Исследование Земли из Космоса, 2023, № 3, стр. 70-80

Определение водозапаса облачности по данным радиометра МСУ-ГС КА Арктика-М № 1

А. А. Филей a*, Ю. А. Шамилова a

a Дальневосточный центр ФГБУ “Научно-исследовательский центр космической гидрометеорологии "Планета”
Хабаровск, Россия

* E-mail: andreyvm-61@mail.ru

Поступила в редакцию 31.08.2022

Аннотация

В статье представлена методика определения водозапаса облачности по данным дневных измерений радиометра МСУ-ГС, установленного на борту российского гидрометеорологического спутника “Арктика-М” № 1. В основе представленной методики лежат физические принципы взаимодействия электромагнитного излучения с частицами облачности в коротковолновой области спектра на длинах волн 0.55 и 4.0 мкм. Полученные по данным радиометра МСУ-ГС оценки водозапаса облачности сопоставлялись с аналогичными оценками по данным радиометров AMSU/MHS и AHI. По результатам сопоставления искомые оценки водозапаса капельной облачности находятся в допустимых пределах погрешности измерений, не превышающей 50 г/м2. В тоже время в силу конструктивных особенностей радиометр МСУ-ГС не позволяет с требуемой точностью восстанавливать водозапас кристаллической облачности. В среднем оценка водозапаса кристаллической облачности по данным МСУ-ГС занижена на 110 г/м2, а среднеквадратическая ошибка составляет 158 г/м2 по сравнению с данными радиометра AHI. Полученные оценки водозапаса были внедрены в геоинформационную систему “Арктика-М”, обеспечивающую доступ к данным КА “Арктика-М” № 1 и результатам их тематической обработки в режиме, близкому к реальному времени.

Ключевые слова: МСУ-ГС, Арктика-М № 1, водозапас, оптическая толщина, эффективный радиус, фазовое состояние, облачность

Список литературы

  1. Андреев А.И., Шамилова Ю.А. Детектирование облачности по данным КА Himawari-8 с применением сверточной нейронной сети // Исслед. Земли из Космоса. 2021. № 2. С. 42−52.

  2. Мазин И.П., Хргиан А.Х. Облака и облачная атмосфера. Справочник // Л.: Гидрометиздат. 1989. 647 с.

  3. Матвеев Л.Т. Курс общей метеорологии. Физика атмосферы // Л.: Гидрометеоиздат. 1984. 751 с.

  4. Филей А.А. Определение фазового состояния облачности по данным спутникового радиометра МСУ-МР космического аппарата “Метеор-М” № 2 // Оптика атмосферы и океана. 2019 Т. 32. № 5. С. 376−380.

  5. Хартов В.В., Мартынов М.Б., Бабышкин В.Е., Москатиньев И.В., Митькин А.С. Новая высокоэллиптическая космическая система “АРКТИКА” // Вестник НПО им. С.А. Лавочкина. 2014. № 3. С. 104−109.

  6. Baum B.A., Heymsfield A.J., Yang P., Bedka S.T. Bulk scattering models for the remote sensing of ice clouds. Part I: Microphysical data and models // J. Applied Meteorology and Climatology. 2005. V. 44. P. 1885–1895.

  7. Baum B.A., Yang P., Heymsfield A.J., Platnick S., King M.D., Hu Y-X., Bedka S.T. Bulk scattering models for the remote sensing of ice clouds. Part II: Narrowband models // J. Applied Meteorology and Climatology. 2005. V. 44. P. 1896–1911.

  8. Bennartz R. Global assessment of marine boundary layer cloud droplet number concentration from satellite // J. Geophys Res: Atmos. 2007. V. 112(D2). 16 p.

  9. Buras R., Dowling T., Emde C. New secondary-scattering correction in DISORT with increased efficiency for forward scattering // J. Quantitative Spectroscopy and Radiative Transfer. 2011. V. 112(12). P. 2028–2034.

  10. Gasteiger J., Emde C., Mayer B., Buras R., Buehler S.A., Lemke O. Representative wavelengths absorption parameterization applied to satellite channels and spectral bands // J. Quantitative Spectroscopy and Radiative Transfer. 2014. V. 148. P. 99–115.

  11. Han Q., Rossow W.B., Lacis A.A. Near-global survey of effective droplet radii in liquid water clouds using ISCCP data // J. Climate. 1994. V. 7. P. 465–497.

  12. Heymsfield A.J., Matrosov S., Baum B. Ice Water Path-Optical Relationships for Cirrus and Deep Stratiform Ice Cloud Layers // J. Appl. Meteor. 2003. V. 42. № 10. P. 1369–1390.

  13. Hu Y.X., Stamnes K. An accurate parameterization of the radiative properties of water clouds suitable for use in climate models // J. Climate. 1993. V. 6. P. 728–742.

  14. Mayer B., Kylling A., Emde C., Buras R., Hamann U., Gasteiger J., Richter B. // LibRadtran user’s guide. 2017. 155 p.

  15. Platnick S. Vertical photon transport in cloud remote sensing problems // J. Geophys. Res. 2000. V. 105. № D18. P. 22919–22935.

  16. Platnick S., King M.D., Ackerman S.A., Menzel W.P., Baum B.A., Riedi J.C., Frey R.A. The MODIS cloud products: Algorithms and examples from Terra // IEEE Trans. Geosci. Remote Sensing. 2003. V. 41. P. 459–473.

  17. Roebeling R.A., Feijt A.J., Stammes P. Cloud property retrievals for climate monitoring: Implications of differences between Spinning Enhanced Visible and Infrared Imager (SEVIRI) on METEOSAT-8 and Advanced Very High Resolution Radiometer (AVHRR) on NOAA-17 // J. Geophys. Res.: Atmos. 2006. V. 111. № D20210. 16 p.

  18. Walther A., Heidinger A. Implementation of the Daytime Cloud Optical and Microphysical Properties. Algorithm (DCOMP) in PATMOS-x // J. Applied Meteorology and Climatology. 2012. V. 51. № 7. P. 1371–1390.

Дополнительные материалы отсутствуют.