Журнал неорганической химии, 2022, T. 67, № 1, стр. 3-32

Новые поглощающие слои на основе четверных соединений меди Cu–A–B–S–Se (A = Ba, Sr, Fe, Ni, Mn; B = Si, Ge, Sn) для тонкопленочных солнечных элементов третьего поколения (обзор)

М. В. Гапанович a*, В. В. Ракитин a, Г. Ф. Новиков a

a Институт проблем химической физики РАН
142432 Московская обл., Черноголовка, пр-т Академика Семенова, 1, Россия

* E-mail: gmw@icp.ac.ru

Поступила в редакцию 08.07.2021
После доработки 30.08.2021
Принята к публикации 31.08.2021

Аннотация

Обзор посвящен новым полупроводникам – четверным соединениям меди Cu2AIIBIVS(Se)4, где A = Mg, Ca, Sr, Ba, Fe,Ni,Co, Cd, Cr; B = Sn, Pb, Si, Ge, Ti, Zr, Hf. Соединения из указанной группы могут прийти на смену более распространенным халькопиритам Cu1 – δIn1 –xGaxSe2 (CIGS) и кестеритам Cu2 – δZnSnS4 –ySey (CZTSSe), которые используются для создания тонкопленочных солнечных батарей. Обобщены имеющиеся в мировой литературе сведения об оптических и электрофизических свойствах указанных соединений, особенностях их синтеза и солнечных элементах на их основе.

Ключевые слова: солнечные элементы, четверные соединения меди, Cu2AIIBIVS(Se)4, синтез, свойства

Список литературы

  1. Shockley W., Queisser H.J. // J. Appl. Phys. 1961. V. 32. № 3. P. 510. https://doi.org/10.1063/1.1736034

  2. Зыкин М.А., Аминов Т.Г., Минин В.В. и др. // Журн. неорган. химии. 2021. Т. 66. № 1. С. 103. [Zykin M.A., Aminov T.G., Minin V.V. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 113. https://doi.org/10.1134/S0036023621010137]

  3. Ракитин В.В., Новиков Г.Ф. // Успехи химии. 2017. Т. 86. С. 99. [Rakitin V.V., Novikov G.F. // Russ. Chem. Rev. 2017. V. 82. № 2. P. 99.] https://doi.org/10.1070/RCR4633

  4. Luque A., Hegedus S. Handbook of Photovoltaic Science and Engineering. West Sussex: John Wiley & Sons, Ltd. 2011.

  5. Иванов С.А., Сташ А.И. // Журн. неорган. химии. 2020. Т. 65. № 12. С. 1581. [Ivanov S.A., Stash A.I. // Russ. J. Inorg. Chem. 2020. V. 65. P. 1789. https://doi.org/10.1134/S0036023620120049]

  6. Kumar M.S., Madhusudanana S.P., Batabyal S.K. // Sol. Energy Mater. Sol. Cells. 2018. V. 185. P. 287. https://doi.org/10.1016/j.solmat.2018.05.003

  7. Ito K. Copper Zinc Tin Sulfide-Based Thin-Film Solar Cells. West Sussex. U.K.: A John Wiley and Sons Ltd., 2015.

  8. Anima Ghosh, Thangavel R., Rajagopalan M. // Energy Environ. Focus. 2014. V. 3. № 2. P. 142. https://doi.org/10.1166/eef.2014.1080

  9. Guohua Zhong, Kinfai Tse, Yiou Zhang et al. // Thin Solid Films. 2016. V. 603. P. 224. https://doi.org/10.1016/j.tsf.2016.02.005

  10. Mohnish Pandey, Karsten W. Jacobsen // Phys. Rev. Mater. 2018. V. 2. P. 105402. https://doi.org/10.1103/PhysRevMaterials.2.105402

  11. Gang Yang, Xiaoli Zhai, Yongfeng Li et al. // Mater. Lett. 2019. V. 242. P. 58. https://doi.org/10.1016/j.matlet.2019.01.102

