Журнал высшей нервной деятельности им. И.П. Павлова, 2023, T. 73, № 2, стр. 230-241
Активность зеркальной системы мозга у людей с депрессивным симптомокомплексом
Е. Д. Каримова 1, *, Д. В. Смольская 2, А. А. Нараткина 2
1 Институт высшей нервной деятельности и нейрофизиологии РАН
Москва, Россия
2 Московский государственный университет им. Ломоносова
Москва, Россия
* E-mail: e.d.karimova@gmail.com
Поступила в редакцию 19.06.2022
После доработки 26.07.2022
Принята к публикации 31.10.2022
- EDN: ILDDCT
- DOI: 10.31857/S0044467723020053
Полные тексты статей выпуска доступны в ознакомительном режиме только авторизованным пользователям.
Аннотация
Мировые события последних нескольких лет привели к тому, что все больше людей начинают испытывать депрессивные симптомы, которые в значительной степени влияют на эмоциональный фон человека и его восприятие окружающего мира. Целью данного исследования было проанализировать реакции мю- и альфа-ритмов, отражающих работу зеркальной и зрительной систем головного мозга, при восприятии и повторении эмоционально окрашенных социальных стимулов у людей с разным уровнем депрессии. В исследовании приняли участие 32 здоровых испытуемых, которые были разделены на две группы – с высоким и низким уровнем депрессии по шкале Бека. Регистрировали 32-канальную ЭЭГ в двух экспериментальных блоках, активирующих эмоциональную и моторную составляющие зеркальной системы мозга (ЗСМ): 1) при восприятии эмоциональных лиц, выражающих счастье или горе; 2) при наблюдении и повторении моторных жестов рукой. Анализировали степень десинхронизации компонент мю- и альфа-ритма, выделенных методом независимых компонент (ICA), в каждой из задач. Было получено, что десинхронизация мю-ритма была достоверно выше у людей с высоким уровнем депрессии при повторении моторных движений рукой, а также при восприятии негативной эмоциональной мимики. Десинхронизация альфа-ритма не отличалась у двух групп испытуемых. Таким образом, развитие депрессивного состояния усиливает активацию ЗСМ, при этом повышается ее чувствительность к негативным эмоциональным стимулам. Данный эффект не распространяется на зрительную кору и визуальное внимание.
Полные тексты статей выпуска доступны в ознакомительном режиме только авторизованным пользователям.
Список литературы
Ablin P., Cardoso J.F., Gramfort A. Faster independent component analysis by preconditioning with hessian approximations. IEEE Transactions on Signal Processing. 2018. 66 (15): 4040–4049. https://doi.org/10.1109/TSP.2018.2844203
Alkhamees A.A., Alrashed S.A., Alzunaydi A.A., Almohimeed A.S., Aljohani, M.S. The psychological impact of COVID-19 pandemic on the general population of Saudi Arabia. Comprehensive Psychiatry. 2020. 102: 152192. https://doi.org/10.1016/j.comppsych.2020.152192
Andrews S.C., Enticott P.G., Hoy K.E., Thomson R.H., Fitzgerald P.B. Reduced mu suppression and altered motor resonance in euthymic bipolar disorder: Evidence for a dysfunctional mirror system? Social Neuroscience. 2016. 11 (1): 60–71. https://doi.org/10.1080/17470919.2015.1029140
Arnstein D., Cui F., Keysers C., Maurits N.M., Gazzola V. μ-suppression during action observation and execution correlates with BOLD in dorsal premotor, inferior parietal, and SI cortices. The Journal of neuroscience : the official J. Society for Neuroscience. 2011. 31 (40): 14243–14249. https://doi.org/10.1523/JNEUROSCI.0963-11.2011
