Журнал высшей нервной деятельности им. И.П. Павлова, 2023, T. 73, № 5, стр. 622-636

Увеличение пиковой частоты альфа-ритма ээг при предъявлении собственного имени во время глубокой анестезии

Г. В. Портнова 1, А. О. Канцерова 1, Л. Б. Окнина 1, Д. И. Пицхелаури 2, В. В. Подлепич 2, Я. О. Вологдина 2, Е. Л. Машеров 2

1 ФГБУН Институт Высшей Нервной Деятельности и Нейрофизиологии РАН
Москва, Россия

2 ФГАУ “НМИЦ Нейрохирургии им. ак. Н.Н. Бурденко”
Москва, Россия

Поступила в редакцию 31.03.2023
После доработки 31.05.2023
Принята к публикации 03.07.2023

Аннотация

Восприятие эмоционально значимых звуков у пациентов с угнетением сознания остается актуальной темой. Данные литературы свидетельствуют о том, что собственное имя, подаваемое в виде звукового сигнала, является одним из стимулов, способных оказывать активирующее действие на субъектов, находящихся в бессознательном состоянии. В данной работе мы исследовали электрофизиологическую реакцию пациентов, находящихся под глубоким наркозом во время проведения нейрохирургической операции, с целью оценить влияние глубины наркоза на восприятие звуков, в том числе и собственного имени, и исследовать области мозга, вовлеченные в их анализ. Мы регистрировали ЭЭГ синхронно от 12 скальповых электродов и на уровне среднего мозга от двух глубинных электродов в состоянии покоя и при предъявлении звуковых стимулов (собственное имя, чужое имя и шум) у одиннадцати пациентов сразу после удаления опухоли задних отделов третьего желудочка или четвертого желудочка. Результаты показали, что пациенты, находящиеся под глубоким наркозом, могли реагировать на свое имя в виде увеличения пиковой частоты альфа-ритма, по сравнению с чужими именами, шумами, а также в сравнении с ЭЭГ в состоянии покоя, как на уровне скальповой ЭЭГ в височных областях, так и на уровне среднего мозга.

Ключевые слова: собственное имя, ЭЭГ, средний мозг, общая анестезия, пиковая частота альфа-ритма

Список литературы

  1. Badalova B. Modern Methods of Teaching Russian and Uzbek as a Foreign Language to Students. Science and Education. 2020. 1 (Special Issue 2).

  2. Banquet J.P. Spectral analysis of the EEG in meditation. Electroencephalography and clinical neurophysiology. 1973. 35 (2): 143–151. https://doi.org/10.1016/0013-4694(73)90170-3

  3. Barry R.J., De Blasio F.M., Fogarty J.S., Clarke A.R. Natural alpha frequency components in resting EEG and their relation to arousal. Clinical neurophysiology: official J. International Federation of Clinical Neurophysiology. 2020. 131 (1): 205–212. https://doi.org/10.1016/j.clinph.2019.10.018

  4. Bastuji H., Perrin F., Garcia-Larrea L. Semantic analysis of auditory input during sleep: studies with event related potentials. International j. psychophysiology: official journal of the International Organization of Psychophysiology. 2002. 46 (3): 243–255. https://doi.org/10.1016/s0167-8760(02)00116-2

  5. Boldyreva G.N. The hyppocampal alpha-rhythm of the human brain. Electroencephalography and clinical neurophysiology. 1997. 1 (103): 199.

  6. Cheng L., Gosseries O., Ying L., Hu X., Yu D., Gao H., He M., Schnakers C., Laureys S., Di H. Assessment of localisation to auditory stimulation in post-comatose states: use the patient’s own name. BMC neurology. 2013. 13: 27. https://doi.org/10.1186/1471-2377-13-27

  7. De Gennaro L., Ferrara M., Curcio G., Cristiani R. Antero-posterior EEG changes during the wakefulness-sleep transition. Clinical neurophysiology: official j. International Federation of Clinical Neurophysiology. 2001. 112 (10): 1901–1911. https://doi.org/10.1016/s1388-2457(01)00649-6

  8. di Fronso S., Fiedler P., Tamburro G., Haueisen J., Bertollo M., Comani, S. Dry EEG in Sports Sciences: A Fast and Reliable Tool to Assess Individual Alpha Peak Frequency Changes Induced by Physical Effort. Frontiers in neuroscience. 2019. 13: 982. https://doi.org/10.3389/fnins.2019.00982

  9. Feige B., Scheffler K., Esposito F., Di Salle F., Hennig J., Seifritz E. Cortical and subcortical correlates of electroencephalographic alpha rhythm modulation. J. neurophysiology. 2005. 93 (5): 2864-2872. https://doi.org/10.1152/jn.00721.2004

  10. Fischer C., Dailler F., Morlet D. Novelty P3 elicited by the subject’s own name in comatose patients. Clinical neurophysiology: official J. International Federation of Clinical Neurophysiology. 2008. 119 (10): 2224–2230. https://doi.org/10.1016/j.clinph.2008.03.035