  12. Mehdi Souli, Raya Engazou, Lassaad Ajili et al. // Superlattices Microstruct. 2020. V. 147. P. 106711. https://doi.org/10.1016/j.spmi.2020.106711

  13. Ming Wei, Qingyang Du, Rong Wang et al. // Chem. Lett. 2014. V. 43. P. 1149. https://doi.org/10.1246/cl.140208

  14. Kumar V.P., Guilmeau E., Raveau B. et al. // J. Appl. Phys. 2015. V. 118. P. 155101-1. https://doi.org/10.1063/1.4933277

  15. Один И.Н., Гапанович М.В., Урханов О.Ю. и др. // Неорган. материалы. 2021. Т. 57. № 1. С. 3. [Odin I.N., Gapanovich M.V., Urkhanov O.Yu. et al. // Inorg. Mater. 2021. V. 57. P. 1.] https://doi.org/10.1134/S0020168521010118

  16. Sharm S., Kumar P. // J. Phys. Commun. 2017. V. 1. P. 045014. https://doi.org/10.1088/2399-6528/aa9286

  17. Shin D., Saparov B., Zhu T. et al. // Chem. Mater. 2016. V. 28. P. 4771. https://doi.org/10.1021/acs.chemmater.6b01832

  18. Teske C.L. // Z. Anorg. Allg. Chem. 1976. V. 419. P. 67. https://doi.org/10.1002/zaac.19764190112

  19. Crovetto A., Nielsen R., Stamate E. et al. // ACS Appl. Energy Mater. 2019. V. 2. № 10. P. 7340. https://doi.org/10.1021/acsaem.9b01322

  20. Zhengfu Tong, Jiangyuan Yuan, Jiarui Chen et al. // Mater. Lett. 2019. V. 237. P. 130. https://doi.org/10.1016/j.matlet.2018.11.083

  21. Hanrui Xiao, Zhu Chen, Kaiwen Sun et al. // Thin Solid Films. 2020. V. 697. № 1. P. 137828. https://doi.org/10.1016/j.tsf.2020.137828

  22. Tong Zhu, William P. Huhn, Garrett C. Wessler et al. // Chem. Mater. 2017. V. 29. № 18. P. 7868. https://doi.org/10.1021/acs.chemmater.7b02638

  23. Haitian Luo, Yi Zhang, Wenjing Wang et al. // PPS Appl. Mater. Sci. 2020. V. 217. № 18. P. 200060. https://doi.org/10.1002/pssa.202000060

  24. Márquez J.A., Sun J.-P., Stange H. et al. // J. Mater. Chem. A. 2020. V. 8. P. 11346. https://doi.org/10.1039/D0TA02348E

  25. Ge J., Koirala P., Grice C.R. et al. // Adv. Energy Mater. 2017. V. 7. № 6. P. 1601803. https://doi.org/10.1002/aenm.201601803

  26. Ge J., Corey R. Grice, Yanfa Yan // J. Mater. Chem. A. 2017. V. 5. P. 2920. https://doi.org/10.1039/C6TA08426E

  27. Ge J., Yu Y., Yan Y. // ACS Energy Lett. 2016. V. 1. № 3. P. 583. https://doi.org/10.1021/acsenergylett.6b00324

  28. Shin D., Zhu T., Huang X. et al. // Adv. Mater. 2017. V. 29. № 24. P. 1606945. https://doi.org/10.1002/adma.201606945

  29. Eibschütz M., Hermon E., Shtrikman S. // J. Phys. Chem Solids. 1967. V. 28. P. 1633. https://doi.org/10.1016/0022-3697(67)90134-5

  30. Rincón C., Quintero M., Power Ch. et al. // J. Appl. Phys. 2015. V. 117. P. 205701. https://doi.org/10.1063/1.4921438

