Журнал неорганической химии, 2023, T. 68, № 7, стр. 946-951

Влияние торсионных деформаций на спиновые состояния углеродных нанотрубок с металлической проводимостью

Е. П. Дьячков a, Н. А. Ломакин a, П. Н. Дьячков a*

a Институт общей и неорганической химии им. Н.С. Курнакова РАН
119991 Москва, Ленинский пр-т, 31, Россия

* E-mail: p_dyachkov@rambler.ru

Поступила в редакцию 13.02.2023
После доработки 06.03.2023
Принята к публикации 13.03.2023

Аннотация

Теоретически исследовано образование спиновых уровней при деформации кручения нехиральных (n, n) углеродных нанотрубок. В отсутствие механической деформации нанотрубки обладают инверсионной симметрией и металлическим типом зонной структуры с вырожденными по спину состояниями в области Ферми. Деформация кручения нарушает инверсионную симметрию, превращая трубку в хиральную систему. В результате из-за эффекта Рашбы полностью снимается вырождение уровней и формируются спиновые щели между зонами α- и β-типа.

Ключевые слова: спин-орбитальное взаимодействие, электронные свойства, спинтроника, эффект Рашбы

Список литературы

  1. Ando T. // J. Phys. Soc. Jpn. 2000. V. 69. P. 1757. https://doi.org/10.1143/JPSJ.69.1757

  2. Chico L., Lopez-Sancho M.P., Munoz M.C. // Phys. Rev. Lett. 2004. V. 93. P. 176402. https://doi.org/10.1103/PhysRevLett.93.176402

  3. Huertas-Hernando D., Guinea F., Brataas A. // Phys. Rev. B. 2006. V. 74. P. 155426. https://doi.org/10.1103/PhysRevB.74.155426

  4. Kuemmeth F., Ilani S., Ralph D. et al. // Nature. 2008. V. 452. P. 448. https://doi.org/10.1038/ncomms2584

  5. Ilani S., McEuen P.L. // Annu. Rev. Condens. Matter. Phys. 2010. V. 1. P. 1. https://doi.org/10.1146/annurev-conmatphys-070909-103928

  6. Jhang S.H., Marganska M., Skuorsky Y. et al. // Phys. Rev. B. 2010. V. 82. P. 041404. https://doi.org/10.1103/PhysRevB.82.041404

  7. Jespersen T., Grove-Rusmussen K., Paaske J. // Nature Physics. 2011. V. 7. P. 348. https://doi.org/10.1038/nphys1880

  8. Steele G.A., Pei F., Laird E.A. et al. // Nature Commun. 2013. V. 4. P. 1573. https://doi.org/10.1038/ncomms2584

  9. Wunsch B. // Phys. Rev. B. 2009. V. 79. P. 235408. https://doi.org/10.1103/PhysRevB.79.235408

  10. Merchant C., Markovic N. // Phys. Rev. Lett. 2008. V. 100. P. 156601. https://doi.org/10.1103/PhysRevLett.100.156601

  11. Wang K.Y., Blackburn A.M., Wang H.F. et al. // Appl. Phys. Lett. 2013. V. 102. P. 093508. https://doi.org/10.1063/1.4794535

  12. Guimaraes F.S.M., Kirwan D.F., Costa A.T. et al. // Phys. Rev. B. 2010. V. 81. P. 153408. https://doi.org/10.1103/PhysRevB.81.153408

  13. Flensberg K., Marcus C. // Phys. Rev. B. 2010. V. 81. P. 195418. https://doi.org/10.1103/PhysRevB.81.195418

  14. Gunlycke D., Jefferson J.H., Bailey S.W.D et al. // J. Phys.: Condens. Matter. 2006. V. 18. P. S843. https://doi.org/10.1088/0953-8984/18/21/S10

  15. Hueso L.E., Pruneda J.M., Ferrari V. // Nature. 2007. V. 445. P. 410. https://doi.org/10.1038/nature05507

  16. Galland C., Imamoglu A. // Phys. Rev. Lett. 2008. V. 101. P. 157404. https://doi.org/10.1103/PhysRevLett.101.157404

  17. Bulaev D., Trauzettel B., Loss D. // Phys. Rev. B. 2008. V. 77. P. 235301. https://doi.org/10.1103/PhysRevB.77.235301

  18. Laird E.A., Pei F., Kouwenhoven L.P. // Nat. Nanotechnol. 2013. V. 8. P. 565. https://doi.org/10.1038/nnano.2013.140

  19. Schulz A., De Martino A., Egger R. // Phys. Rev. B. 2010. V. 82. P. 033407. https://doi.org/10.1103/PhysRevB.82.033407

  20. Galpin M.R., Jayatilaka F.W., Logan D.E. // Phys. Rev. B. 2010. V. 81. P. 075437. https://doi.org/10.1103/PhysRevB.81.075437

