Цитология, 2023, T. 65, № 5, стр. 490-498

Влияние перинатальной гипоксии (асфиксии) на распределение субъединицы α1 GABAA-рецептора в неокортексe новорожденных крыс

Л. И. Хожай *

Институт физиологии им. И.П. Павлова РАН
199034 Санкт-Петербург, Россия

* E-mail: astarta0505@mail.ru

Поступила в редакцию 14.04.2023
После доработки 15.05.2023
Принята к публикации 21.06.2023

Аннотация

Цель работы заключалась в исследовании распределения субъединицы α1 GABAA-рецептора в слоях неокортекса крыс в неонатальный период после воздействия гипоксии. Воздействие гипоксии на мозг новорожденных крыс осуществляли на 2-е неонатальные сут в течение 1 ч при содержании кислорода в дыхательной смеси 7.8%. Для выявления субъединицы α1 GABAA-рецептора использовали иммуногистохимическую реакцию. Содержание белка оценивали по плотности иммунного окрашивания продукта реакции в цитоплазме и отростках нейронов. Изучали соматосенсорную область неокортекса на 5 и 10 неонатальные сутки (П5, П10). Установлено, что на ранних сроках неонатального периода в неокортексе присутствует значительная популяция молодых нейронов, в цитоплазме которых иммуногистохимически выявляется субъединица α1, входящая в состав GABAA-рецептора. К концу неонатального периода у контрольных животных плотность окрашивания продукта иммуногистохимического выявления GABAAα1 в слоях неокортекса существенно повышается. Воздействие перинатальной гипоксии вызывает сокращение числа нейронов, содержащих субъединицу α1 GABAA-рецептора и значительное снижение плотности иммуногистохимического окрашивания во всех слоях неокортекса.

Ключевые слова: перинатальная гипоксия, субъединица α1 GABAA-рецептора, неокортекс, неонатальный период

Список литературы

  1. Хожай Л.И., Отеллин В.А. 2020. Экспрессия субъединицы α1 ионотропного ГАМКА рецептора в неокортексе крыс после перинатальной гипоксии. Журн. эвол. Биохим. физиол. Т. 56. № 2. С. 75. (Khozhai L.I., Otellin V.A. 2020. Expression of the α1 subunit of the ionotropic GABAA-receptor in the neocortex of rats after perinatal hypoxia. J. Evol. Biochem. Physiol. 2020. V. 56. № 2. P. 75.) https://doi.org/10.31857/S0044452920020072

  2. Adotevi N., Su A., Peiris D., Hassan M., Leitch B. 2021. Altered neurotransmitter expression in the corticothalamocortical network of an absence epilepsy model with impaired feedforward inhibition. Neurosci. V. 467. P. 73. https://doi.org/10.1016/j.neuroscience.2021.05.024

  3. Bartolini G., Ciceri G., Marin O. 2013. Integration of GABAergic interneurons into cortical cell assemblies: lessons from embryos and adults. Neuron. V. 79. P. 849. https://doi.org/10.1016/j.neuron.2013.08.014

  4. Baulac S., Huberfeld G., Gourfinkel-An I., Mitropoulou G., Beranger A., Prud’homme J.-F., Baulac M., Brice A., Bruzzone R., Le Guern E. 2001. First genetic evidence of GABAA-receptor dysfunction in epilepsy: a mutation in the γ2-subunit gene. Nat. Genet. V. 28. P. 46. https://doi.org/10.1038.4267/10608/2027

  5. Baumann S.W., Baur R., Sigel E. 2001. Subunit arrangement of γ-aminobutyric acid type A receptors. J. Biol. Chemi. V. 276. P. 36275. https://doi.org/10.1074/jbc.M105240200

  6. Blatt G.J., Fitzgerald C.M., Guptill J.T., Booker A.B., Kemper T.L., Bauman M.L. 2001. Density and distribution of hippocampal neurotransmitter receptors in autism: an autoradiographic study. J. Autism Dev. Disorders. V. 31. P. 537. https://doi.org/10.1023/a:1013238809666

  7. Bandeira F., Lent R., Herculano-Houzel S. 2009. Changing numbers of neuronal and non-neuronal cells underlie postnatal brain growth in the rat. Proc. Natl. Acad. Sci. USA. V 106. P. 14108. https://doi.org/10.1073/pnas.0804650106

  8. Blue M.E., Parnavelas J.G. 1983. The formation and maturation of synapses in the visual cortex of the rat. I. Qualitative analysis. Neurocytol. V. 12. P. 599. https://doi.org/10.1007/BF01181526