  31. Hao Guan, Honglie Shen, Baoxiang Jiao et al. // Mater. Sci. Semicond. Process. 2014. V. 25. P. 159. https://doi.org/10.1016/j.mssp.2013.10.021

  32. Soumyo Chatterjee S., Amlan J.P. // Sol. Energy Mater. Sol. Cells. 2017. V. 160. P. 233. https://doi.org/10.1016/j.solmat.2016.10.037

  33. Adelifard M. // J. Analyt. Appl. Pyrolysis. 2016. V. 122. P. 209. https://doi.org/10.1016/j.jaap.2016.09.022

  34. Jicheng Zhou, Shiqi Yu, Xiaowei Guo et al. // Current Appl. Phys. 2019. V. 19. № 2. P. 67. https://doi.org/10.1016/j.cap.2018.10.014

  35. Deepika R., Meena P. // Mater. Res. Express. 2020. V. 7. P. 035012. https://doi.org/10.1088/2053-1591/ab7c21

  36. Quintero M., Barreto A., Grima P. et al. // Mater. Res. Bull. 1999. V. 34. № 14/15. P. 2263. https://doi.org/10.1016/S0025-5408(00)00166-5

  37. Quintero E., Quintero M., Moreno E. et al. // J. Phys. Chem. Solids. 2010. V. 71. № 7. P. 993. https://doi.org/10.1016/j.jpcs.2010.04.010

  38. Kevin P., Malik S.N., Malik M.A. et al. // Mater. Lett. 2015. V. 152. P. 60. https://doi.org/10.1016/j.matlet.2015.03.087

  39. Xiankuan Meng, Huiyi Cao, Hongmei Deng et al. // Mater. Sci. Semicond. Process. 2015. V. 39. P. 243. https://doi.org/10.1016/j.mssp.2015.05.007

  40. Wang X.R., Guan Y.S., Ali O.A. et al. // Optoelectr. Adv. Mater. Rapid Commun. 2020. V. 14. № 3–4. P. 196.

  41. Yubin Chen, Xiaoyang Feng, Maochang Liu et al. // Nanophotonics. 2016. V. 5. № 4. P. 524. https://doi.org/10.1515/nanoph-2016-0027

  42. Qingfeng Song, Pengfei Qiu, Kunpeng Zhao et al. // ACS Appl. Energy Mater. 2020. V. 3. № 3. P. 2137. https://doi.org/10.1021/acsaem.9b02150

  43. Schäfer W., Nitsche R. // Mater. Res. Bull. 1974. V. 9. P. 645. https://doi.org/10.1016/0025-5408(74)90135-4

  44. Yang C.L., Chen Y.H., Lin M. et al. // Mater. Lett. 2016. V. 166. P. 101. https://doi.org/10.1016/j.matlet.2015.12.054

  45. Abed M.A., Bakr N.A., Al-Zanganawee J. // Chalcogenide Letters. 2020. V. 17. № 4. P. 179.

  46. Aitelhaj D., Elkissani A., Elyaagoubi M. et al. // Mater. Sci. Semicond. Process. 2020. V. 107. P. 104811. https://doi.org/10.1016/j.mssp.2019.104811

  47. Rondiya S., Wadnerkar N., Jadhav Y. et al. // Chem. Mater. 2017. V. 29. P. 3133. https://doi.org/10.1021/acs.chemmater.7b00149

  48. Dehghani Z., Shadrokh Z. // Optik. 2018. V. 169. P. 242. https://doi.org/10.1016/j.ijleo.2018.05.052

  49. Zhang Q., Li H., Ma Y. et al. // Prog. Mater Sci. 2016. V. 83. P. 472. https://doi.org/10.1016/j.pmatsci.2016.07.005

  50. Гапанович М.В., Рабенок Е.В., Голованов Б.И. и др. // ФТП. 2021. №. 12. P. 1176. http://dx.doi.org/10.21883/FTP.2021.12.51702.9677