  21. Lim J., Lopez R., Aguado R. // Phys. Rev. Lett. 2011. V. 107. P. 196801. https://doi.org/10.1103/PhysRevLett.107.196801

  22. Palyi A., Struck P., Rudner M. et al. // Phys. Rev. Lett. 2012. V. 108. P. 206811. https://doi.org/10.1103/PhysRevLett.108.206811

  23. Ohm C., Stampfer C., Splettstoesser J. et al. // Appl. Phys. Lett. 2012. V. 100. P. 143103. https://doi.org/10.1063/1.3698395

  24. Alam K.M., Pramanik S. // Adv. Funct. Mater. 2015. V. 25. P. 3210. https://doi.org/10.1002/adfm.201500494

  25. Alam K.M. Pramanik S. // Nanoscale. 2017. V. 9. P. 5155. https://doi.org/10.1039/C6NR09395G

  26. Rahman Md.W., Alam K.M., Pramanik S. // ACS Omega. 2018. V. 3. P. 17108. https://doi.org/10.1021/acsomega.8b02237

  27. Rahman Md.W., Firouzeh S., Mujica V. et al. // ACS Nano. 2020. V. 14. P. 3389. https://doi.org/10.1021/acsnano.9b09267

  28. Yang S.H. // Appl. Phys. Lett. 2021. V. 16. P. 120502. https://doi.org/10.1063/5.0039147

  29. Yang S.H., Naaman R., Paltiel Y. et al. // Nat. Rev. Phys. 2021. V. 3. P. 328. https://doi.org/10.1038/s42254-021-00302-9

  30. Michaeli K., Kantor-Uriel N., Naamanm R. et al. // Chem. Soc. Rev. 2016. V. 45. P. 6478. https://doi.org/10.1039/C6CS00369A

  31. Naaman R., Waldeck D.H. // Annu. Rev. Phys. Chem. 2015. V. 66. P. 263. https://doi.org/10.1146/annurev-physchem-040214-121554

  32. Joselevich E. // ChemPhysChem. 2006. V. 7. P. 1405. https://doi.org/10.1002/cphc.200600206

  33. D’yachkov P.N. // Russ. J. Inorg. Chem. 2021. V. 66. P. 852. https://doi.org/10.1134/S0036023621110048

  34. D’yachkov P.N. // Appl. Func. Mater. 2022. V. 2. P. 35. https://doi.org/10.35745/afm2022v02.02.0006

  35. D’yachkov P.N., Makaev D.V. // Phys. Rev. B. 2007. V. 76. P. 195411. https://doi.org/10.1103/PhysRevB.76.195411

  36. D’yachkov P.N., Makaev D.V. // Int. J. Quantum Chem. 2016. V. 116. P. 316. https://doi.org/10.1002/qua.25030

  37. D’yachkov P.N. // Quantum Chemistry of Nanotubes: Electronic Cylindrical Waves. London: Taylor and Francis, 2019. 212 p.

  38. Дьячков П.Н. // Углеродные нанотрубки: строение, свойства, применения. М.: БИНОМ. Лаборатория знаний, 2006. 203 с.

  39. Cohen-Karni T., Segev L., Srur-Lavi O. et al. // Nature Nanotechnol. 2006. V. 1. P. 36. https://doi.org/10.1038/nnano.2007.179

  40. Changa T. // Appl. Phys. Lett. 2007. V. 90. P. 201910. https://doi.org/10.1063/1.2739325

  41. Zhang D.-B., James R.D., Dumitrică T. // Phys. Rev. B. 2009. V. 80. P. 155418. https://doi.org/10.1103/PhysRevB.80.115418

  42. Bercioux D., Lucignano P. // Rep. Prog. Phys. 2015. V. 78. P. 106001. https://https://doi.org/10.1088/0034-4885/78/10/106001

  43. Koo H.C., Nitta J., Frolov S. M. et al. // Nat. Mater. 2015. V. 14. P. 871. https://doi.org/10.1038/nmat4360

  44. Koo H.C., Kim S.B., Kim H. et al. // Adv. Mater. 2020. V. 32. P. 2002117. https://doi.org/10.1002/adma.202002117

  45. Рашба E.И., Шека В.И. // Физ. тверд. тела. 1959. Т. 2. С. 162.

  46. D’yachkov P.N., D’yachkov E.P. // Appl. Phys. Lett. 2022. V. 120. P. 173101. https://doi.org/10.1063/5.0086902

  47. D’yachkov P.N. // Russ. J. Inorg. Chem. 2022. V. 67. P. 1606. https://doi.org/10.1134/S0036023622600678

  48. Martin W.C. Notional Bureau of Standards A. Phys. Chem. 1971. V. 7SA.

Дополнительные материалы отсутствуют.