Журнал неорганической химии, 2023, T. 68, № 10, стр. 1462-1472

Термофизические свойства цирконатогафнатов неодима и гадолиния

П. Г. Гагарин a*, А. В. Гуськов a, В. Н. Гуськов a, А. В. Хорошилов a, К. С. Гавричев a

a Институт общей и неорганической химии им. Н.С. Курнакова РАН
119991 Москва, Ленинский пр-т, 31, Россия

* E-mail: gagarin@igic.ras.ru

Поступила в редакцию 22.05.2023
После доработки 30.05.2023
Принята к публикации 31.05.2023

Аннотация

Выполнены синтез и идентификация цирконатогафнатов неодима и гадолиния структурного типа пирохлора. Методом дифференциальной сканирующей калориметрии в интервале температур 310–1800 K измерена теплоемкость образцов. С помощью высокотемпературной дифрактометрии определены температурные зависимости параметров кубических решеток и оценены коэффициенты термического расширения в диапазоне 298–1273 K. Методом лазерной вспышки измерена температуропроводность образцов и проведен расчет температурных зависимостей теплопроводности с учетом пористости образцов.

Ключевые слова: цирконатогафнаты, теплоемкость, термическое расширение, теплопроводность

Список литературы

  1. Vassen R., Cao X., Tietz F. et al. // J. Am. Ceram. Soc. 2000. V. 83. P. 2023. https://doi.org/10.1111/j.1151-2916.2000.tb01506.x

  2. Mikuskiewicz M., Migas D., Moskal G. // J. Surf. Coat. Technol. 2018. V. 354. P. 66. https://doi.org/10.1016/j.surfcoat.2018.08.096

  3. Liang P., Dong S., Zeng J. et al. // Ceram. Int. 2019. V. 45. P. 22432. https://doi.org/10.1016/j.ceramint.2019.07235

  4. Padture N.P., Gell M., Jordan E.H. // Science. 2002. V. 296. P. 280. https://doi.org/10.1126/science.1068609

  5. Andrievskaya E.R. // J. Eur. Ceram. Soc. 2008. V. 28. P. 2363. https://doi.org/10.1016/j.jeurceramsoc.2008.01.009

  6. Арсеньев П.А., Глушкова В.Б., Евдокимов А.А. и др. Соединения редкоземельных элементов: цирконаты, гафнаты, ниобаты, танталаты, антимонаты. М.: Наука, 1985. 261 с.

  7. Wang Y., Ma Z., Liu L., Liu Y. // J. Adv. Ceram. 2021. V. 10. P. 1380. https://doi.org/10.1007/s40145-021-0514-x

  8. Chen H-F., Zhang C., Song P. et al. // Rare Metals. 2020. V. 39. P. 498. https://doi.org/10.1007/s12598-019-01307-1

  9. Cong L., Li W., Song Q. et al. // Corros. Sci. 2022. V. 209. P. 110714. https://doi.org/10.1016/j.corsci.2022.110714

  10. Poerschke D.L., Levi C.G. // J. Eur. Ceram. Soc. 2015. V. 35. P. 681. https://doi.org/10.1016/j.jeurceramsoc.2014.09.006

  11. Wu J., Wei X., Padture N.P. et al. // J. Am. Ceram. Soc. V. 85. P. 3031. https://doi.org/10.1111/j.1151-2916.2002.tb00574.x

  12. Suresh G., Seenivasan G., Krishnaniah M.V. et al. // J. Nucl. Mater. 1997. V. 249. P. 259. https://doi.org/10.1016/s0022-3115(97)00235-3

  13. Suresh G., Seenivasan G., Krishnaniah M.V. et al. // J. Alloys Compd. 1998. V. 269. P. L9. https://doi.org/10.1016/s0925-8388(97)00629-4

  14. Lehmann H., Pitzer D., Pracht G. et al. // J. Am. Ceram. Soc. 2003. V. 86. P. 1338. https://doi.org/10.1111/j.1151-2916.2003.tb03473.x

  15. Govindan Kutti K.V., Rajagopalan S., Mathews C.K. // Mater. Res. Bull. 1994. V. 29. P. 759. https://doi.org/10.1016/0025-5408(94)90201-1

  16. Kutti K.V.G., Rajagopalan S., Asuvathraman R. // Thermochim. Acta. 1990. V. 168. P. 205. https://doi.org/10.1016/0040-6031(90)80639-G

  17. Guskov V.N., Gagarin P.G., Guskov A.V. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 1017. https://doi.org/1134/S0036023621070056

  18. Guskov A.V., Gagarin P.G., Guskov V.N. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 861. https://doi.org/. https://doi.org/10.1134/S0036023621060103

  19. Guskov V.N., Gagarin P.G., Guskov A.V. et al. // Ceram. Int. 2019. V. 45. P. 20733. https://doi.org/10.1016/j.ceramint.2019.07.057