  51. Repins I., Beall C., Vora N. et al. // Sol. Energy Mater. Sol. Cells. 2012. V. 101. P. 154. https://doi.org/10.1016/j.solmat.2012.01.008

  52. Gulay L.D., Nazarchuk O.P., Olekseyuk I.D. // J. Alloys Compd. 2004. V. 377. № 1-2. P. 306. https://doi.org/10.1016/j.jallcom.2004.02.004

  53. Quinteroa M., Marquina J., Quintero E. et al. // Revista Mexicana de Física. 2014. V. 60. P. 168.

  54. Hammami H., Marzougui M., Oueslati H. et al. // Optik. 2021. V. 227. P. 166054. https://doi.org/10.1016/j.ijleo.2020.166054

  55. Murali B., Madhuri M., Krupanidhi S.B. // Cryst. Growth Des. 2014. V. 14. № 8. P. 3685. https://doi.org/10.1021/cg500622f

  56. Beraich M., Taibi M., Guenbour A. et al. // Optik. 2019. V. 193. P. 162996. https://doi.org/10.1016/j.ijleo.2019.162996

  57. Mokurala Krishnaiah, Ajit Kumar, Sung Hun Jin et al. // Data in Brief. 2020. V. 32. P. 106103. https://doi.org/10.1016/j.dib.2020.106103

  58. Mokurala K., Yun Jae Jeong, Rajneesh K.M. et al. // Mater. Sci. Semicond. Process. 2021. V. 121. P. 105443. https://doi.org/10.1016/j.mssp.2020.105443

  59. Mokurala K., Mallick S., Bhargava P. // J. Power Sources. 2016. V. 305. P. 134. https://doi.org/10.1016/j.jpowsour.2015.11.081

  60. Maldar P.S., Mane A.A., Nikam S.S. et al. // Thin Solid Films. 2020. V. 709. P. 138236. https://doi.org/10.1016/j.tsf.2020.138236

  61. Ghosh A., Thangavel R., Rajagopalan M. // Energy and Environment Focus. 2014. V. 3. P. 142. https://doi.org/10.1166/eef.2014.1080

  62. Lei Meng, Yongfeng Li, Bin Yao et al. // J. Phys. D: Appl. Phys. 2015. V. 48. P. 445105. https://doi.org/10.1088/0022-3727/48/44/445105

  63. Huafei Guo, Yan Li, Xiang Fang et al. // Mater. Lett. 2016. V. 162. P. 97. https://doi.org/10.1016/j.matlet.2015.09.112

  64. Tombak A., Kilicoglu T., Ocak Y.S. // Renewable Energy. 2020. V. 146. P. 1465. https://doi.org/10.1016/j.renene.2019.07.057

  65. Hadke S., Levcenko S., Gautam G.S. et al. // Adv. Energ. Mater. 2019. V. 9. P. 1902509. https://doi.org/10.1002/aenm.201902509

  66. Su Z., Liang G., Fan P. et al. // Adv. Mater. 2020. V. 32. P. 2000121. https://doi.org/10.1002/adma.202000121

  67. Wangen Zhao, Gang Wang, Qingwen Tian et al. // Sol. Energy Mater. Sol. Cells. 2015. V. 133. P. 15. https://doi.org/10.1016/j.solmat.2014.10.040

  68. Matsushita H., Maeda T., Katsui A. et al. // J. Cryst. Growth. 2000. V. 208. P. 416. https://doi.org/10.1016/S0022-0248(99)00468-6

  69. Min-Ling Liu, I-Wei Chen, Fu-Qiang Huang et al. // Adv. Mater. 2009. V. 21. № 37. P. 3808. https://doi.org/10.1063/1.3130718

