Журнал неорганической химии, 2023, T. 68, № 7, стр. 885-895

Синтез и электронная структура биметаллических AuFe нанокомпозитов

А. Ю. Васильков a, А. А. Воронова a*, А. В. Наумкин a, И. Е. Бутенко a, Я. В. Зубавичус b

a Институт элементоорганических соединений им. А.Н. Несмеянова РАН
119334 Москва, ул. Вавилова, 28, Россия

b ЦКП “СКИФ”, Институт катализа им. Г.К. Борескова СО РАН
630559 Кольцово, Россия

* E-mail: voronova.anastasiia.a@mail.ru

Поступила в редакцию 27.01.2023
После доработки 02.03.2023
Принята к публикации 02.03.2023

Аннотация

Наночастицы Au, Fe и AuFe получены методом металло-парового синтеза с использованием ацетона в качестве дисперсионной среды. Состав и электронная структура частиц исследованы методами ПЭМ, СЭМ, РФЭС, XANES и EXAFS. Получены частицы Au и Fe со средним диаметром 5.3 и 1.8 нм соответственно. Методы рентгеновской диагностики показали, что золото в основном находится в состоянии Au0, а состояния Au+ и Au3+ присутствуют в небольших количествах, железо представляет собой смесь нестехиометрических оксидов с состояниями, близкими к Fe2+ и Fe3+. Биметаллические наночастицы являются твердым раствором с неупорядоченной структурой и связями Au–Fe–O и Au–O–Fe. Зарегистрировано наличие углеродсодержащей оболочки на всех типах металлических частиц. Полученные материалы могут быть перспективны для создания улучшенных противомикробных средств и новых методов лечения онкологических заболеваний.

Ключевые слова: наночастицы, железо, золото, металло-паровой синтез, РФЭС, EXAFS/XANES

Список литературы

  1. Conde J., Doria G., Baptista P. // J. Drug Delivery. 2012. V. 2012. P. 1. https://doi.org/10.1155/2012/751075

  2. Vinardell M.P., Mitjans M. // Nanomaterials. 2015. V. 5. № 2. P. 1004. https://doi.org/10.3390/nano5021004

  3. Sutradhar K.B., Amin M.L. // ISRN Nanotechnology. 2014. V. 2014. P. 1. https://doi.org/10.1155/2014/939378

  4. Zhao G., Rodriguez B.L. // Int. J. Nanomedicine. 2013. V. 8. P. 61. https://doi.org/10.1371/journal.pone.0065896

  5. Akhtar M.J., Alhadlaq H.A., Kumar S. et al. // Arch Toxicol. 2015. V. 89. № 11. P. 1895. https://doi.org/10.1007/s00204-015-1570-1

  6. Ahmad M.Z., Akhter S., Jain G.K. et al. // Expert Opin Drug Deliv. 2010. V. 7. № 8. P. 927. https://doi.org/10.1517/17425247.2010.498473

  7. Гилевская К.С., Машкин М.Е., Красковский А.Н. и др. // Журн. неорган. химии. 2021. Т. 66. № 8. С. 1017. https://doi.org/10.31857/S0044457X21080067

  8. Attari E., Nosrati H., Danafar H. et al. // J. Biomed. Mater. Res. 2019. V. 107. P. 2492. https://doi.org/10.1002/jbm.a.36755

  9. Rostami M., Aghajanzadeh M., Zamani M. et al. // Res. Chem. Intermed. 2018. V. 44. P. 1889. https://doi.org/10.1007/s11164-017-3204-0

  10. Ершов A.Ю., Мартыненков A.A., Якиманский A.В. и др. // Журн. общ. химии. 2022. Т. 92. № 5. С. 788. https://doi.org/10.31857/S0044460X22050146

  11. Zamani M., Rostami M., Aghajanzadeh M. et al. // J. Mater Sci. 2018. V. 53. P. 1634. https://doi.org/10.1007/s10853-017-1673-6

  12. Zain N.M., Stapley A.G.F., Shama G. // Carbohydrate Polymers. 2014. V. 112. P. 195. https://doi.org/10.1016/j.carbpol.2014.05.081