Basavaraju R., Mehta U.M., Pascual-Leone A., Thirthalli J. Elevated mirror neuron system activity in bipolar mania: Evidence from a transcranial magnetic stimulation study. Bipolar Disorders. 2019. 21 (3): 259–269. https://doi.org/10.1111/bdi.12723
Batterham P.J., Calear A.L., McCallum S.M., Morse A.R., Banfield M., Farrer L.M., Gulliver A., Cherbuin N., Rodney Harris R.M., Shou Y., Dawel A. Trajectories of depression and anxiety symptoms during the COVID-19 pandemic in a representative Australian adult cohort. Medical J. Australia. 2021. 214 (10): 462–468. https://doi.org/10.5694/mja2.51043
Beck A.T. An Inventory for Measuring Depression, Archives of General Psychiatry. 1961. 4(6): 561. https://doi.org/10.1001/archpsyc.1961.01710120031004
Bekkali S., Youssef G.J., Donaldson P.H., Albein-Urios N., Hyde C., Enticott P.G. Is the Putative Mirror Neuron System Associated with Empathy? A Systematic Review and Meta-Analysis, Neuropsychology Review. 2021. 31 (1): 14–57. https://doi.org/10.1007/s11065-020-09452-6
Bimbi M., Festante F., Coudé G., Vanderwert R.E., Fox N.A., Ferrari P.F. Simultaneous scalp recorded EEG and local field potentials from monkey ventral premotor cortex during action observation and execution reveals the contribution of mirror and motor neurons to the mu-rhythm, NeuroImage. 2018. 175: 22–31. https://doi.org/10.1016/j.neuroimage.2018.03.037
Bodnar A., Rybakowski J.K. Increased affective empathy in bipolar patients during a manic episode, Revista Brasileira de Psiquiatria. 2017. 39 (4): 342–345. https://doi.org/10.1590/1516-4446-2016-2101
Borra E., Gerbella M., Rozzi S., Luppino G. The macaque lateral grasping network: A neural substrate for generating purposeful hand actions. Neuroscience & Biobehavioral Reviews. 2017. 75: 65–90. https://doi.org/10.1016/j.neubiorev.2017.01.017
Bowers A., Saltuklaroglu T., Harkrider A., Cuellar M. Suppression of the µ Rhythm during Speech and Non-Speech Discrimination Revealed by Independent Component Analysis: Implications for Sensorimotor Integration in Speech Processing. Sinigaglia, C. (ed.) PLoS One. 2013. 8 (8): e72024. https://doi.org/10.1371/journal.pone.0072024
Bowman L.C., Bakermans-Kranenburg M.J., Yoo K.H., Cannon E.N., Vanderwert R.E., Ferrari P.F., van IJzendoorn M.H., Fox, N.A. The mu-rhythm can mirror: Insights from experimental design, and looking past the controversy. Cortex; a journal devoted to the study of the nervous system and behavior. 2017. 96: 121–125. https://doi.org/10.1016/j.cortex.2017.03.025
Carr L., Iacoboni M., Dubeau M.-C., Mazziotta J.C., Lenzi G.L. Neural mechanisms of empathy in humans: A relay from neural systems for imitation to limbic areas. Proceedings of the National Academy of Sciences. 2003. 100 (9): 5497–5502. https://doi.org/10.1073/pnas.0935845100
Chen L.L., Cheng C.H.K., Gong T. Inspecting Vulnerability to Depression From Social Media Affect. Frontiers in Psychiatry. 2020. 11: 54. https://doi.org/10.3389/fpsyt.2020.00054
Cook R., Bird G., Catmur C., Press C., Heyes C. Mirror neurons: From origin to function. Behavioral and Brain Sciences. 2014. 37 (2): 177–192. https://doi.org/10.1017/S0140525X13000903
Ensenberg N.S., Perry A., Aviezer H. Are you looking at me? Mu suppression modulation by facial expression direction. Cognitive, Affective, & Behavioral Neuroscience. 2017. 17 (1): 174–184. https://doi.org/10.3758/s13415-016-0470-z
Ferrari P.F., Gerbella M., Coudé G., Rozzi S. Two different mirror neuron networks: The sensorimotor (hand) and limbic (face) pathways. Neuroscience. 2017. 358: 300–315. https://doi.org/10.1016/j.neuroscience.2017.06.052
