Геомагнетизм и аэрономия, 2023, T. 63, № 3, стр. 306-320

Выделение солнечно-суточной анизотропии космических лучей локальным и глобальным методами

А. В. Белов 1*, Н. С. Шлык 1**, М. А. Абунина 1, А. А. Абунин 1, В. А. Оленева 1, В. Г. Янке 1, А. А. Мелкумян 1

1 Институт земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова РАН (ИЗМИРАН)
Москва, Троицк, Россия

* E-mail: abelov@izmiran.ru
** E-mail: nshlyk@izmiran.ru

Поступила в редакцию 20.10.2022
После доработки 25.11.2022
Принята к публикации 28.11.2022

Аннотация

По данным нейтронного монитора ст. Москва с помощью гармонического анализа получены характеристики солнечно-суточной анизотропии космических лучей в спокойные дни за длительный период с 1965 по 2020 гг. Установлено, что средний суточный ход вариаций космических лучей нейтронных мониторов ст. Москва практически полностью описывается двумя гармониками солнечно-суточной анизотропии и не содержит признаков других влияний. Сравнение со среднесуточными характеристиками экваториальной составляющей векторной анизотропии космических лучей, полученными по данным мировой сети нейтронных мониторов с помощью метода глобальной съемки, показало хорошее согласие результатов двух методик. Из сравнения локальных и глобальных результатов получены оценки приемных коэффициентов первой гармоники анизотропии космических лучей для нейтронного монитора ст. Москва и предложен новый экспериментальный метод расчета приемных коэффициентов отдельных детекторов. Обсуждены и обоснованы ограничения локальной методики, а также возможности продолжения и расширения данного исследования.

Список литературы

  1. Абунина М.А., Абунин А.А., Белов А.В., Ерошенко Е.А., Асипенка А.С., Оленева В.А., Янке В.Г. Связь параметров Форбуш-эффектов с гелиодолготой солнечных источников // Геомагнетизм и аэрономия. Т. 53. № 1. С. 13–22. 2013а.

  2. Абунина М.А., Абунин А.А., Белов А.В., Ерошенко Е.А., Оленева В.А., Янке В.Г. Долгопериодные изменения амплитудно-фазовой взаимозависимости первой гармоники анизотропии космических лучей // Геомагнетизм и аэрономия. Т. 53. № 5. С. 601–610. 2013б.

  3. Абунина М.А., Белов А.В., Ерошенко Е.А., Абунин А.А., Оленева В.А., Янке В.Г., Мелкумян А.А. Метод кольца станций в исследовании вариаций космических лучей: 1. Общее описание // Геомагнетизм и аэрономия. Т. 60. № 1 С. 41–48. 2020а. https://doi.org/10.31857/S0016794020010022

  4. Абунина М.А., Белов А.В., Ерошенко Е.А., Абунин А.А., Оленева В.А., Янке В.Г., Мелкумян А.А. Метод кольца станций в исследовании вариаций космических лучей: 2. Примеры использования // Геомагнетизм и аэрономия. Т. 60. № 2 С. 187–194. 2020б. https://doi.org/10.31857/S0016794020020029

  5. Белов А.В., Ерошенко Е.А., Янке В.Г., Оленева В.А., Абунина М.А., Абунин А.А. Метод глобальной съемки для мировой сети нейтронных мониторов // Геомагнетизм и аэрономия. Т. 58. № 3. С. 374–389. 2018. https://doi.org/10.7868/S0016794018030082

  6. Дворников В.М., Сдобнов В.Е., Сергеев А.В. Метод спектрографической глобальной съемки для изучения вариаций интенсивности космических лучей межпланетного и магнитосферного происхождения / Сб. “Вариации космических лучей и исследования космоса”, ИЗМИРАН. С. 232–237. 1986.

  7. Кравцов Н.Г. Третья гармоника интенсивности космических лучей. Вариации космических лучей и солнечный ветер. Под. ред. Н.П. Чиркова. Якутск: ЯФ СО АН СССР. С. 55–61. 1980.