  13. Valodkar M., Modi S., Pal A. et al. // Mater. Res. Bull. 2011. V. 46. P. 384. https://doi.org/10.1016/j.materresbull.2010.12.001

  14. Dong Q., Yang H., Wan C. et al. // Nanoscale Res. Lett. 2019. V. 14. P. 235. https://doi.org/10.1186/s11671-019-3053-4

  15. Efremova M.V., Veselov M.M., Barulin A.V. et al. // ACS Nano. 2018. V. 12. P. 3190. https://doi.org/10.1021/acsnano.7b06439

  16. Efremova M.V., Naumenko V.A., Spasova M. et al. // Sci. Rep. 2018. V. 8. P. 11295. https://doi.org/10.1038/s41598-018-29618-w

  17. Hao Zh., Cheng D., Guo Y. et al. // Appl. Catal. B: Environ. 2001. V. 33. P. 217. https://doi.org/10.1016/S0926-3373(01)00172-2

  18. Seeburg D., Liu D., Radnik J. et al. // Catalysts. 2018. V. 8. P. 42. https://doi.org/10.3390/catal8020042

  19. Naumkin A.V., Budnikov A.V., Buzin M.I. et al. // Ineos Open. 2022. V. 1. P. 1. https://doi.org/10.32931/io2126a

  20. Finch R.M., Hodge N.A., Hutchings G.J. et al. // Phys. Chem. Chem. Phys. 1999. V. 1. P. 485. https://doi.org/10.1039/A808208A

  21. Tomitaka A., Arami H., Raymond A. et al. // RSC Nanoscale. 2017. V. 9. P. 764. https://doi.org/10.1039/C6NR07520G

  22. Kozenkova E., Levada K., Efremova M.V. et al. // Nanomaterials. 2020. V. 10. P. 1646. https://doi.org/10.3390/nano10091646

  23. Cai H., Li K., Li J. et al. // Small. 2015. V. 11. P. 4584. https://doi.org/10.1002/smll.201500856

  24. Maniglio D., Benetti F., Minati L. et al. // Nanotechnology. 2018. V. 29. P. 315101. https://doi.org/10.1088/1361-6528/aac4ce

  25. Brennan G., Thorat N.D., Pescio M. et al. // RSC Nanoscale. 2020. V. 12. P. 12632. https://doi.org/10.1039/D0NR01463J

  26. Guardia P., Nitti S., Materia M.E. et al. // RSC J. Mater. Chem. B. 2017. V. 5. P. 4587. https://doi.org/10.1039/C7TB00968B

  27. Leung K.C.-F., Xuan S., Zhu X. et al. // RSC Chem. Soc. Rev. 2012. V. 41. P. 1911. https://doi.org/10.1039/C1CS15213K

  28. Tomitaka A., Ota S., Nishimoto K. et al. // RSC Nanoscale. 2019. V. 11. P. 6489. https://doi.org/10.1039/C9NR00242A

  29. Majouga A., Sokolsky-Papkov M., Kuznetsov A. et al. // Colloids Surf. B. 2015. V. 125. P. 104. https://doi.org/10.1016/j.colsurfb.2015.11.009

  30. Kinoshita T., Seino S., Okitsu K. et al. // J. Alloys Compounds. 2003. V. 359. P. 46. https://doi.org/10.1016/S0925-8388(03)00198-1

  31. Lin J., Zhou W., Kumbhar A. et al. // J. Solid State Chem. 2001. V. 159. P. 26. https://doi.org/10.1006/jssc.2001.9117

  32. Roduner E. // Chem. Soc. Rev. 2006. V. 35. P. 583. https://doi.org/10.1039/B502142C

  33. Love J.C., Estroff L.A., Kriebel J.K. et al. // Chem. Rev. 2005. V. 105. P. 1103. https://doi.org/10.1021/cr0300789

  34. Zeng H., Du X.W., Singh S.C. et al. // Adv. Funct. Mater. 2012. V. 22. P. 1333. https://doi.org/10.1002/adfm.201102295