  9. Buosi A.S., Matias I., Araujo A.P.B., Batista C., Gomes F.C.A. 2017. Heterogeneity in synaptogenic profile of astrocytes from different brain regions. Mol. Neurobiol. V. 55. P. 751. https://doi.org/10.1007/s12035-016-0343-z

  10. Bushong E.A., Martone M.E., Ellisman M.H. 2004. Maturation of astrocyte morphology and the establishment of astrocyte domains during postnatal hippocampal development. Int. J. Dev. Neurosci. V. 22. 73. https://doi.org/10.1016/j.ijdevneu.2003.12.008

  11. Crunelli V., Lorincz M.L., McCafferty C., Lambert R.C., Leresche N., Di Giovanni G., David F. 2020. Clinical and experimental insight into pathophysiology, comorbidity and therapy of absence seizures. Brain. V. 143. P. 2341. https://doi.org/10.1093/brain/awaa072

  12. Dean J., McClendon E., Hansen K., Azimi-Zonooz A., Chen K., Riddle A., Gong X., Sharifnia E., Hagen M., Ahmad T., Leigland L., Hohimer A., Kroenke C., Back S. 2013. Prenatal cerebral ischemia disrupts MRI-defined cortical microstructure through disturbances in neuronal arborization. Sci. Transl. Med. V. 5: 168ra7. https://doi.org/10.1126/scitranslmed.3004669

  13. Deidda G., Allegra M., Cerri C., Naskar S., Bony G., Zunino G., Bozzi Y., Caleo M., Cancedda L. 2015. Early depolarizing GABA controls critical-period plasticity in the rat visual cortex. Nat. Neurosci. V. 18. P. 87. https://doi.org/10.1038/nn.3890

  14. Delahanty R.J., Kang J.Q., Brune C.W., Kistner E.O., Courchesne E., Cox N.J., Cook E.H., Macdonald R.L., Sutcliffe J.S. 2011. Maternal transmission of a rare GABRB3 signal peptide variant is associated with autism. Mol. Psychiatry. V. 16. P. 86. https://doi.org/10.1038/mp.2009.118

  15. Dvorzhak A., Myakhar O., Unichenko P., Kirmse K., Kirischuk S. 2010. Estimation of ambient GABA levels in layer I of the mouse neonatal cortex in brain slices. J. Physiol. V. 588. P. 2351. https://doi.org/10.1113/jphysiol.2010.187054

  16. Farhy-Tselnicker I., Allen N.J. 2018. Astrocytes, neurons, synapses: a tripartite view on cortical circuit development. Neural. Dev. V. 13. P. 7. https://doi.org/10.1186/s13064-018-0104-y

  17. Farrant M., Nusser Z. 2005. Variations on an inhibitory theme: Phasic and tonic activation of GABAA-receptors. Nat. Rev. Neurosci. V. 6. P. 215. https://doi.org/10.1038/nrn1625

  18. Fatemi S.H., Reutiman T.J., Folsom T.D., Thuras P.D. 2009. GABAA-receptor down regulation in brains of subjects with autism. J. Autism Dev. Disorders. V. 39. P. 223. https://doi.org/10.1007/s10803-008-0646-7

  19. Feng Y., Wei Z.-H., Liu C., Li G.-Y., Qiao X.-Z., Gan Y.-J., Zhang C.-C., Deng Y.-C. 2022. Genetic variations in GABA metabolism and epilepsy. Seizure. V. 101. P. 22. https://doi.org/10.1016/j.seizure.2022.07.007

  20. Fritschy J.-M., Paysan J., Enna A., Mohler H. 1994. J. Neurosci. V. 14. P. 5302. https://doi.org/10.1523/JNEUROSCI.14-09-05302.1994

  21. Ge W.-P., Miyawaki A., Gage F.H., Jan Y.N., Jan L.Y. 2012. Local generation of glia is a major astrocyte source in postnatal cortex. Nature. V. 484. P. 376. https://doi.org/10.1038/nature10959

  22. Gulledge A.T., Stuart G.J. 2003. Excitatory actions of GABA in the cortex. Neuron. V. 37. P. 299. https://doi.org/10.1016/s0896-6273(02)01146-7

  23. Guthmann A., Fritschy J.M., Ottersen O.P., Torp R., Herbert H. 1998. GABA, GABA transporters, GABAA-receptor subunits and GAD mRNAs in the rat parabrachial and Kolliker-Fuse nuclei. J. Comp. Neurol. V. 400. P. 229.