  8. Крымский Г.Ф., Алтухов A.M., Кузьмин А.И., Скрипин Г.В. Новый метод исследования анизотропии космических лучей. Исследование по геомагнетизму и аэрономии. М.: Наука. 1966a. 105 с.

  9. Крымский Г.Ф., Кузьмин A.И., Чирков H.П. Распределение космических лучей и приемные векторы детекторов. I. // Геомагнетизм и аэрономия. Т. 6. № 8. С. 991–996. 1966б.

  10. Крымский Г.Ф., Кузьмин А.И., Чирков Н.П. и др. Распределение космических лучей и приемные векторы детекторов. II. // Геомагнетизм и аэрономия. Т. 7. № 1. С. 11–15. 1967.

  11. Крымский Г.Ф., Скрипин Г.В., Григорьев В.Г. О третьей гармонике в суточной вариации космических лучей / В кн.: Распределение галактических космических лучей и динамика структурных образований в солнечном ветре. Якутск: ЯФ СО АН СССР. С. 118–125. 1973.

  12. Крымский Г.Ф., Кривошапкин П.А., Мамрукова В.П., Григорьев В.Г., Герасимова С.К. 11- и 22-летние вариации анизотропии галактических космических лучей // Изв. РАН. Сер. Физ. Т. 71. № 7. С. 1003–1005. 2007.

  13. Крымский Г.Ф., Кузьмин А.И., Кривошапкин П.А., Самсонов И.С., Скрипин Г.В., Транский И.А., Чирков Н.П. Космические лучи и солнечный ветер. Новосибирск: Наука. 1981. 224 с.

  14. Шафер Г.В. Прецизионные наблюдения космических лучей в Якутске. Наука, СО, Новосибирск. 1984. 732 с.

  15. Abunina M.A., Belov A.V., Eroshenko E.A., Abunin A.A., Yanke V.G., Melkumyan A.A., Shlyk N.S., Pryamushkina I.I. Ring of Stations Method in Cosmic Rays Variations Research // Solar Phys. V. 295. N. 1. Article number 69. 2020. https://doi.org/10.1007/s11207-020-01639-7

  16. Altuchov A.M., Krimsky G.F., Kuzmin A.I. The method of “Global survey” for investigation cosmic ray modulation / Proc. 11th ICRC, Budapest. V. 4. P. 457–460. 1969.

  17. Bazilevskaya G.A., Svirzhevskaya A.K. On the stratospheric measurements of cosmic rays // Space Sci. Rev. V. 85. P. 431–521. 1998.

  18. Beer J., McCracken K., von Steiger R. Cosmogenic Radionuclides. Theory and Applications in the Terrestrial and Space Envirinments. Springer-Verlag Berlin Heidelberg. 2012. 425 p. https://doi.org/10.1007/978-3-642-14651-0

  19. Belov A.V., Blokh Ya.A., Dorman L.I., Eroshenko E.A., Inozemtseva O.I., Kaminer N.S. Studies of isotropic and anisotropic cosmic ray variations in the Earth’s vicinities during disturbed periods / Proc. 13th ICRC, Denver. V. 2. P. 1247–1255. 1973.

  20. Belov A.V., Blokh Ya.L., Dorman L.I., Eroshenko E.A., Inozemtseva O.I., Kaminer N.S. Anisotropy and time-dependent changes in the spectrum of cosmic-ray intensity variations during August, 1972 // AN USSR, Izv., Ser. Fiz. V. 38. P. 1867–1875. 1974.

  21. Belov A., Eroshenko E., Yanke V., Oleneva V., Abunin A., Abunina M., Papaioannou A., Mavromichalaki H. The Global Survey Method applied to ground-level cosmic ray measurements // Solar Phys. V. 293. № 4. article id. 68. 23 pp. 2018. https://doi.org/10.1007/s11207-018-1277-6

  22. Bieber J.W., Chen J. Cosmic-ray diurnal anisotropy, 1936–1988: Implications for drift and modulation theories // Astrophys. J. V. 372. P. 301–313. 1991.