  70. Chetty R., Bali A., Mallik R.C. // Intermetallic. 2016. V. 72. P. 17. https://doi.org/10.1016/j.intermet.2016.01.004

  71. Ming-Hung Chiang, Yaw-Shyan Fu, Cheng-Hung Shih et al. // Thin Solid Films. 2013. V. 544. P. 291. https://doi.org/10.1016/j.tsf.2013.03.096

  72. Feng-Jia Fan, Bo Yu, Yi-Xiu Wang et al. // JACS. 2011. V. 133. № 40. P. 15910. https://doi.org/10.1021/ja207159j

  73. Guen L., Glaunsinger W.S. // J. Solid State Chem. 1980. V. 35. P. 10. https://doi.org/10.1016/0022-4596(80)90457-0

  74. Fries T., Shapira Y., Palacio F. et al. // Phys. Rev. B. 1997. V. 56. № 9. P. 5424. https://doi.org/10.1103/PhysRevB.56.5424

  75. Quintero M., Moreno E., Lara L. et al. // J. Phys. Chem. Solids. 2010. V. 71. № 7. P. 993. https://doi.org/10.1016/j.jpcs.2010.04.010

  76. Гапанович М.В., Один И.Н., Чукичев М.В. и др. // Неорган. материалы. 2021. T. 57. № 10. С. 1045. [Gapanovich M.V., Odin I.N., Chukichev M.V. et al. // Inorg. Mater. 2021. V. 57. № 10. P. 987.]. https://doi.org/10.1134/S0020168521100034

  77. Jiejin Yu, Hongmei Deng, Qiao Zhang et al. // Mater. Lett. 2018. V. 233. P. 111. https://doi.org/10.1016/j.matlet.2018.08.147

  78. Prabhakar R.R., Su Zhenghua, Zeng Xin et al. // Sol. Energy Mater. Sol. Cells. 2016. V. 157. P. 867. https://doi.org/10.1016/j.solmat.2016.07.006

  79. Yali Sun, Xiuling Li, Weiliang Qiao et al. // Sol. Energy Mater. Sol. Cells. 2021. V. 219. P. 110788. https://doi.org/10.1016/j.solmat.2020.110788

  80. Qingfeng Song, Pengfei Qiu, Hongyi Chen et al. // ACS Appl. Mater. Interfaces. 2018. V. 10. № 12. P. 10123. https://doi.org/10.1021/acsami.7b19791

  81. Hussein H., Yazdani A. // Mater. Sci. Semicond. Process. 2019. V. 91. P. 58. https://doi.org/10.1016/j.mssp.2018.11.005

  82. Гапанович М.В., Левин И.М. // Тез. конф. ФАГРАН-2021. г. Воронеж, 4–7 октября 2021. С. 58.

  83. Congcong Wang, Shiyou Chen, Ji-Hui Yang et al. // Chem. Mater. 2014. V. 26. P. 3411. https://doi.org/10.1021/cm500598x

  84. Fenske D., Eichhöfer A. (http://www.cfn.kit.edu/downloads/research_f_nano_energy/F301–Report.pdf)

  85. Wang X., Li J., Zhao Z. et al. // J. Appl. Phys. 2012. V. 112. P. 023701. https://doi.org/10.1063/1.4736554

  86. Ahmoum H., Su’ait M.S., Li G. et al. // Indian J. Phys. https://doi.org/10.1007/s12648-020-01698-3

  87. Schleich D.M., Wold A. // Mater. Res. Bull. 1977. V. 12. P. 111. https://doi.org/10.1016/0025-5408(77)90150-7

  88. Levcenco S., Dumcenco D., Huang Y.S. et al. // J. Alloys Compd. 2011. V. 509. P. 4924. https://doi.org/10.1016/j.jallcom.2011.01.169

  89. Levcenco S., Dumcenco D., Huang Y.S. et al. // J. Alloys Compd. 2011. V. 509. P. 7105. https://doi.org/10.1016/j.jallcom.2011.04.013

