. 503–507. https://doi.org/10.1073/pnas.83.2.503

  53. Kragh-Hansen U., 1990. Structure and ligand binding properties of human serum albumin // Dan. Med. Bull. V. 37. № 1. P. 57–84. http://www.ncbi.nlm.nih.gov/pubmed/2155760

  54. Kumar A., Sidhu J., Goyal A., Tsao J.W., 2022. Alzheimer Disease. Treasure Island (FL): StatPearls Publishing. http://www.ncbi.nlm.nih.gov/pubmed/29763097

  55. Kuo Y.M., Kokjohn T.A., Kalback W., Luehrs D., Galasko D.R. et al., 2000. Amyloid-beta peptides interact with plasma proteins and erythrocytes: Implications for their quantitation in plasma // Biochem. Biophys. Res. Commun. V. 268. № 3. P. 750–756. https://doi.org/10.1006/bbrc.2000.2222

  56. Laitinen M.H., Ngandu T., Rovio S., Helkala E.-L., Uusitalo U. et al., 2006. Fat intake at midlife and risk of dementia and Alzheimer’s disease: A population-based study // Dement. Geriatr. Cogn. Disord. V. 22. № 1. P. 99–107. https://doi.org/10.1159/000093478

  57. Lim G.P., Yang F., Chu T., Chen P., Beech W. et al., 2000. Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer’s disease // J. Neurosci. V. 20. № 15. P. 5709–5714. https://doi.org/10.1523/JNEUROSCI.20-15-05709.2000

  58. Litus E.A., Kazakov A.S., Sokolov A.S., Nemashkalova E.L., Galushko E.I. et al., 2019. The binding of monomeric amyloid β peptide to serum albumin is affected by major plasma unsaturated fatty acids // Biochem. Biophys. Res. Commun. V. 510. № 2. P. 248–253. https://doi.org/10.1016/j.bbrc.2019.01.081

  59. Litus E.A., Kazakov A.S., Deryusheva E.I., Nemashkalo-va E.L., Shevelyova M.P. et al., 2021. Serotonin promotes serum albumin interaction with the monomeric amyloid-β peptide // Int. J. Mol. Sci. V. 22. № 11. Art. 5896. https://doi.org/10.3390/ijms22115896

  60. Litus E.A., Kazakov A.S., Deryusheva E.I., Nemashkalova E.L., Shevelyova M.P. et al., 2022. Ibuprofen favors binding of amyloid-β peptide to its depot, serum albumin // Int. J. Mol. Sci. V. 23. № 11. Art. 6168. https://doi.org/10.3390/ijms23116168

  61. Llewellyn J.D., Langa M.K., Friedland P.R., Lang A.I., 2010. Serum albumin concentration and cognitive impairment // Curr. Alzheimer Res. V. 7. № 1. P. 91–96. https://doi.org/10.2174/156720510790274392

  62. Loeffler D.A., 2020. AMBAR, an encouraging Alzheimer’s trial that raises questions // Front. Neurol. V. 11. Art. 459. https://doi.org/10.3389/fneur.2020.00459

  63. Matsuoka Y., Saito M., LaFrancois J., Saito M., Gaynor K. et al., 2003. Novel therapeutic approach for the treatment of Alzheimer’s disease by peripheral administration of agents with an affinity to β-amyloid // J. Neurosci. V. 23. № 1. P. 29–33. https://doi.org/10.1523/JNEUROSCI.23-01-00029.2003

  64. McCormick J.W., Ammerman L., Chen G., Vogel P.D., Wise J.G., 2021. Transport of Alzheimer’s associated amyloid-β catalyzed by P-glycoprotein // PLoS One. V. 16. № 4. Art. e0250371. https://doi.org/10.1371/journal.pone.0250371

  65. McKee A.C., Carreras I., Hossain L., Ryu H., Klein W.L. et al., 2008. Ibuprofen reduces Aβ, hyperphosphorylated tau and memory deficits in Alzheimer mice // Brain Res. V. 1207. P. 225–236. https://doi.org/10.1016/j.brainres.2008.01.095