  23. Briggs R.M., Hicks R.B., Standi S. Sidereal-time variations in the cosmic ray intensity // Nuovo Cimento. V. 66. № 1. P. 97–104. 1970.

  24. Dubey S.K., Kumar S., Agrawal R. Results of diurnal anisotropy in CR intensity on different geomagnetic conditions / Proc. 27th ICRC, Hamburg, Germany. P. 3963–3965. 2001.

  25. Duggal S., Forbush S., Pomerantz M. Variations of the diurnal anisotropy with periods of one and two solar cycles / Proc. 11th ICRC, Budapest. V. 29. P. 55–59. 1970.

  26. Duperier A. Solar and sidereal diurnal variations of cosmic rays // Nature. V. 158. P. 196. 1946.

  27. Dvornikov V.M., Sdobnov V.E. Analyzing the solar proton event of 22 October 1989, using the method of Spectrographic Global Survey // Sol. Phys. V. 178. P. 405–422. 1998. https://doi.org/10.1023/A:1005069806374

  28. Dvornikov V.M., Sdobnov V.E., Sergeev A.V. Analysis of cosmic ray pitch-angle anisotropy during the Forbush-effect in June 1972 by the method of spectrographic global survey / Proc. 19th ICRC, La Jolla. V. 3. P. 249–252. 1983.

  29. Elliot H. The variations of cosmic ray intensity // Progress in Cosmic Ray Phys. V. 1. P. 453–514. 1952.

  30. Fenton A.G., Humble J.E., Thambyahpillai T. Long-term changes in the solar diurnal variation / Proc. 18th ICRC, Bangalore, India. V. 10. P. 186–189. 1983.

  31. Firor J.W., Fonger W.H., Simpson J.A. Cosmic radiation intensity-time variations and their origin. V. The daily variation of intensity // Phys. Rev. V. 94. I. 4. P. 1031–1036. 1954.

  32. Forbush S.E. On the effects in the cosmic-ray intensity observed during the recent magnetic storm // Phys. Rev. V. 51. P. 1108–1109. 1937.

  33. Forbush S.E. On cosmic ray effects associated with magnetic storm // Terrestrial Magnetism and Atmospheric Electricity. V. 43. № 3. P. 203–218. 1938.

  34. Forbush S.E. Variation with a period of two solar cycles in the cosmic-ray diurnal anisotropy and the superposed variations correlated with magnetic activity // J. Geophys. Res. V. 74. I. 14. P. 3451–3468. 1969.

  35. Forbush S.E. Cosmic ray diurnal anisotropy 1937–1972 // J. Geophys. Res. V. 78. № 34. P. 7933–7941. 1973.

  36. Forbush S., Beach L. Cosmic-ray diurnal anisotropy and the Sun’s polar magnetic field / Proc. 14th ICRC, Munich. V. 4. P. 1204–1208. 1975.

  37. Jacklyn R., Vrana A. Recent evidence concerning the sidereal anisotropy in the charged primary cosmic radiation / Proc. Astron. Soc. Australia. V. 1. P. 278. 1969.

  38. Kaminer N.S., Kuzmicheva A.E., Mymrina N.V. The Cosmic-ray anisotropy associated with high-velocity solar wind flux / Proc. 17th ICRC, Paris, France. V. 4. P. 146–149. 1981.

  39. Kamoldinov S.M., Mamrukova V.P., Altukhov A.M., Krivoshapkin P.A., Krymsky G.F. The Influence of Magnetic “Corks” upon the Galactic Cosmic Ray Distribution / Proc. 14th ICRC, München, Germany. V. 3. P. 1102. 1975.

  40. Kane R.P. Sidereal component of the diurnal variation of cosmic ray intensity // Nuovo Cimento. V. 41. № 1. P. 90–114. 1966.

  41. Kaushik S.C., Shrivastava P.K., Rastogi V.K. Comparative study of first three harmonics of cosmic ray intensity during recent solar cycle / Proc. 27th ICRC, Hamburg, Germany. P. 3809. 2001.