  90. Levcenco S., Dumcenco D.O., Wang Y.P. et al. // Opt. Mater. 2012. V. 34. P. 1072. https://doi.org/10.1016/j.optmat.2012.01.004

  91. Matsusita H., Ichikawa T., Katsui A. // J. Mater. Sci. 2005. V. 40. P. 2003. https://doi.org/10.1007/s10853-005-1223-5

  92. Matsushita H., Katsui A. // J. Phys. Chem. Solids. 2005. V. 66. P. 1933. https://doi.org/10.1016/j.jpcs.2005.09.028

  93. Nakamura S., Maeda T., Wada T. // Jpn. J. Appl. Phys. 2010. V. 49. P. 121203. https://doi.org/10.1143/JJAP.49.121203

  94. Liu H.-R., Chen S., Zhai Y.-T. et al. // J. Appl. Phys. 2012. V. 112. P. 093717. https://doi.org/10.1063/1.4759322

  95. Chen S., Walsh A., Luo Y. et al. // Phys. Rev. B. 2010. V. 82. P. 195203. https://doi.org/10.1103/PhysRevB.82.195203

  96. Zhang X., Rao D., Lu R. et al. // AIP Adv. 2015. V. 5. P. 057111. https://doi.org/10.1063/1.4920936

  97. Gurieva G., Levcenko S., Kravtsov V.Ch. et al. // Z. Kristallogr. 2015. V. 30. P. 507. https://doi.org/10.1515/zkri-2014-1825

  98. Litvinchuk A.P., Dzhagan V.M., Yukhymchuk V.O. et al. // Phys. Status Solidi B. 2016. V. 253. P. 1808. https://doi.org/10.1002/pssb.201600175

  99. Nitsche R., Sargent D.F., Wild P. // J. Cryst. Growth. 1967. V. 1. P. 52. https://doi.org/10.1016/0022-0248(67)90009-7

  100. Yao G.Q., Shen H.S., Honig E.D. et al. // Solid State Ionics. 1987. V. 24. P. 249. https://doi.org/10.1016/0167-2738(87)90166-4

  101. Rosmus K.A., Aitken J.A. // Acta Crystallogr. 2011. V. 67. P. 28. https://doi.org/10.1107/S1600536811008889

  102. Rosmus K.A., Brunetta C.D., Srnec M.N. et al. // Z. Anorg. Allg. Chem. 2012. V. 638. P. 2578. https://doi.org/10.1002/zaac.201200259

  103. Valakh M.Ya., Yukhymchuk V.O., Babichuk I.S. et al. // Vib. Spectrosc. 2017. V. 89. P. 81. https://doi.org/10.1016/j.vibspec.2017.01.005

  104. Litvinchuk A.P., Dzhagan V.M., Yukhymchuk V.O. et al. // Phys. Rev. 2014. V. 90. P. 165201. https://doi.org/10.1103/PhysRevB.90.165201

  105. Zhang X., Chen D., Deng K. et al. // J. Alloys Compd. 2016. V. 656. P. 196. https://doi.org/10.1016/j.jallcom.2015.09.240

  106. Levcenco S., Dumcenco D., Huang Y.S. et al. // J. Appl. Phys. 2010. V. 108. P. 073508. https://doi.org/10.1063/1.3490219

  107. Shi C., Shi G., Chen Z. et al. // Mater. Lett. 2012. V. 73. P. 89. https://doi.org/10.1016/j.matlet.2012.01.018

  108. Lisunov K.G., Guc M., Levcenko S. et al. // J. Alloys Compd. 2013. V. 580. P. 481. https://doi.org/10.1016/j.jallcom.2013.06.156

  109. Guc M., Levcenko S., Dermenji L. et al. // Solid State Commun. 2014. V. 190. P. 44. https://doi.org/10.1016/j.ssc.2014.03.024

  110. Syrbu N.N., Zalamai V., Guc M. et al. // J. Alloys Compd. 2015. V. 635. P. 188. https://doi.org/10.1016/j.jallcom.2015.02.100

