Журнал неорганической химии, 2023, T. 68, № 10, стр. 1495-1503

О взаимодействии комплексов золота(III) с сывороточным альбумином человека

И. В. Миронов a*, В. Ю. Харламова a

a Институт неорганической химии им. А.В. Николаева СО РАН
630090 Новосибирск, пр-т Академика Лаврентьева, 3, Россия

* E-mail: imir@niic.nsc.ru

Поступила в редакцию 24.04.2023
После доработки 29.05.2023
Принята к публикации 06.06.2023

Аннотация

Изучено взаимодействие комплексов золота(III) (Au(bipy)${\text{(OH}})_{2}^{ + }$, Au(phen)${\text{(OH}})_{2}^{ + }$ и Au(dien-H)Cl+) с сывороточным альбумином человека (HSA) в водном растворе (pH 7.4, CNaCl = 0.2 M, CAu = (2–10) × 10–5 M, CHSA < 6 × 10–4 M) при 25°С. Во всех случаях наблюдается восстановление золота(III) до золота(I), которое образует комплекс с HSA. При избытке HSA время полного превращения для изученных комплексов не превышает 1 ч. Дополнительно показано, что скорость редокс-взаимодействия комплексов золота(III) с цистеином намного выше, чем с метионином.

Ключевые слова: азотсодержащие лиганды, комплексообразование, тиолы

Список литературы

  1. Dey D., Al-Hunaiti A., Gopal V. et al. // J. Mol. Struct. 2020. V. 1222. P. 128919. https://doi.org/10.1016/j.molstruc.2020.128919

  2. Корман Д.Б., Островская Л.А., Кузьмин В.А. // Вопросы онкологии. 2018. Т. 64. № 6. С. 697.

  3. Yeo C.I., Ooi K.K., Tiekink E.R.T. // Molecules. 2018. V. 23. P. 1410. https://doi.org/10.3390/molecules23061410

  4. Van der Westhuizen D., Bezuidenhout D.I., Munro O.Q. // Dalton Trans. 2021. V. 50. P. 17413. https://doi.org/10.1039/d1dt02783b

  5. Radisavljević S., Petrović B. // Front. Chem. 2020. V. 8. P. 379. https://doi.org/10.3389/fchem.2020.00379

  6. Yang Z., Jiang G., Xu Z. et al. // Coord. Chem. Rev. 2020. V. 423. 213492. https://doi.org/10.1016/j.ccr.2020.213492

  7. Lu Y., Ma X., Chang X. et al. // Chem. Soc. Rev. 2022. V. 51. P. 5518. https://doi.org/10.1039/d1cs00933h

  8. Zhang J., Li Y., Fang R. et al. // Front. Pharmacol. 2022. V. 13. 979951. https://doi.org/10.3389/fphar.2022.979951

  9. Moreno-Alcántar G., Picchetti P., Casini A. // Angew. Chem. Int. Ed. 2023. V. 62. Issue 22. e202218000. https://doi.org/10.1002/anie.202218000

  10. Bondžić A.M., Vasić Anićijević D.D., Janjić G.V. et al. // Curr. Med. Chem. 2021. V. 28. P. 4742. https://doi.org/10.2174/0929867328999210101233801

  11. Petrović V., Petrović S., Joksić G. et al. // J. Inorg. Biochem. 2014. V. 140. P. 228. https://doi.org/10.1016/j.jinorgbio.2014.07.015

  12. Radulović N.S., Stojanović N.M., Glišić B.Đ. et al. // Polyhedron. 2018. V. 141. P. 164. https://doi.org/10.1016/j.poly.2017.11.044

  13. Dickson P.N., Wehrli A., Geier G. // Inorg. Chem. 1988. V. 27. P. 2921. https://doi.org/10.1021/ic00290a006

  14. Миронов И.В., Харламова В.Ю. // Журн. неорган. химии. 2022. Т. 67. № 7. С. 972.

  15. Миронов И.В., Харламова В.Ю., Ху Ц. // Журн. неорган. химии. 2023. Т. 68. № 3. С. 342.

  16. Turell L., Radi R., Alvarez B. // Free Radic. Biol. Med. 2013. V. 65. P. 244. https://doi.org/10.1016/j.freeradbiomed.2013.05.050

  17. Brown D.H., Smith W.E. // Chem. Soc. Rev. 1980. P. 217. https://doi.org/10.1039/CS9800900217

  18. Zou T., Lum C.T., Lok C.-N. et al. // Chem. Soc. Rev. 2015. V. 44. P. 8786. https://doi.org/10.1039/c5cs00132c

  19. Walz D.T., DiMartino M. J., Griswold D.E. et al. // Am. J. Med. Oral Gold Symposium. 1983. V. 75. P. 90. https://doi.org/10.1016/0002-9343(83)90481-3

  20. Миронов И.В., Харламова В.Ю. // Журн. неорган. химии. 2017. Т. 62. № 12. С. 1672.