  11. Freitas S., Simoes M.R., Maroco J., Alves L., Santana I. Construct Validity of the Montreal Cognitive Assessment (MoCA). J. International Neuropsychological Society. 2012. 18 (2): 242–250. https://doi.org/10.1017/S1355617711001573

  12. Gutmann B., Mierau A., Hulsdunker T., Hildebrand C., Przyklenk A., Hollmann W., Struder H.K. Effects of physical exercise on individual resting state EEG alpha peak frequency. Neural plasticity. 2015. 717312. https://doi.org/10.1155/2015/717312

  13. Gutmann B., Zimmer P., Hulsdunker T., Lefebvre J., Binnebossel S., Oberste M., Bloch W., Struder H.K., Mierau A. The effects of exercise intensity and post-exercise recovery time on cortical activation as revealed by EEG alpha peak frequency. Neuroscience letters. 2018. 668: 159–163. https://doi.org/10.1016/j.neulet.2018.01.007

  14. Haegens S., Cousijn H., Wallis G., Harrison P.J., Nobre A.C. Inter- and intra-individual variability in alpha peak frequency. NeuroImage. 2014. 92 (100): 46–55. https://doi.org/10.1016/j.neuroimage.2014.01.049

  15. Holeckova I., Fischer C., Morlet D., Delpuech C., Costes N., Mauguiere F. Subject’s own name as a novel in a MMN design: a combined ERP and PET study. Brain research. 2008. 1189: 152–165. https://doi.org/10.1016/j.brainres.2007.10.091

  16. Holler Y., Kronbichler M., Bergmann J., Crone J.S., Ladurner G., Golaszewski S. EEG frequency analysis of responses to the own-name stimulus. Clinical neurophysiology: official J. International Federation of Clinical Neurophysiology. 2011. 122 (1): 99–106. https://doi.org/10.1016/j.clinph.2010.05.029

  17. Jensen O., Mazaheri A. Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Frontiers in human neuroscience. 2010. 4: 186. https://doi.org/10.3389/fnhum.2010.00186

  18. Kannabiran N., Bidkar P.U. Total intravenous anesthesia in neurosurgery. J. Neuroan-aesthesiology and Critical Care. 2018. 5 (3): 141–149. https://doi.org/10.1055/s-0038-1673544

  19. Kempny A.M., James L., Yelden K., Duport S., Farmer S.F., Playford D.E., Lef A.P. Patients with a severe prolonged Disorder of Consciousness can show classical EEG responses to their own name compared with others' names. NeuroImage: Clinical. 2018. 19: 311–319. https://doi.org/10.1016/j.nicl.2018.04.027

  20. Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain research reviews. 1999. 29 (2–3): 169–195. https://doi.org/10.1016/s0165-0173(98)00056-3

  21. Klimesch W., Schimke H., Pfurtscheller G. Alpha frequency, cognitive load and memory performance. Brain topography. 1993. 5 (3): 241–251. https://doi.org/10.1007/BF01128991

  22. Li K., Fan L., Cui Y., Wei X., He Y., Yang J., Lu Y., Li W., Shi W., Cao L., Cheng L., Li A., You B., Jiang T. The human mediodorsal thalamus: Organization, connectivity, and function. NeuroImage. 2022. 249: 118876. https://doi.org/10.1016/j.neuroimage.2022.118876

  23. Luria A.R. Higher cortical function in man. N.Y.: Springer New York, 1980. https://doi.org/10.1007/978-1-4615-8579-4

  24. Manshanden I., De Munck J.C., Simon N.R., Lopes da Silva F.H. Source localization of MEG sleep spindles and the relation to sources of alpha band rhythms. Clinical neurophysiology: official J. International Federation of Clinical Neurophysiology. 2002. 113 (12): 1937–1947. https://doi.org/10.1016/s1388-2457(02)00304-8

  25. Moretti D.V., Prestia A., Fracassi C., Geroldi C., Binetti G., Rossini P.M., Zanetti O., Frisoni G.B. Volumetric differences in mapped hippocampal regions correlate with increase of high alpha rhythm in Alzheimer’s disease. International J. Alzheimer’s disease. 2011. 208218. https://doi.org/10.4061/2011/208218

  26. Musizza B., Ribaric S. Monitoring the depth of anaesthesia. Sensors. 2010. 10 (12): 10896–10935. https://doi.org/10.3390/s101210896

  27. Omata K., Hanakawa T., Morimoto M., Honda M. Spontaneous Slow Fluctuation of EEG Alpha Rhythm Reflects Activity in Deep-Brain Structures: A Simultaneous EEG-fMRI Study. PloS one. 2013. 8 (6): e66869. https://doi.org/10.1371/journal.pone.0066869

  28. Oswald I., Taylor A.M., Treisman M. Discriminative responses to stimulation during human sleep. Brain: a journal of neurology. 1960. 83 (3): 440–453. https://doi.org/10.1093/brain/83.3.440

  29. Patel A.K., Reddy V., Shumway K.R., Araujo J.F. Physiology, Sleep Stages. Treasure Island (FL): StatPearls Publishing. 2023.