  66. Menendez-Gonzalez M., Gasparovic C., 2019. Albumin exchange in Alzheimer’s disease: Might CSF be an alternative route to plasma? // Front. Neurol. V. 10. Art. 1036. https://doi.org/10.3389/fneur.2019.01036

  67. Meraz-Ríos M.A., Toral-Rios D., Franco-Bocanegra D., Villeda-Hernández J., Campos-Peña V., 2013. Inflammatory process in Alzheimer’s Disease // Front. Integr. Neurosci. V. 7. Art. 59. https://doi.org/10.3389/fnint.2013.00059

  68. Metaxas A., Kempf S.J., 2016. Neurofibrillary tangles in Alzheimer’s disease: Elucidation of the molecular mechanism by immunohistochemistry and tau protein phospho-proteomics // Neural Regen. Res. V. 11. № 10. P. 1579–1581. https://doi.org/10.4103/1673-5374.193234

  69. Miguel-Álvarez M., Santos-Lozano A., Sanchis-Gomar F., Fiuza-Luces C., Pareja-Galeano H. et al., 2015. Non-steroidal anti-inflammatory drugs as a treatment for Alzheimer’s disease: A systematic review and meta-analysis of treatment effect // Drugs Aging. V. 32. № 2. P. 139–147. https://doi.org/10.1007/s40266-015-0239-z

  70. Milojevic J., Melacini G., 2011. Stoichiometry and affinity of the human serum albumin-Alzheimer’s Aβ peptide interactions // Biophys. J. V. 100. № 1. P. 183–192. https://doi.org/10.1016/j.bpj.2010.11.037

  71. Milojevic J., Raditsis A., Melacini G., 2009. Human serum albumin inhibits Abeta fibrillization through a “monomer-competitor” mechanism // Biophys. J. V. 97. № 9. P. 2585–2594. https://doi.org/10.1016/j.bpj.2009.08.028

  72. Milojevic J., Esposito V., Das R., Melacini G., 2007. Understanding the molecular basis for the inhibition of the Alzheimer’s Abeta-peptide oligomerization by human serum albumin using saturation transfer difference and off-resonance relaxation NMR spectroscopy // J. Am. Chem. Soc. V. 129. № 14. P. 4282–4290. https://doi.org/10.1021/ja067367+

  73. Moreira P.I., Carvalho C., Zhu X., Smith M.A., Perry G., 2010. Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology // Biochim. Biophys. Acta. V. 1802. № 1. P. 2–10. https://doi.org/10.1016/j.bbadis.2009.10.006

  74. Morris M.C., Evans D.A., Bienias J.L., Tangney C.C., Bennett D.A. et al., 2003. Dietary fats and the risk of incident Alzheimer disease // Arch. Neurol. V. 60. № 2. P. 194–200. https://doi.org/10.1001/archneur.60.2.194

  75. Mullard A., 2021. Failure of first anti-tau antibody in Alzheimer disease highlights risks of history repeating // Nat. Rev. Drug Discov. V. 20. № 1. P. 3–5. https://doi.org/10.1038/d41573-020-00217-7

  76. Murphy M.P., LeVine H., 2010. Alzheimer’s disease and the amyloid-β peptide // J. Alzheimers Dis. V. 19. № 1. P. 311–323. https://doi.org/10.3233/JAD-2010-1221

  77. Pitschke M., Prior R., Haupt M., Riesner D., 1998. Detection of single amyloid beta-protein aggregates in the cerebrospinal fluid of Alzheimer’s patients by fluorescence correlation spectroscopy // Nat. Med. V. 4. № 7. P. 832–834. https://doi.org/10.1038/nm0798-832

  78. Pizzino G., Irrera N., Cucinotta M., Pallio G., Mannino F. et al., 2017. Oxidative stress: Harms and benefits for human health // Oxid. Med. Cell. Longev. V. 2017. P. 1–13. https://doi.org/10.1155/2017/8416763

  79. Poduslo J.F., Curran G.L., Sanyal B., Selkoe D.J., 1999. Receptor-mediated transport of human amyloid beta-protein 1-40 and 1-42 at the blood-brain barrier // Neurobiol. Dis. V. 6. № 3. P. 190–199. https://doi.org/10.1006/nbdi.1999.0238