  42. Kota J. On the second spherical harmonics of the cosmic ray angular distribution // J. Phys. A: Mathematical and General. V. 8. I. 8. P. 1349–1360. 1975. https://doi.org/10.1088/0305-4470/8/8/019

  43. Krivoshapkin P.A., Krymskii G.F., Mamrukova V.P., Skripin G.V., Shafer G.V. The second harmonic of cosmic-ray anisotropy and energy spectrum of the Forbush-decreases / Proc. 17th ICRC, Paris, France. V. 4. P. 164. 1981.

  44. Kumar S., Gulati U., Khare D.K., Richharia M.K. Comparative study of diurnal anisotropy in CR intensity on quiet days and all days // Bull. Astr. Soc. India. V. 21. P. 395–397. 1993.

  45. Mathews T., Venkatesan D., Wiison B. G. Pronounced diurnal variation in cosmic-ray intensity // J. Geophys. Res. Space Phys. V. 74. № 5. P.1218–1229. 1969.

  46. Mishra R.A., Mishra R.K. Influence of solar heliospheric parameters on cosmic rays anisotropy // Astrophysics. V. 49. № 4. P. 555–566. 2006.

  47. Mishra R.K., Mishra R.A. Interplanetary transients and cosmic-ray anisotropy // Solar Phys. V. 240. P. 359–372. 2007. https://doi.org/10.1007/s11207-006-0242-y

  48. Moraal H. Observations of the eleven-year cosmic-ray modulation cycle // Space Sci. Rev. V. 19. I. 6. P. 845–920. 1976. https://doi.org/10.1007/BF00173707

  49. Mori S., Yasue S., Ichinose M., Munakata Y. Cosmic ray daily variation at solar activity minimum / Proc 15th ICRC, Budapesht. V. 4. P. 65–69. 1977.

  50. Mori S., Swinson D.B., Fujimoto K., Nagashima Y. 22-year variation in the solar diurnal anisotropy of cosmic rays / Proc 17th ICRC, Paris, France. V. 10. P. 218–221. 1981.

  51. Munakata K., Kozai M., Kato C., Kota J. Long-term variation of the solar diurnal anisotropy of galactic cosmic rays observed with the Nagoya multi-directional muon detector // Astrophys. J. V. 791. id 22. 16 p. 2014. https://doi.org/10.1088/0004-637X/791/1/22

  52. Munakata K., Kozai M., Kato C. et al. Large amplitude bidirectional anisotropy of cosmic-ray intensity observed with world-wide networks of ground-based neutron monitors and muon detectors in November, 2021 // Astrophys. J. V. 938. id 30. 11 p. 2022. https://doi.org/10.3847/1538-4357/ac91c5

  53. Munakata K., Kozai M., Ishizaki A., Nakajima T., Kato C., Yasue S., Kota J. Long term variation of the solar diurnal anisotropy of galactic cosmic rays over four solar activity cycles / Proc. 33rd ICRC, Rio de Janeiro, Brazil. P. 1370. 2013.

  54. Munakata K., Nagashima K. The First three harmonics of solar daily variation caused by the diffusive propagation of galactic cosmic rays through the heliosphere / Proc. 19th ICRC, La Jolla, USA. V. 5. P. 98. 1985.

  55. Nagashima K., Ueno H., Mori S., Sagisaka S. A two-way sidereal anisotropy // Can. J. Phys. V. 46. P. S611–S613. 1968.

  56. Nagashima K. Three-dimensional cosmic ray anisotropy in interplanetary space // Rep. Ionosphere Space Res. V. 25. P. 189–211. 1971.

  57. Oh S.Y., Yi Y.,·Bieber J.W. Modulation cycles of galactic cosmic ray diurnal anisotropy variation // Solar Phys. V. 262. P. 199–212. 2010. https://doi.org/10.1007/s11207-009-9504-9

  58. Okike O. Amplitude of the usual cosmic ray diurnal and enhanced anisotropies: Implications for the observed magnitude, timing, and ranking of Forbush Decreases // Astrophys. J. V. 915. I. 1. id.60. 23 p. 2021. https://doi.org/10.3847/1538-4357/abfe60

  59. Patel D., Sarabhai V., Subramanian G. Anisotropies of galactic cosmic rays in the solar system // Planet. Space Sci. V. 16. P. 1131–1146. 1968.