Fox N.A., Yoo K.H., Bowman L.C., Cannon E.N., Ferrari P.F., Bakermans-Kranenburg M.J., Vanderwert R.E., Van IJzendoorn M.H. Assessing human mirror activity With EEG mu rhythm: A meta-analysis. Psychological Bulletin. 2016. 142 (3): 291–313. https://doi.org/10.1037/bul0000031
Gerbella M., Borra E., Tonelli S., Rozzi S., Luppino G. Connectional Heterogeneity of the Ventral Part of the Macaque Area 46. Cerebral Cortex. 2013. 23 (4): 967–987. https://doi.org/10.1093/cercor/bhs096
Goodin P., Lamp G., Hughes M.E., Rossell S.L., Ciorciari J. Decreased Response to Positive Facial Affect in a Depressed Cohort in the Dorsal Striatum During a Working Memory Task – A Preliminary fMRI Study. Frontiers in Psychiatry. 2019. 10: 60. https://doi.org/10.3389/fpsyt.2019.00060
Hobson H.M., Bishop D.V.M. Mu suppression – A good measure of the human mirror neuron system? Cortex. 2016. 82: 290–310. https://doi.org/10.1016/j.cortex.2016.03.019
Hobson H.M., Bishop D.V.M. The interpretation of mu suppression as an index of mirror neuron activity: past, present and future. Royal Society Open Science. 2017. 4 (3): 160662. https://doi.org/10.1098/rsos.160662
Hyvärinen A., Oja E. Independent component analysis: Algorithms and applications, Neural Networks. 2020. 13 (4–5). https://doi.org/10.1016/S0893-6080(00)00026-5
Iacoboni M. Understanding others: imitation, language, empathy. Perspectives on Imitation: From Cognitive Neuroscience to Social Science. 2005. 1: 77–99.
Iacoboni M., Dapretto M. The mirror neuron system and the consequences of its dysfunction. Nature Reviews Neuroscience. 2006. 7 (12): 942–951. https://doi.org/10.1038/nrn2024
Jenson D., Bowers A.L., Harkrider A.W., Thornton D., Cuellar M., Saltuklaroglu T. Temporal dynamics of sensorimotor integration in speech perception and production: independent component analysis of EEG data. Frontiers in Psychology. 2014. 5. https://doi.org/10.3389/fpsyg.2014.00656
Krivan S.J., Caltabiano N., Cottrell D., Thomas N.A. I’ll cry instead: Mu suppression responses to tearful facial expressions. Neuropsychologia. 2020. 143: 107490. https://doi.org/10.1016/j.neuropsychologia.2020.107490
Kumar P., Waiter G.D., Dubois M., Milders M., Reid I., Steele J.D. Increased neural response to social rejection in major depression. Depression and Anxiety. 2017. 34 (11): 1049–1056. https://doi.org/10.1002/da.22665
Kupferberg A., Bicks L., Hasler G. Social functioning in major depressive disorder. Neuroscience & Biobehavioral Reviews. 2016. 69: 313–332. https://doi.org/10.1016/j.neubiorev.2016.07.002
Mikulan E.P., Reynaldo L., Ibáñez A. Homuncular mirrors: misunderstanding causality in embodied cognition, Frontiers in Human Neuroscience. 2014. 8: 299. https://doi.org/10.3389/fnhum.2014.00299
Molnar-Szakacs I., Iacoboni M., Koski L., Mazziotta J.C. Functional Segregation within Pars Opercularis of the Inferior Frontal Gyrus: Evidence from fMRI Studies of Imitation and Action Observation. Cerebral Cortex. 2005. 15 (7): 986–994. https://doi.org/10.1093/cercor/bhh199
Mundy L.K., Canterford L., Moreno-Betancur M., Hoq M., Sawyer S.M., Allen N.B., Patton G.C. Social networking and symptoms of depression and anxiety in early adolescence. Depression and Anxiety. 2021. 38 (5): 563–570. https://doi.org/10.1002/da.23117
Oztop E., Kawato M., Arbib M.A. Mirror neurons: Functions, mechanisms and models. Neuroscience Letters. 2013. 540: 43–55. https://doi.org/10.1016/j.neulet.2012.10.005
