Журнал неорганической химии, 2023, T. 68, № 10, стр. 1388-1397

Получение, структура и термические свойства арсенат-фосфатов натрия-хрома

Е. А. Пятериков a*, В. И. Петьков a, Д. Г. Фукина a, Е. Ю. Боровикова b

a Нижегородский государственный университет им. Н.И. Лобачевского
603950 Нижний Новгород, пр-т Гагарина, 23, Россия

b Кольский научный центр РАН
184209 Апатиты, ул. Ферсмана, 14, Россия

* E-mail: piaterikovegor@gmail.com

Поступила в редакцию 27.03.2023
После доработки 17.05.2023
Принята к публикации 19.05.2023

Аннотация

Методом совместного осаждения синтезированы арсенат-фосфаты ${\text{N}}{{{\text{a}}}_{3}}{\text{C}}{{{\text{r}}}_{2}}{{({\text{As}}{{{\text{O}}}_{4}})}_{x}}{{({\text{P}}{{{\text{O}}}_{4}})}_{{3 - x}}}$ (1.75 ≤ x ≤ 3.0). Зависимость параметра элементарной ячейки от состава описывается линейной зависимостью: a (Å) = 0.0967x + 11.873. Методом Ритвельда уточнена кристаллическая структура Na3Cr2(AsO4)2PO4, рассчитаны координаты базисных атомов и длины связей. Кристаллизация твердого раствора структурного типа граната происходит при 600–650°C, переход в высокотемпературную ромбоэдрическую структуру – при 994–1044°C. Исследовано тепловое расширение низкотемпературной модификации со структурой граната в диапазоне от –130 до 200°C. Образцы твердого раствора расширяются изотропно и обладают малым тепловым расширением.

Ключевые слова: гранат, арсенат-фосфаты, твердый раствор, тепловое расширение

Список литературы

  1. Jamaludin N.F.A., Muthusamy K., Isa N.N. et al. // Mater. Today Proc. 2022. V. 48. P. 728. https://doi.org/10.1016/j.matpr.2021.02.210

  2. Muttashar H.L., Ali. N.B., Mohd Ariffin M.A. et al. // Case Stud. Constr. Mater. 2018. V. 8. P. 87. https://doi.org/10.1016/j.cscm.2017.12.001

  3. Liu H., Zhao M., Bai. X. et al. // eTransportation. 2023. V. 16. P. 100234. https://doi.org/10.1016/j.etran.2023.100234

  4. Luo Y., Zhang Q., Shen A. et al. // Solid State Ionics. 2022. V. 374. P. 115812. https://doi.org/10.1016/j.ssi.2021.115812

  5. Guo Z., Li X., Wang Z. et al. // Trans. Nonferrous Met. Soc. China. 2022. V. 32. № 10. P. 3362. https://doi.org/10.1016/S1003-6326(22)66025-4

  6. Ramkumar B., So-young K., Chan-woo N. et al. // Electrochim. Acta. 2020. V. 359. P. 136955. https://doi.org/10.1016/j.electacta.2020.136955

  7. Yang Y., Liu T., Bi L. et al. // J. Alloys Compd. 2021. V. 860. P. 158235. https://doi.org/10.1016/j.jallcom.2020.158235

  8. Cui J., Yao S., Guerfi A. et al. // Energy Storage Mater. 2022. V. 53. P. 899. https://doi.org/10.1016/j.ensm.2022.10.002

  9. Huang D., Liang S., Chen D. et al. // Chem. Eng. J. 2021. V. 426. P. 131332. https://doi.org/10.1016/j.cej.2021.131332

  10. Mishra N.K., Kumar A., Kumar K. // J. Alloys Compd. 2023. V. 947. P. 169440. https://doi.org/10.1016/j.jallcom.2023.169440

  11. Pang Z., Li T., Liu Q. et al. // Optik. 2023. V. 274. P. 170496. https://doi.org/10.1016/j.ijleo.2022.170496

  12. Tapia M., Fernández-Osorio A., Casanova R. et al. // Ceram. Int. 2023. https://doi.org/10.1016/j.ceramint.2023.02.087

  13. Kunchariyakun K., Sukmak P. // Constr. Build. Mater. 2020. V. 262. P. 120122. https://doi.org/10.1016/j.conbuildmat.2020.120122

  14. Naga S.M., El-Mehalawy N., Awaad M. et al. // Mater. Today Commun. 2023. V. 34. P. 105033. https://doi.org/10.1016/j.mtcomm.2022.105033