  80. Poorkaj P., Grossman M., Steinbart E., Payami H., Sadovnick A. et al., 2001. Frequency of tau gene mutations in familial and sporadic cases of non-Alzheimer dementia // Arch. Neurol. V. 58. № 3. P. 383–387. https://doi.org/10.1001/archneur.58.3.383

  81. Qiang W., Yau W.-M., Luo Y., Mattson M.P., Tycko R., 2012. Antiparallel β-sheet architecture in Iowa-mutant β‑amyloid fibrils // Proc. Natl. Acad. Sci. V. 109. № 12. P. 4443–4448. https://doi.org/10.1073/pnas.1111305109

  82. Ramos-Fernández E., Tajes M., Palomer E., Ill-Raga G., Bosch-Morató M. et al., 2014. Posttranslational nitro-glycative modifications of albumin in Alzheimer’s disease: Implications in cytotoxicity and amyloid-β peptide aggregation // J. Alzheimers Dis. V. 40. № 3. P. 643–657. https://doi.org/10.3233/JAD-130914

  83. Rayner H.C., Hasking D.J., 1986. Hyperparathyroidism associated with severe hypercalcaemia and myocardial calcification despite minimal bone disease // BMJ. V. 293. № 6557. P. 1277–1278. https://doi.org/10.1136/bmj.293.6557.1277-a

  84. Reyes Barcelo A.A., Gonzalez-Velasquez F.J., Moss M.A., 2009. Soluble aggregates of the amyloid-beta peptide are trapped by serum albumin to enhance amyloid-beta activation of endothelial cells // J. Biol. Eng. V. 3. № 1. Art. 5. https://doi.org/10.1186/1754-1611-3-5

  85. Rivers-Auty J., Mather A.E., Peters R., Lawrence C.B., Brough D., 2020. Anti-inflammatories in Alzheimer’s disease – potential therapy or spurious correlate? // Brain Commun. V. 2. № 2. Art. fcaa109. https://doi.org/10.1093/braincomms/fcaa109

  86. Roberts K.F., Elbert D.L., Kasten T.P., Patterson B.W., Sigurdson W.C. et al., 2014. Amyloid-β efflux from the central nervous system into the plasma // Ann. Neurol. V. 76. № 6. P. 837–844. https://doi.org/10.1002/ana.24270

  87. Rodríguez-Martín T., Cuchillo-Ibáñez I., Noble W., Nyenya F., Anderton B.H., Hanger D.P., 2013. Tau phosphorylation affects its axonal transport and degradation // Neurobiol. Aging. V. 34. № 9. P. 2146–2157. https://doi.org/10.1016/j.neurobiolaging.2013.03.015

  88. Rózga M., Kłoniecki M., Jabłonowska A., Dadlez M., Bal W., 2007. The binding constant for amyloid Aβ40 peptide interaction with human serum albumin // Biochem. Biophys. Res. Commun. V. 364. № 3. P. 714–718. https://doi.org/10.1016/j.bbrc.2007.10.080

  89. Sadigh-Eteghad S., Sabermarouf B., Majdi A., Talebi M., Farhoudi M., Mahmoudi J., 2015. Amyloid-Beta: A crucial factor in Alzheimer’s disease // Med. Princ. Pract. V. 24. № 1. P. 1–10. https://doi.org/10.1159/000369101

  90. Schilde L.M., Kösters S., Steinbach S., Schork K., Eisenacher M. et al., 2018. Protein variability in cerebrospinal fluid and its possible implications for neurological protein biomarker research // PLoS One. V. 13. № 11. Art. e0206478. https://doi.org/10.1371/journal.pone.0206478

  91. Sevigny J., Chiao P., Bussière T., Weinreb P.H., Williams L. et al., 2016. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease // Nature. V. 537. № 7618. P. 50–56. https://doi.org/10.1038/nature19323

  92. Shankar G.M., Walsh D.M., 2009. Alzheimer’s disease: Synaptic dysfunction and Abeta // Mol. Neurodegener. V. 4. № 1. Art. 48. https://doi.org/10.1186/1750-1326-4-48