  20. Guskov A.V., Gagarin P.G., Guskov V.N. et al. // Inorg. Mater. 2021. V. 57. P. 1015. https://doi.org/10.1134/S0020168521100046

  21. Guskov A.V., Gagarin P.G., Guskov V.N. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 1710. https://doi.org/10.1134/S0036023621110085

  22. Guskov V.N., Tyurin A.V., Guskov A.V. et al. // Ceram. Int. 2020. V. 46. P. 12822. https://doi.org/10.1016/j.ceramint.2020.02.052

  23. Guskov A.V., Gagarin P.G., Guskov V.N. et al. // Inorg. Mater. 2021. V. 57. P. 710.https://doi.org/10.1134/S0020168521070074

  24. Guskov V.N., Gavrichev K.S., Gagarin P.G. et al. // Russ. J. Inorg. Chem. 2019. V. 64. P. 1265. https://doi.org/10.1134/S0036023619100048

  25. Wu J., Wei X., Padture N.P. et al. // J. Am. Ceram. Soc. 2002. V. 85. P. 3031. https://doi.org/10.1111/j.1151-2916.2002.tb00574.x

  26. Shlyakhtina A.V., Kondrat’eva O.N., Nikiforova G.E. et al. // Mater. Res. Bull. 2022. V. 155. P. 111971. https://doi.org/10.1016/j.materresbull.2022.111971

  27. Yang P., An Y., Yang D. et al. // Ceram. Int. 2020. V. 46. № 13. P. 21367. https://doi.org/10.1016/j.ceramint.2020.05.234

  28. Гуськов В.Н., Гагарин П.Г., Тюрин А.В. и др. // Журн. физ. химии. 2020. Т. 94. С. 163. https://doi.org/10.31857/S0044453720020120

  29. Сухаревский Б.Я., Зоз Е.И., Гавриш А.М. и др. // Докл. АН СССР. 1977. Т. 237. С. 589.

  30. Зоз Е.И., Гавриш А.М., Гулько Н.В. // Неорган. материалы. 1979. Т. 15. С. 109.

  31. Зоз Е.И., Яковенко Н.Г., Николаенко А.А. // Неорган. материалы. 1979. Т. 15. С. 310.

  32. Бакрадзе М.М., Доронин О.Н., Артеменко Н.И. и др. // Журн. неорган. химии. 2021. Т. 66. С. 695. https://doi.org/10.31857/S0044457X21050032

  33. Ryumin M.A., Nikiforova G.E., Tyurin A.V. et al. // Inorg. Mater. 2020. V. 56. P. 97. https://doi.org/10.1134/S0020168520010148

  34. Svetogorov R.D., Dorovatovskii P.V., Lazarenko V.A. et al. // Cryst. Res. Technol. 2020. V. 55. № 5. P. 1900184. https://doi.org/10.1002/crat.201900184

  35. Svetogorov R.D. Computer program Dionis – Diffraction Open Integration Software: RF, Certificate of State Registration No. 2018660965, 30.08.2018.

  36. Hubbard C.R., Evans E.H., Smith D.K. // J. Appl. Crystallogr. 1976. V. 9. № 2. P. 169. https://doi.org/10.1107/S0021889876010807

  37. Meija T.B., Coplen M., Berglund W.A. et al. // Pure Appl. Chem. 2016. V. 88. P. 265. https://doi.org/10.1515/pac-2015-0305

  38. Gagarin P.G., Guskov A.V., Guskov V.N. et al. // Ceram. Int. 2021. V. 47. P. 2892. https://doi.org/2020.09072

  39. Voskov A.L., Kutsenok I.B., Voronin G.F. // Calphad. 2018. V. 61. P. 50. https://doi.org/10.1016/j.calphad.2018.02.001

  40. Voronin G.F., Kutsenok I.B. // J. Chem. Eng. Data. 2013. V. 58. P. 2083. https://doi.org/10.1021/je400316m

  41. Maier C.G., Kelley K.K. // J. Am. Chem. Soc. 1932. V. 54. P. 3243. https://doi.org/10.1021/ja01347a029

  42. Tari A. // Sci. World. 2003. P. 211. https://doi.org/10.1142/9781860949395_0006

  43. Schlichting K.W., Padture N.P., Klemens P.G. // J. Mater. Sci. 2001. V. 36. P. 3003. https://doi.org/10.1023/a:1017970924312

  44. Chen H., Gao Y., Liu Y. et al. // J. Alloys Compd. 2009. V. 480. № 2. P. 843. https://doi.org/10.1016/j.jallcom.2009.02.081

  45. Guo X., Yu Y., Ma W. et al. // Ceram. Int. 2022. V. 48. № 24. P. 36084. https://doi.org/10.1016/j.ceramint.2022.08.122

Дополнительные материалы

скачать ESM.zip
Приложение 1.
Таблица S1. – Таблица S6. Рис. S1.