Pizzagalli D.A., Roberts A.C. Prefrontal cortex and depression. Neuropsychopharmacology. 2022. 47 (1): 225–246. https://doi.org/10.1038/s41386-021-01101-7
Ritter P., Moosmann M., Villringer A. Rolandic alpha and beta EEG rhythms’ strengths are inversely related to fMRI-BOLD signal in primary somatosensory and motor cortex. Human brain mapping. 2009. 30 (4): 1168–87. https://doi.org/10.1002/hbm.20585
Rizzolatti G., Craighero L. The Mirror-Neuron System. Annual Review of Neuroscience. 2004. 27 (1): 169–192. https://doi.org/10.1146/annurev.neuro.27.070203.14-4230
Rizzolatti G., Sinigaglia C. The mirror mechanism: a basic principle of brain function. Nature Reviews Neuroscience. 2016. 17 (12): 757–765. https://doi.org/10.1038/nrn.2016.135
Rondung E., Leiler A., Meurling J., Bjärtå A. Symptoms of Depression and Anxiety During the Early Phase of the COVID-19 Pandemic in Sweden. Frontiers in Public Health. 2021. 9: 562437. https://doi.org/10.3389/fpubh.2021.562437
Salo V.C., Ferrari P.F., Fox N.A. The role of the motor system in action understanding and communication: Evidence from human infants and non-human primates. Developmental Psychobiology. 2019. 61 (3): 390–401. https://doi.org/10.1002/dev.21779
Shimada K., Kasaba R., Fujisawa T.X., Sakakibara N., Takiguchi S., Tomoda A. Subclinical maternal depressive symptoms modulate right inferior frontal response to inferring affective mental states of adults but not of infants. J. Affective Disorders. 2018. 229: 32–40. https://doi.org/10.1016/j.jad.2017.12.031
Simone L., Bimbi M., Rodà F., Fogassi L., Rozzi S. Action observation activates neurons of the monkey ventrolateral prefrontal cortex. Scientific Reports. 2017. 7 (1): 44378. https://doi.org/10.1038/srep44378
Simone L., Rozzi S., Bimbi M., Fogassi L. Movement-related activity during goal-directed hand actions in the monkey ventrolateral prefrontal cortex, Foxe, J. (ed.). European Journal of Neuroscience. 2015. 42 (11): 2882–2894. https://doi.org/10.1111/ejn.13040
Sliwa J., Freiwald W.A. A dedicated network for social interaction processing in the primate brain. Science. 2017. 356 (6339): 745–749. https://doi.org/10.1126/science.aam6383
Suffel A., Nagels A., Steines M., Kircher T., Straube B. Feeling addressed! The neural processing of social communicative cues in patients with major depression. Human Brain Mapping. 2020. 41 (13): 3541–3554. https://doi.org/10.1002/hbm.25027
Vahratian A., Blumberg S.J., Terlizzi E.P., Schiller J.S. Symptoms of Anxiety or Depressive Disorder and Use of Mental Health Care Among Adults During the COVID-19 Pandemic – United States, August 2020–February 2021, MMWR. Morbidity and Mortality Weekly Report. 2021. 70 (13): 490–494. https://doi.org/10.15585/mmwr.mm7013e2
Visted E., Vøllestad J., Nielsen M.B., Schanche E. Emotion Regulation in Current and Remitted Depression: A Systematic Review and Meta-Analysis, Frontiers in Psychology. 2018. 9: 756. https://doi.org/10.3389/fpsyg.2018.00756
de Waal F.B.M., Preston S.D. Mammalian empathy: behavioural manifestations and neural basis. Nature Reviews Neuroscience. 2017. 18 (8): 498–509. https://doi.org/10.1038/nrn.2017.72
Wolf S., Seiffer B., Zeibig J.-M., Welkerling J., Brokmeier L., Atrott B., Ehring T., Schuch F.B. Is Physical Activity Associated with Less Depression and Anxiety During the COVID-19 Pandemic? A Rapid Systematic Review. Sports Medicine. 2021. 51 (8): 1771–1783. https://doi.org/10.1007/s40279-021-01468-z
Дополнительные материалы отсутствуют.
Инструменты
Журнал высшей нервной деятельности им. И.П. Павлова