  24. Hales T.G., Deeb T.Z., Tang H., Bollan K.A., King D.P., Jhnson S.J., Connolly C.N. 2006. An asymmetric contribution to gamma-aminobutyric type A receptor function of a conserved lysine within TM2-3 of alpha1, beta2, and gamma2 subunits. J. Biol. Chem. V. 281. P. 17034. https://doi.org/10.1074/jbc.M603599200

  25. Hassan M., Adotevi N.K., Leitch B. 2022. Altered GABAA-receptor expression in the primary somatosensory cortex of a mouse model of genetic absence epilepsy. Intern. J. Mol. Sci. V. 23. P. 15685. https://doi.org/10.3390/ijms232415685

  26. Hernandez C.C., Macdonald R.L. 2019. A structural look at GABAA-receptor mutations linked to epilepsy syndromes. Brain Res. V. 1714. P. 234. https://doi.org/10.1016/j.brainres.2019.03.004

  27. Hevers W., Lüddens H. 1998. The diversity of GABAA-receptors. Pharmacological and electrophysiological properties of GABAA channel subtypes. Mol. Neurobiol. V. 18. P. 35. https://doi.org/10.1007/BF02741459

  28. Holmgren C.D., Mukhtarov M., Malkov A.E., Popova I.Y., Bregestovski P., Zilberter Y. 2010. Energy substrate availability as a determinant of neuronal resting potential, GABA signaling and spontaneous network activity in the neonatal cortex in vitro. J. Neurochem. V. 112. P. 900. https://doi.org/10.1111/j.1471-4159.2009.06506.x

  29. Hou J., Eriksen N., Pakkenberg B. 2011. The temporal pattern of postnatal neurogenesis found in the neocortex of the Göttingen minipig brain. Neuroscience. V. 195. P. 176. https://doi.org/10.1016/j.neuroscience.2011.08.025

  30. Ignacio M.P., Kimm E.J., Kageyama G.H., Yu J., Robertson R.T. 1995. Postnatal migration of neurons and formation of laminae in rat cerebral cortex. Anat. Embryol. (Berl). V. 191. P. 89. https://doi.org/10.1007/BF00186782

  31. Inada H., Watanabe M., Uchida T., Ishibash H., Wake H., Nemoto T., Yanagawa Y., Fukuda A., Nabekura J. 2011. GABA regulates the multidirectional tangential migration of GABAergic interneurons in living neonatal mice. PLoS One. V. 6: e27048. https://doi.org/10.1371/journal.pone.0027048

  32. Jafarian M., Mousavi S.M.M., Rahimi S., Ghaderi P.F., Lotfinia A.A., Lotfinia M., Gorji A. 2021. The effect of GABAergic neurotransmission on the seizure-related activity of the laterodorsal thalamic nuclei and the somatosensory cortex in a genetic model of absence epilepsy. Brain Res. V. 1757. P. 47 304. https://doi.org/10.1016/j.brainres.2021.147304

  33. Khazipov R., Zaynutdinova D., Ogievetsky E., Valeeva G., Mitrukhina O., Manent J.-B., Represa A. 2015. Atlas of the postnatal rat brain in stereotaxic coordinates. Front. Neuroanat. V. 9. P. 161. https://doi.org/10.3389/fnana.2015.00161

  34. Klausberger T., Roberts J.D., Somogyi P. 2002. Cell type- and input-specific differences in the number and subtypes of synaptic GABAA-receptors in the hippocampus. J. Neurosci. V. 22. P. 2513. https://doi.org/10.1523/JNEUROSCI.22-07-02513.2002

  35. Klausberger T., Sarto I., Ehya N., Fuchs K., Furtmuller R., Mayer B., Huck S., Sieghart W. 2001. Alternate use of distinct intersubunit contacts controls GABAA-receptor assembly and stoichiometry. J. Neurosci. V. 21. P. 9124. https://doi.org/10.1523/JNEUROSCI.21-23-09124.2001

  36. Kralic J.E., Korpi E.R., O’Buckley T.K., Homanics G.E., Morrow A.L. 2002. Molecular and pharmacological characterization of GABAA-receptor alpha1 subunit knockout mice. J. Pharmacol. Exp. Ther. V. 302. P. 1037. https://doi.org/10.1124/jpet.102.036665

  37. Li M., Cui Z., Niu Y., Liu B., Fan W., Yu. D., Deng J. 2010. Synaptogenesis in the developing mouse visual cortex. Brain Res Bull. V. 81. P. 107. https://doi.org/10.1016/j.brainresbull.2009.08.028