  93. Sharma K., 2019. Cholinesterase inhibitors as Alzheimer’s therapeutics (Review) // Mol. Med. Rep. V. 20. № 2. P. 1479–1487. https://doi.org/10.3892/mmr.2019.10374

  94. Sheppard O., Coleman M., 2020. Alzheimer’s disease: Etiology, neuropathology and pathogenesis // Alzheimer’s Disease: Drug Discovery. Brisbane: Exon Publications. https://doi.org/10.36255/exonpublications.alzheimersdisease.2020.ch1

  95. Shibata M., Yamada S., Kumar S.R., Calero M., Bading J. et al., 2000. Clearance of Alzheimer’s amyloid-β 1-40 peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier // J. Clin. Invest. V. 106. № 12. P. 1489–1499. https://doi.org/10.1172/JCI10498

  96. Sjogren M., 2001. Both total and phosphorylated tau are increased in Alzheimer’s disease // J. Neurol. Neurosurg. Psychiatry. V. 70. № 5. P. 624–630. https://doi.org/10.1136/jnnp.70.5.624

  97. Spires-Jones T.L., Hyman B.T., 2014. The intersection of amyloid beta and tau at synapses in Alzheimer’s disease // Neuron. V. 82. № 4. P. 756–771. https://doi.org/10.1016/j.neuron.2014.05.004

  98. Stanyon H.F., Viles J.H., 2012. Human serum albumin can regulate amyloid-β peptide fiber growth in the brain interstitium: Implications for Alzheimer disease // J. Biol. Chem. V. 287. № 33. P. 28163–28168. https://doi.org/10.1074/jbc.C112.360800

  99. Summers W.K., Viesselman J.O., Marsh G.M., Candelora K., 1981. Use of THA in treatment of Alzheimer-like dementia: Pilot study in twelve patients // Biol. Psychiatry. V. 16. № 2. P. 145–153. http://www.ncbi.nlm.nih.gov/pubmed/7225483

  100. Summers W.K., Majovski L.V., Marsh G.M., Tachiki K., Kling A., 1986. Oral tetrahydroaminoacridine in long-term treatment of senile dementia, Alzheimer type // N. Engl. J. Med. V. 315. № 20. P. 1241–1245. https://doi.org/10.1056/NEJM198611133152001

  101. Suvorina M.Y., Selivanova O.M., Grigorashvili E.I., Nikulin A.D., Marchenkov V.V. et al., 2015. Studies of polymorphism of amyloid-β42 peptide from different suppliers // J. Alzheimers Dis. V. 47. № 3. P. 583–593. https://doi.org/10.3233/JAD-150147

  102. Tampi R.R., Forester B.P., Agronin M., 2021. Aducanumab: Evidence from clinical trial data and controversies // Drugs Context. V. 10. P. 1–9. https://doi.org/10.7573/dic.2021-7-3

  103. Tiraboschi P., Sabbagh M.N., Hansen L.A., Salmon D.P., Merdes A. et al., 2004. Alzheimer disease without neocortical neurofibrillary tangles // Neurology. V. 62. № 7. P. 1141–1147. https://doi.org/10.1212/01.WNL.0000118212.41542.E7

  104. Tschanz J.T., Norton M.C., Zandi P.P., Lyketsos C.G., 2013. The Cache County Study on Memory in Aging: Factors affecting risk of Alzheimer’s disease and its progression after onset // Int. Rev. Psychiatry. V. 25. № 6. P. 673–685. https://doi.org/10.3109/09540261.2013.849663

  105. Vandesquille M., Po C., Santin M., Herbert K., Comoy E., Dhenain M., 2014. Amyloid plaques detection by MRI: Comparison of five mouse models of amyloidosis // Alzheimers Dement. V. 10. Art. 15. https://doi.org/10.1016/j.jalz.2014.05.020

  106. Vlad S.C., Miller D.R., Kowall N.W., Felson D.T., 2008. Protective effects of NSAIDs on the development of Alzheimer disease // Neurology. V. 70. № 19. P. 1672–1677. https://doi.org/10.1212/01.wnl.0000311269.57716.63

  107. Vusse G.J., van der, 2009. Albumin as fatty acid transporter // Drug Metab. Pharmacokinet. V. 24. № 4. P. 300–307. https://doi.org/10.2133/dmpk.24.300