  111. Leon E., Levcenko S., Sema R. et al. // Mater. Chem. Phys. 2013. V. 141. P. 58. https://doi.org/10.1016/j.matchemphys.2013.04.024

  112. Rosmus K.A., Brant J.A., Winsneski S.D et al. // Inorg. Chem. 2014. V. 53. P. 7809. https://doi.org/10.1021/ic501310d

  113. Wang J., Yu N., Zhang Y. et al. // J. Alloys Compd. 2016. V. 688. P. 923. https://doi.org/10.1016/j.jallcom.2016.07.012

  114. Weber M.F., Dignam M.J. // Int. J. Hydrog. Energy. 1986. V. 11. № 4. P. 225. https://doi.org/10.1016/0360-3199(86)90183-7

  115. Bolton J.R., Strickler S.J., Connolly J.S. // Nature. 1985. V. 316. № 6028. P. 495. https://doi.org/10.1038/316495a0

  116. Vishwakarma M., Varandani D., Shivaprasad S.M. et al. // Sol. Energy Mater. Sol. Cells. 2018. V. 174. P. 577. https://doi.org/10.1016/j.solmat.2017.08.018

  117. Lee C.-I., Kim C.-D. // J. Korean Phys. Soc. 2000. V. 37. P. 364.

  118. Matsushita H., Ochiai T., Katsui A. // J. Cryst. Growth. 2005. V. 275. P. e995. https://doi.org/10.1016/j.jcrysgro.2004.11.154

  119. Bhaskar P.U., Babu G.S., Kumar Y.B.K. et al. // Thin Solid Films. 2013. V. 534. P. 249. https://doi.org/10.1016/j.tsf.2013.03.001

  120. Shu Q., Yang J.H., Chen S. et al. // Phys. Rev. B. 2013. V. 87. P. 115208-6. https://doi.org/10.1103/PhysRevB.87.115208

  121. Zhang Y., Sun X., Zhang P. et al. // J. Appl. Phys. 2012. V. 111. P. 063709. https://doi.org/10.1063/1.3696964

  122. Hages C.J., Levcenco S., Miskin C.K. et al. // Prog. Photovolt.: Res. Appl. 2015. V. 23. P. 376. https://doi.org/10.1002/pip.2442

  123. Kim S., Kim K.M., Tampo H. et al. // Sol. Energy Mater. Sol. Cells. 2016. V. 144. P. 488. https://doi.org/10.1016/j.solmat.2015.09.039

  124. Kim S., Kim K.M., Tampo H. et al. // Appl. Phys. Express. 2016. V. 9. P. 102301. https://doi.org/10.7567/APEX.9.102301

  125. Collord A.D., Hill House H.W. // Chem. Mater. 2016. V. 7. P. 2067. https://doi.org/10.1021/acs.chemmater.5b04806

  126. Schnabel T., Seboui M., Ahlswede E. // RSC Adv. 2017. V. 7. P. 26. https://doi.org/10.1039/C6RA23068G

  127. Sahayaraj S., Brammertz G., Vermang B. et al. // Sol. Energy Mater. Sol. Cells. 2017. V. 171. P. 136. https://doi.org/10.1016/j.solmat.2017.06.050

  128. Parasyuk O.V., Gulay L.D., Romanyuk Ya.E. et al. // J. Alloys Compd. 2001. V. 329. P. 202. https://doi.org/10.1016/S0925-8388(01)01606-1

  129. Caldera D., Quintero M., Morocoima M. et al. // J. Alloys Compd. 2008. V. 457. P. 221. https://doi.org/10.1016/j.jallcom.2007.03.033

  130. Delbos S. // EPJ Photovolt. 2012. V. 3. P. 35004. https://doi.org/10.1051/epjpv/2012008

  131. Walsh A., Chen S., Wei S.-H. et al. // Adv. Energy Mater. 2012. V. 2. P. 400. https://doi.org/10.1002/aenm.201100630