  38. Marchetti C., Tabak J., Chub N., O’Donovan M.J., Rinzel J. 2015. Modeling spontaneous activity in the developing spinal cord using activity-dependent variations of intracellular chloride. J. Neurosci. V. 25. P. 3601. https://doi.org/10.1523/JNEUROSCI.4290-04.2005

  39. Marín-Padilla M. 1992. Ontogenesis of the pyramidal cell of the mammalian neocortex and developmental cytoarchitectonics: a unifying theory. J. Comp. Neurol. V. 321. P. 223. https://doi.org/10.1002/cne.903210205

  40. McClendon E., Kevin C., Gong X., Sharifnia E., Hagen M., Cai V., Shaver D., Riddle A., Dean J.M., Gunn A.J., Mohr C., Kaplan J.S., Rossi D.J., Kroenke C.D., Hohimer A.R., Back S.A. 2014. Prenatal cerebral ischemia triggers dysmaturation of caudate projection neurons. Ann. Neurol. V. 75. P. 508. https://doi.org/10.1002/ana.24100

  41. Mohler H. 2006. GABAA-receptor diversity and pharmacology. Cell Tissue Res. V. 26. P. 505. https://doi.org/10.1007/s00441-006-0284-3

  42. Morita K., Tsumoto K., Aihara K. 2006. Bidirectional modulation of neuronal responses by depolarizing GABAergic inputs. J. Biophys. V. 90. P. 1925. https://doi.org/10.1529/biophysj.105.063164

  43. Namihira M., Kohyama J., Semi K., Sanosaka T., Deneen B., Taga T., Nakashima K. 2009. Committed neuronal precursors confer astrocytic potential on residual neural precursor cells. Dev. Cell. V. 16. P. 245. https://doi.org/10.1016/j.devcel.2008.12.014

  44. Owens D.F., Liu X., Kriegstein A.R. 1999. Changing properties of GABAA-receptor-mediated signaling during early neocortical development. J. Neurophysiol. V. 82. P. 570. https://doi.org/10.1152/jn.1999.82.2.570

  45. Owens D.F., Kriegstein A.R. 2002. Is there more to GABA than synaptic inhibition? Nat. Rev. Neurosci. V. 3. P. 715. https://doi.org/10.1038/nrn919

  46. Otellin V.A., Khozhai L.I., Shishko T.T., Vershinina E.A. 2021. Nucleolar ultrastructure in neurons of the rat neocortical sensorimotor area during the neonatal period after perinatal hypoxia and its pharmacological correction. J. Evol. Biochem. Physiol. V. 57. P. 1251. https://doi.org/10.1134/S0022093021060053

  47. Paysan J., Fritschy J.M. 1998. GABAA-receptor subtypes in developing brain. Actors or spectators? Perspect. Dev. Neurobiol. V. 5. P. 179.

  48. Pirker S., Schwarzer C., Wieselthaler A., Sieghart W., Sperk G. 2000. GABAA-receptors: Immunocytochemical distribution of 13 subunits in the adult rat brain. Neurosci. V. 101. P. 815. https://doi.org/10.1016/s0306-4522(00)00442-5

  49. Qin X., Pan X.-Q., Huang S.-H., Zou J.-X., Zheng Z.-H., Liu X.-X., You W.-J., Liu Z.-P., Cao J.-L., Zhang W.-H., Pan B.-X. 2022. GABAA-receptor hypofunction in the amygdala-hippocampal circuit underlies stress-induced anxiety. Sci. Bull. (Beijing). V. 67. P. 97. https://doi.org/10.1016/j.scib.2021.09.007

  50. Rudolph U., Mohler H. 2006. GABA-based therapeutic approaches: GABAA-receptor subtype functions. Curr. Opin. Pharmacol. V. 6. P. 18. https://doi.org/10.1016/j.coph.2005.10.003

  51. Schousboe A. 2016 Metabolic signaling in the brain and the role of astrocytes in control of glutamate and GABA neurotransmission. Neurosci. Lett. V. 689. P. 11. https://doi.org/10.1016/j.neulet.2018.01.038

  52. Zhang Z., Jiao Y.-Y., Sun Q.-Q. 2011. Developmental maturation of excitation and inhibition balance in principal neurons across four layers of somatosensory cortex. Neurosci. V. 74. P. 10.

  53. https://doi.org/10.1016/j.neuroscience.2010.11.045

Дополнительные материалы отсутствуют.