  108. Wang C., Cheng F., Xu L., Jia L., 2016. HSA targets multiple Aβ42 species and inhibits the seeding-mediated aggregation and cytotoxicity of Aβ42 aggregates // RSC Adv. V. 6. № 75. P. 71165–71175. https://doi.org/10.1039/C6RA14590F

  109. Wang D.-S., Dickson D.W., Malter J.S., 2006. β-Amyloid degradation and Alzheimer’s disease // J. Biomed. Biotechnol. V. 2006. № 3. Art. 58406. https://doi.org/10.1155/JBB/2006/58406

  110. Wang J., Tan L., Wang H.-F., Tan C.-C., Meng X.-F. et al., 2015. Anti-inflammatory drugs and risk of Alzheimer’s disease: An updated systematic review and meta-analysis // J. Alzheimers Dis. V. 44. № 2. P. 385–396. https://doi.org/10.3233/JAD-141506

  111. Wang W., Dong X., Sun Y., 2019. Modification of serum albumin by high conversion of carboxyl to amino groups creates a potent inhibitor of amyloid β-protein fibrillogenesis // Bioconjug. Chem. V. 30. № 5. P. 1477–1488. https://doi.org/10.1021/acs.bioconjchem.9b00209

  112. Whiley L., Chappell K.E., D’Hondt E., Lewis M.R., Jiménez B. et al., 2021. Metabolic phenotyping reveals a reduction in the bioavailability of serotonin and kynurenine pathway metabolites in both the urine and serum of individuals living with Alzheimer’s disease // Alzheimers Res. Ther. V. 13. № 1. Art. 20. https://doi.org/10.1186/s13195-020-00741-z

  113. Xie B., Li X., Dong X.-Y., Sun Y., 2014. Insight into the inhibition effect of acidulated serum albumin on amyloid β‑protein fibrillogenesis and cytotoxicity // Langmuir. V. 30. № 32. P. 9789–9796. https://doi.org/10.1021/la5025197

  114. Xie H., Guo C., 2020. Albumin alters the conformational ensemble of amyloid-β by promiscuous interactions: Implications for amyloid inhibition // Front. Mol. Biosci. V. 7. Art. 629520. https://doi.org/10.3389/fmolb.2020.629520

  115. Yan Q., Zhang J., Liu H., Babu-Khan S., Vassar R. et al., 2003. Anti-inflammatory drug therapy alters beta-amyloid processing and deposition in an animal model of Alzheimer’s disease // J. Neurosci. V. 23. № 20. P. 7504–7509. https://doi.org/10.1523/JNEUROSCI.23-20-07504.2003

  116. Zhang H., Liu D., Huang H., Zhao Y., Zhou H., 2018. Characteristics of insulin-degrading enzyme in Alzheimer’s disease: A meta-analysis // Curr. Alzheimer Res. V. 15. № 7. P. 610–617. https://doi.org/10.2174/1567205015666180119105446

  117. Zhang S., Iwata K., Lachenmann M.J., Peng J.W., Li S. et al., 2000. The Alzheimer’s peptide Aβ adopts a collapsed coil structure in water // J. Struct. Biol. V. 130. № 2–3. P. 130–141. https://doi.org/10.1006/jsbi.2000.4288

  118. Zhang W., Xiong H., Callaghan D., Liu H., Jones A. et al., 2013. Blood-brain barrier transport of amyloid beta peptides in efflux pump knock-out animals evaluated by in vivo optical imaging // Fluids Barriers CNS. V. 10. № 1. Art. 13. https://doi.org/10.1186/2045-8118-10-13

  119. Zhao M., Guo C., 2021. Multipronged regulatory functions of serum albumin in early stages of amyloid-β aggregation // ACS Chem. Neurosci. V. 12. № 13. P. 2409–2420. https://doi.org/10.1021/acschemneuro.1c00150

  120. Zhao Y., Marcel Y.L., 1996. Serum albumin is a significant intermediate in cholesterol transfer between cells and lipoproteins // Biochemistry. V. 35. № 22. P. 7174–7180. https://doi.org/10.1021/bi952242v

Дополнительные материалы отсутствуют.