  60. Pomerantz M.A., Duggal S.P. The cosmic ray solar diurnal anisotropy // Space Sci. Rev. V. 12. I. 1. P. 75–130. 1971.

  61. Pomerantz M.A., Duggal S.P. North-south anisotropies in the cosmic radiation // J. Geophys. Res. V. 77. P. 263–265. 1972.

  62. Richardson I.G., Dvornikov V.M., Sdobnov V.E., Cane H.V. Bidirectional particle flows at cosmic ray and lower (~1 MeV) energies and their association with interplanetary coronal mass ejections/ejecta // J. Geophys. Res. V. 105. P. 12 579–12 592. 2000.

  63. Sabbah I. Solar magnetic polarity dependency of the cosmic ray diurnal variation // J. Geophys. Res.: Space Physics. V. 118. P. 4739–4747. 2013. https://doi.org/10.1002/jgra.50431

  64. Samsonov I., Grigoryev V., Samsonova Z., Chirkov N. Anomalous behavior of the solar wind speed and galactic cosmic ray anisotropy with solar activity cycle / Proc. 16th ICRC, Kyoto. V. 3. P. 508–513. 1979.

  65. Sarabhai V., Nerurkar N. Time variations of primary cosmic rays // Annual Review of Nuclear and Particle Sciences. V. 6. P. 1–42. 1956.

  66. Sari J.W., Venkatesan D., Lanzerotti L.J., Maclennan C.G. Diurnal variation of cosmic ray intensity 1. Two approaches to the study // J. Geophys. Res. V. 83. № A11. P. 5139–5150. 1978.

  67. Sekido Y., Nagashima K., Kondo I., Murayama T., Okuda H., Sakakibara S. Sidereal time variation of high-energy cosmic rays observed by an air Cerenkov telescope // Can. J. Phys. V. 46. P. S607–S610. 1968.

  68. Singh M., Badruddin. Study of the cosmic ray diurnal anisotropy during different solar and magnetic conditions // Solar Phys. V. 233. P. 291–317. 2006. https://doi.org/10.1007/s11207-006-2050-9

  69. Somogyi A.J. Some problems of detecting galactic anisotropies // Ann. IQSY. V. 4. P. 269–273. 1969.

  70. Stozhkov Yu.I., Svirzhevsky N.S., Bazilevskaya G.A., Kvashnin A.N., Makhmutov V.S., Svirzhevskaya A.K. Long-term (50 years) measurements of cosmic ray fluxes in the atmosphere // Adv. Space Res. V. 44. P. 1124–1137. 2009. https://doi.org/10.1016/j.asr.2008.10.038

  71. Swinson D.B. Sidereal cosmic-ray diurnal variations // J. Geophys. Res. V. 74. № 24. P. 5591–5598. 1969.

  72. Swinson D.B. Diurnal variations underground since 1959 / Proc. 24th ICRC, Rome. V. 3. P. 627–630. 1995.

  73. Thompson J.L. A critical analysis for sidereal time variations of cosmic rays on the pacific // Phys. Rev. V. 55. P. 11–15. 1939.

  74. Tiwari A.K., Singh A., Agrawal S.P. Study of the diurnal variation of cosmic rays during different phases of solar activity // Solar Phys. V. 279. P. 253–267. 2012. https://doi.org/10.1007/s11207-012-9962-3

  75. Yasue S., Mori S., Sakakibara S., Nagashima K. Coupling coefficients of cosmic ray daily variations for neutron monitor stations. Nagoya: Cosmic ray research laboratory. 1982. CRRL Rep. no. 7.

  76. Yoshida S. Anisotropy of cosmic rays during the cosmic-ray storms // Il Nuovo Cimento. V. 4. № 6. P. 1410–1432. 1956.

Дополнительные материалы отсутствуют.