  15. Abdala F., Adriani A., Ajamani H. et al. Encyclopedia of Geology. Elsevier, 2021.

  16. Li Z., Li S., Xin S. et al. // J. Alloys Compd. 2023. V. 944. P. 169253. https://doi.org/10.1016/j.jallcom.2023.169253

  17. Hamao N., Yamaguchi Y., Hamamoto K. // J. Alloys Compd. 2021. V. 865. P. 158223. https://doi.org/10.1016/j.jallcom.2020.158223

  18. Chen F., Liu M., Piao R. et al. // Opt. Mater. 2023. V. 136. P. 113439. https://doi.org/10.1016/j.optmat.2023.113439

  19. Lohe P.P., Nandanwar D.V., Belsare P.D. et al. // Opt. Mater. 2022. V. 129. P. 112469. https://doi.org/10.1016/j.optmat.2022.112469

  20. Tolkacheva A.S., Shkerin S.N., Nikonov A.V. et al. // Mater. Lett. 2021. V. 305. P. 130811. https://doi.org/10.1016/j.matlet.2021.130811

  21. Tong Y., Zhang W., Wei R. et al. // Ceram. Int. 2021. V. 47. № 2. P. 2600. https://doi.org/10.1016/j.ceramint.2020.09.106

  22. Krasnikov A., Suchocki A., Tsiumra V. et al. / J. Lumin. 2021. V. 235. P. 118065. https://doi.org/10.1016/j.jlumin.2021.118065

  23. Mei H., Zhang L., Rao Z. et al. // J. Alloys Compd. 2022. V. 926. P. 166960. https://doi.org/10.1016/j.jallcom.2022.166960

  24. Inkrataite G., Pakalniskis A., Vistorskaja D. et al. // Mater. Lett. 2022. V. 316. P. 131990. https://doi.org/10.1016/j.matlet.2022.131990

  25. Bartosiewicz K., Babin V., Kamada K. et al. // J. Lumin. 2019. V. 216. P. 116724. https://doi.org/10.1016/j.jlumin.2019.116724

  26. Gheorghe C., Hau S., Stanciu G. et al. // J. Alloys Compd. 2022. V. 922. P. 166178. https://doi.org/10.1016/j.jallcom.2022.166178

  27. d’Yvoire F., Pintard-Screpel M., Bretey E. // Solid State Ionics. 1986. V. 18–19. P. 502. https://doi.org/10.1016/0167-2738(86)90167-0

  28. Петьков В.И., Асабина Е.А., Щёлоков И.А. // Неорган. материалы. 2013. Т. 49. № 5. С. 528. https://doi.org/10.7868/S0002337X13050114

  29. Pet’kov V., Asabina E., Loshkarev V. et al. // J. Nucl. Mater. 2016. V. 471. P. 122. https://doi.org/10.1016/j.jnucmat.2016.01.016

  30. Li H., Xu H.Z., Wang Y.Y. et al. // Solid State Phenom. 2018. V. 281. P. 450. https://doi.org/10.4028/www.scientific.net/SSP.281.450

  31. Pet’kov V.I., Asabina A.A., Lukuttsov A.A. et al. // Radiochemistry. 2015. V. 57. № 6. P. 632. https://doi.org/10.1134/S1066362215060119

  32. Ryumin M.A., Pukhkaya V.V., Komissarova L.N. // Russ. J. Inorg. Chem. 2010. V. 55. № 7. P. 1010. https://doi.org/10.1134/S0036023610070041

  33. Sukhanov M.V., Pet’kov V.I., Kurazhkovskaya V.S. et al. // Russ. J. Inorg. Chem. 2006. V. 51. № 5. P. 706. https://doi.org/10.1134/S0036023606050032

  34. Rietveld H.M. // Acta Crystallogr. 1967. № 22. P. 151. https://doi.org/10.1107/S0365110X67000234

  35. Yong-Il K., Izumi F. // J. Ceram. Soc. Jpn. 1994. № 102. P. 401. https://doi.org/10.2109/JCERSJ.102.401

  36. Генкина Е.А., Калинин В.Б., Максимов Б.А. и др. // Кристаллография. 1991. Т. 36. № 5. С. 1126.

Дополнительные материалы

скачать ESM_1.jpg
Приложение 1. Рис. S1.
 
скачать ESM_2.jpg
Приложение 2. Рис. S2.
 
скачать ESM_3.jpg
Приложение 3. Рис. S3.