  30. Paus T. Functional anatomy of arousal and attention systems in the human brain. Progress in brain research. 2000. 126: 65–77. https://doi.org/10.1016/S0079-6123(00)26007-X

  31. Perrin F., Garcia-Larrea L., Mauguiere F., Bastuji H. A differential brain response to the subject’s own name persists during sleep. Clinical neurophysiology: official J. International Federation of Clinical Neurophysiology. 1999. 110 (12): 2153–2164. https://doi.org/10.1016/s1388-2457(99)00177-7

  32. Portas C.M., Krakow K., Allen P., Josephs O., Armony J.L., Frith C.D. Auditory processing across the sleep-wake cycle: simultaneous EEG and fMRI monitoring in humans. Neuron. 2000. 28 (3): 991–999. https://doi.org/10.1016/s0896-6273(00)00169-0

  33. Portnova G.V., Proskurnina E.V., Sokolova S.V., Skorokhodov I.V., Varlamov A.A. Perceived pleasantness of gentle touch in healthy individuals is related to salivary oxytocin response and EEG markers of arousal. Experimental brain research. 2020. 238 (10): 2257–2268. https://doi.org/10.1007/s00221-020-05891-y

  34. Ruby P., Blochet C., Eichenlaub J.B., Bertrand O., Morlet D., Bidet-Caulet A. Alpha reactivity to complex sounds differs during REM sleep and wakefulness. PloS one. 2013a. 8 (11): e79989. https://doi.org/10.1371/journal.pone.0079989

  35. Ruby P., Blochet C., Eichenlaub J.B., Bertrand O., Morlet D., Bidet-Caulet A. Alpha reactivity to first names differs in subjects with high and low dream recall frequency. Frontiers in psychology. 2013b. 4: 419. https://doi.org/10.3389/fpsyg.2013.00419

  36. Rudolph U., Antkowiak B. Molecular and neuronal substrates for general anaesthetics. Nature reviews Neuroscience. 2004. 5 (9): 709–720. https://doi.org/10.1038/nrn1496

  37. Sadato N., Nakamura S., Oohashi T., Nishina E., Fuwamoto Y., Waki A., Yonekura Y. Neural networks for generation and suppression of alpha rhythm: a PET study. Neuroreport. 1998. 9 (5): 893–897. https://doi.org/10.1097/00001756-199803300-00024

  38. Schiff N.-D. Central thalamic contributions to arousal regulation and neurological disorders of consciousness. Annals of the New York Academy of Sciences. 2008. 1129: 105–118. https://doi.org/10.1196/annals.1417.029

  39. Schreckenberger M., Lange-Asschenfeldt C., Lochmann M., Mann K., Siessmeier T., Buchholz H. G., Bartenstein P., Grunder G. The thalamus as the generator and modulator of EEG alpha rhythm: a combined PET/EEG study with lorazepam challenge in humans. NeuroImage. 2004. 22 (2): 637–644. https://doi.org/10.1016/j.neuroimage.2004.01.047

  40. Schwabedal J.T., Riedl M., Penzel T., Wessel N. Alpha-wave frequency characteristics in health and insomnia during sleep. J. sleep research. 2016. 25 (3): 278–286. https://doi.org/10.1111/jsr.12372

  41. Shaw J.C. The brain’s alpha rhythms and the mind. BV Elsevier Science. 2003.

  42. Scheeringa R., Petersson K.M., Oostenveld R., Norris D.G., Hagoort P., Bastiaansen M.C. Trial-by-trial coupling between EEG and BOLD identifies networks related to alpha and theta EEG power increases during working memory maintenance. Neuroimage. 2009. 44 (3): 1224–1238. https://doi.org/10.1016/j.neuroimage.2008.08.041

  43. Vanhaudenhuyse A., Laureys S., Perrin F. Cognitive event-related potentials in comatose and post-comatose states. Neurocritical care. 2008. 8 (2): 262–270. https://doi.org/10.1007/s12028-007-9016-0

  44. Voss U., Harsh J. Information processing and coping style during the wake/sleep transition. J. sleep research. 1998. 7 (4): 225–232. https://doi.org/10.1046/j.1365-2869.1998.00117.x

  45. Weber A., Scharenborg O. Models of spoken-word recognition. Wiley interdisciplinary reviews Cognitive science. 2012. 3 (3): 387–401. https://doi.org/10.1002/wcs.1178

  46. Zimmer P., Mierau A., Bloch W., Struder H.K., Hulsdunker T., Schenk A., Fiebig L., Baumann F.T., Hahn M., Reinart N., Hallek M., Elter T. Post-chemotherapy cognitive impairment in patients with B-cell non-Hodgkin lymphoma: a first comprehensive approach to determine cognitive impairments after treatment with rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone or rituximab and bendamustine. Leukemia & lymphoma. 2015. 56 (2): 347–352. https://doi.org/10.3109/10428194.2014.915546

Дополнительные материалы отсутствуют.