  132. Chen S., Walsh A., Gong X.-G. et al. // Adv. Mater. 2013. V. 25. P. 1522. https://doi.org/10.1002/adma.201203146

  133. Mendis B.G., Goodman M.C.J., Major J.D. et al. // J. Appl. Phys. 2012. V. 112. P. 124508. https://doi.org/10.1063/1.4769738

  134. Lafond A., Choubrac L., Guillot-Deudon C. et al. // Z. Anorg. Allg. Chem. 2012. V. 638. P. 2571. https://doi.org/10.1002/zaac.201200279

  135. Valle-Rios L.E., Neldner K., Gurieva G. et al. // J. Alloys Compd. 2016. V. 657. P. 408. https://doi.org/10.1016/j.jallcom.2015.09.198

  136. Romanyuk Ya.E., Parasyk O.V. // J. Alloys Compd. 2003. V. 348. P. 195. https://doi.org/10.1016/S0925-8388(02)00852-6

  137. Sears V.F. // Neutron News. 1992. V. 3. P. 26. https://doi.org/10.1080/10448639208218770

  138. Stephan C., Schorr S. // Chalcopyrite thin film solar cell devices, in: Neutron Applications in Materials for Energy. 2014. Springer International Publishing.

  139. Gurieva G., Többens D.M., Valakh M.Ya. et al. / J. Phys. Chem. Solids. 2016. V. 99. P. 100. https://doi.org/10.1016/j.jpcs.2016.08.017

  140. Buffière M., ElAnzeery H., Oueslati S. et al. // Thin Solid Films. 2015. V. 582. P. 171. https://doi.org/10.1016/j.tsf.2014.09.024

  141. Swapna Mary G., Dipak Ramdas Nagapure, Rhishikesh Mahadev Patil et al. // Vacuum. 2016. V. 133. P. 114. https://doi.org/10.1016/j.vacuum.2016.08.002

  142. Swapna Mary G., Hema Chandra G., Anantha Sunil M. et al. // J. Electron. Mater. 2018. V. 47. № 1. P. 800. https://doi.org/10.1007/s11664-017-5860-7

  143. Yoo H., Kim J.H. // Thin Solid Films. 2010. V. 518. № 22. P. 6567. https://doi.org/10.1016/j.tsf.2010.03.058

  144. Min Yang, Zhi Jiang, Zhishan Li et al. // Mater. Sci. Semicond. Process. V. 56. 2016. P. 238. https://doi.org/10.1016/j.mssp.2016.08.012

  145. Fairbrother A., Fourdrinier L., Fontane X. et al. // J. Phys. Chem. C. 2014. V. 118. № 31. P. 17291. https://doi.org/10.1021/jp503699r

  146. Swapna Mary G., Hema Chandra G., Anantha Sunil M. et al. // Superlattices Microstruct. 2018. V. 117. P. 437. https://doi.org/10.1016/j.spmi.2018.03.065

  147. Brammertz G., Kohl T., Wild J.D. et al. // Thin Solid Films. 2019. V. 670. P. 76. https://doi.org/10.1016/j.tsf.2018.12.015

  148. Benhaddou N., Aazou S., Sanchez Y. et al. // Sol. Energy Mater. Sol. Cells. 2020. V. 216. P. 110701. https://doi.org/10.1016/j.solmat.2020.110701

  149. Li J., Ma Y., Chen G. et al. // RRL Solar. 2019. V. 3. № 21. P. 800254.

  150. Новиков Г.Ф., Гапанович М.В. // УФН. 2017. Т. 187. № 2. С. 173. [Novikov G.F., Gapanovich M.V. // Phys.-Usp. 2017. V. 60. P. 161. https://doi.org/10.3367/UFNe.2016.06.037827]

Дополнительные материалы отсутствуют.