  21. Soni V., Sindal R.S., Mehrotra R.N. // Polyhedron. 2005. V. 24. P. 1167. https://doi.org/10.1016/j.poly.2005.03.057

  22. Миронов И.В. // Журн. неорган. химии. 2007. Т. 52. № 5. С. 857.

  23. Mironov I.V., Kharlamova V.Yu. // J. Solution Chem. 2020. V. 49. P. 583. https://doi.org/10.1007/s10953-020-00994-0

  24. Massai L., Grifagni D., De Santis A. et al. // Biomolecules. 2022. V. 12. P. 1675. https://doi.org/10.3390/biom12111675

  25. Roberts J.R., Xiao J., Schliesman B. et al. // Inorg. Chem. 1996. V. 35. P. 424. https://doi.org/10.1021/ic9414280

  26. Darabi F., Marzo T., Massai L. et al. // J. Inorg. Biochem. 2015. V. 149. P. 102. https://doi.org/10.1016/j.jinorgbio.2015.03.013

  27. Best S.L., Sadler P.J. // Gold Bull. 1996. V. 29. P. 87. https://doi.org/10.1007/BF03214741

  28. Gabbiani C., Massai L., Scaletti F. et al. // J. Biol. Inorg. Chem. 2012. V. 17. P. 1293. https://doi.org/10.1007/s00775-012-0952-6

  29. Massai L., Zoppi C., Cirri D. et al. // Front. Chem. 2020. V. 8. 581648. https://doi.org/10.3389/fchem.2020.581648

  30. Messori L., Cinellu M.A., Merlino A. // ACS Med. Chem. Lett. 2014. V. 5. P. 1110. https://doi.org/10.1021/ml500231b

  31. Pratesi A., Cirri D., Fregona D. et al. // Inorg. Chem. 2019. V. 58. P. 10616. https://doi.org/10.1021/acs.inorgchem.9b01900

  32. Pacheco E.A., Tiekink E.R.T., Whitehouse M.W. Gold Chemistry: Applications and Future Directions in the Life Sciences. Chapter 6: Gold Compounds and Their Applications in Medicine. WILEY-VCH Verlag GmbH & Co, 2009. 283 p.

  33. Messori L., Balerna A., Ascone I. et al. // J. Biol. Inorg. Chem. 2011. V. 16. P. 491. https:// doi.org/https://doi.org/10.1007/s00775-010-0748-5

  34. Casini A., Hartinger C., Gabbiani C. et al. // J. Inorg. Biochem. 2008. V. 102. P. 564. https://doi.org/10.1016/j.jinorgbio.2007.11.003

  35. Nobili S., Mini E., Landini I. et al. // Med. Res. Rev. 2010. V. 30. P. 550. https://doi.org/10.1002/med.20168

  36. Casini A., Cinellu M.A., Minghetti G. et al. // J. Med. Chem. 2006. V. 49. P. 5524. https://doi.org/10.1021/jm060436a

  37. Al-Maythalony B.A., Wazeer M.I.M., Isab A.A., Ahmad S. // Spectroscopy. 2010. V. 24. P. 567. https://doi.org/10.3233/SPE-2010-0478

  38. Đurović M.D., Bugarčić Ž.D., Heinemann F.W., Eldik R. // Dalton Trans. 2014. V. 43. P. 3911. https://doi.org/10.1039/C3DT53140F

  39. Glišić B.Đ., Djuran M.I., Stanić Z.D., Rajković S. // Gold Bull. 2014. V. 47. P. 33. https://doi.org/10.1007/s13404-013-0108-7

  40. Casini A., Diawara M.C., Scopelliti R. et al. // Dalton Trans. 2010. V. 39. P. 2239. https://doi.org/10.1039/b921019a

  41. Baddley W.H., Basolo F., Gray H.B. et al. // Inorg. Chem. 1963. V. 2. P. 921. https://doi.org/10.1021/ic50009a011

  42. Marcon G., Messori L., Orioli P. et al. // Eur. J. Biochem. 2003. V. 270. P. 4655. https://doi.org/10.1046/j.1432-1033.2003.03862.x

  43. Mirzadeh N., Reddy T.S., Bhargava S.K. // Coord. Chem. Rev. 2019. V. 388. P. 343. https://doi.org/10.1016/j.ccr.2019.02.027

  44. Kim J.H., Reeder E., Parkin S., Awuah S.G. // Sc. Rep. 2019. V. 9. P. 12335. https://doi.org/10.1038/s41598-019-48584-5

  45. Pavic A, Glišić B.Đ., Vojnovic S. et al. // J. Inorg. Biochem. 2017. V. 174. P. 156. https://doi.org/10.1016/j.jinorgbio.2017.06.009

  46. Landini I., Lapucci A., Pratesi A. et al. // Oncotarget. 2017. V. 8. P. 96062. https://doi.org/10.18632/oncotarget.21708

Дополнительные материалы отсутствуют.