  35. Lyon J.L., Fleming D.A., Stone M.B. et al. // Nano Lett. 2004. V. 4. № 4. P. 719. https://doi.org/10.1021/nl035253f

  36. Chen W., Cai W., Zhang L. et al. // J. Colloid Interface Sci. 2001. V. 238. № 2. P. 291. https://doi.org/10.1006/jcis.2001.7525

  37. Geethalakshmi R., Sarada D.V. // Int. J. Nanomed. 2012. V. 7. P. 5375. https://doi.org/10.2147/IJN.S36516

  38. Popov V.V., Menushenkov A.P., Yastrebtsev A.A. et al. // J. Alloys Compd. 2022. V. 910. 164922. https://doi.org/10.1016/j.jallcom.2022.164922

  39. Рашидова С.Ш., Вохидова Н.Р., Алексеева О.В. и др. // Журн. неорган. химии. 2022. Т. 67. № 12. С. 1851. https://doi.org/10.31857/S0044457X22601146

  40. Агафонов А.В., Сироткин Н.А., Титов В.А. и др.// Журн. неорган. химии. 2022. Т. 67. № 3. С. 271. https://doi.org/10.31857/S0044457X22030023

  41. Vasil’kov A., Dovnar R., Smotryn S. et al. // Antibiotics. 2018. V. 7. P. 80. https://doi.org/10.3390/antibiotics7030080

  42. Abd-Elsalam K.A., Alghuthaymi M.A., Shami A. et al. // J. Fungi. 2020. V. 6. P. 112. https://doi.org/10.3390/jof6030112

  43. Cardenas-Trivino G., Cruzat-Contreras C. // J. Cluster Sci. 2018. V. 29. P. 1081. https://doi.org/10.1007/s10876-018-1419-x

  44. Vasil’kov A., Rubina M., Naumkin A. et al. // Gels 2021. V. 7. P. 1. https://doi.org/10.3390/gels7030082

  45. Sztandera K., Gorzkiewicz M., Klajnert-Maculewicz B. // Mol. Pharmaceutics. 2019. V. 16. № 1. P. 1. https://doi.org/10.1021/acs.molpharmaceut.8b00810

  46. Miri A., Najafzadeh H., Darroudi M. et al. // Chem. Open. 2021. V. 10. P. 327. https://doi.org/10.1002/open.202000186

  47. Vasil’kov A., Batsalova T., Dzhambazov B. et al. // Surf. Interface Anal. 2021. V. 53. P. 1. https://doi.org/10.1002/sia.7038

  48. Vasil’kov A.Yu., Migulin D.A., Muzalevskiy V.M. et al. // Mend. Commun. 2022. V. 32. P. 478. https://doi.org/10.1016/j.mencom.2022.07.016

  49. Belyakova O.A., Zubavichus Y.V., Neretin I.S. et al. // J. Alloys Comps. 2004. V. 382. P. 46. https://doi.org/10.1016/j.jallcom.2004.05.047

  50. Chernyshov A.A., Veligzhanin A.A., Zubavichus Y.V. // Nucl. Instr. Meth. Phys. Res. A. 2009. V. 603. P. 95. https://doi.org/10.1016/j.nima.2008.12.167

  51. Moulder J.F., Chastain J., King R.C. et al. Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data. PerkinElmer, Eden Prairie. 1995. 261 p.

  52. Grosvenor A.P., Kobe B.A., Biesinger M.C. et al. // Surface and Interface Analysis. 2004. V. 36. № 12. P. 1564. https://doi.org/10.1002/sia.1984

  53. Mansour A.N., Brizzolara R.A. // Surface Sci. Spectra. 1996. V. 4. P. 345. https://doi.org/10.1116/1.1247831

  54. Anderson J.F., Kuhn M., Diebold U. // Surface Sci. Spectra. 1996. V. 4. P. 266. https://doi.org/10.1116/1.1247796

  55. Tymoczko A., Kamp M., Prymak O. et al. // RSC Nanoscale. 2018. V. 10. P. 16434. https://doi.org/10.1039/C8NR03962C

Дополнительные материалы отсутствуют.