Цитология, 2023, T. 65, № 5, стр. 407-419

Функциональные взаимодействия BAF и LEM-белков в процессах формирования половых клеток

И. О. Боголюбова 1, Д. С. Боголюбов 1*

1 Институт цитологии РАН
194064 Санкт-Петербург, Россия

* E-mail: dbogol@mail.ru

Поступила в редакцию 27.04.2023
После доработки 27.05.2023
Принята к публикации 12.06.2023

Аннотация

Восстановление структуры ядра после деления клетки требует особых взаимодействий между интегральными белками внутренней ядерной мембраны, имеющими особый LEM-домен (LEMD), белками ядерной ламины (ламинами) и консервативным белком BAF, который выступает в качестве центрального звена в этих взаимодействиях, обеспечивающих топологические взаимоотношения хроматина и ядерной оболочки. Динамические преобразования этих белковых ансамблей в митотическом цикле детально охарактеризованы на молекулярном уровне, однако меньшее внимание уделяется формирующимся половым клеткам, претерпевающим мейотические деления, несмотря на то, что их ядра (особенно в случае диплотенных ооцитов) по своей структуре существенно отличаются от соматических клеток. В настоящем обзоре обобщены пока еще относительно немногочисленные экспериментальные данные, доказывающие значимость функциональных взаимодействий BAF и LEMD-белков для формирования гамет, начиная с выделения клеток зародышевой линии и заканчивая превращением гаплоидных сперматид в морфологически зрелые сперматозоиды.

Ключевые слова: ядерная архитектура, ядерная оболочка, гаметогенез, мейоз, клетки зародышевой линии, BAF, LEMD-белки, VRK1

Список литературы

  1. Богданов Ю.Ф., Гришаева Т.М. 2020. Консерватизм, изменчивость и эволюция мейоза. М.: Товарищество научных изданий КМК. 345 с. (Bogdanov Yu.F., Grishaeva T.M. 2020. Conservation, variation an evolution of meiosis. Moscow: KMK Scientific Press. 345 p.)

  2. Дондуа А.К. 2018. Биология развития. СПб.: Изд-во С.-Петерб. ун-та. 812 с. (Dondua A.K. 2018. Developmental biology. Saint Petersburg: Saint Petersburg University Publishing House. 812 p.)

  3. Alsheimer M., Fecher E., Benavente R. 1998. Nuclear envelope remodelling during rat spermiogenesis: distribution and expression pattern of LAP2/thymopoietins. J. Cell Sci. V. 111. P. 2227. https://doi.org/10.1242/jcs.111.15.2227

  4. Asencio C., Davidson I.F., Santarella-Mellwig R., Ly-Hartig T.B.N., Mall M., Wallenfang M.R., Mattaj I.W., Gorjánácz M. 2012. Coordination of kinase and phosphatase activities by Lem4 enables nuclear envelope reassembly during mitosis. Cell. V. 150. P. 122. https://doi.org/10.1016/j.cell.2012.04.043

  5. Bailly C., Vergoten G. 2021. Interaction of obtusilactone B and related butanolide lactones with the barrier-to-autointegration factor 1 (BAF1). A computational study. Curr. Res. Pharmacol. Drug Discov. V. 2: 100059. https://doi.org/10.1016/j.crphar.2021.100059

  6. Barrales R.R., Forn M., Georgescu P.R., Sarkadi Z., Braun S. 2016. Control of heterochromatin localization and silencing by the nuclear membrane protein Lem2. Genes Dev. V. 30. P. 133. https://doi.org/10.1101/gad.271288.115

  7. Barton L.J., Lovander K.E., Pinto B.S., Geyer P.K. 2016. Drosophila male and female germline stem cell niches require the nuclear lamina protein Otefin. Dev. Biol. V. 415. P. 75. https://doi.org/10.1016/j.ydbio.2016.05.001

  8. Barton L.J., Soshnev A.A., Geyer P.K. 2015. Networking in the nucleus: a spotlight on LEM-domain proteins. Curr. Opin. Cell Biol. V. 34. P. 1. https://doi.org/10.1016/j.ceb.2015.03.005

  9. Bogolyubov D. 2018. Karyosphere (karyosome): a peculiar structure of the oocyte nucleus. Int. Rev. Cell Mol. Biol. V. 337. P. 1. https://doi.org/10.1016/bs.ircmb.2017.12.001

  10. Brachner A., Foisner R. 2011. Evolvement of LEM proteins as chromatin tethers at the nuclear periphery. Biochem. Soc. Trans. V. 39. P. 1735. https://doi.org/10.1042/BST20110724

  11. Brachner A., Braun J., Ghodgaonkar M., Castor D., Zlopasa L., Ehrlich V., Jiricny J., Gotzmann J., Knasmüller S., Foisner R. 2012. The endonuclease Ankle-1 requires its LEM and GIY-YIG motifs for DNA cleavage in vivo. J. Cell Sci. V. 125. P. 1048. https://doi.org/10.1242/jcs.098392

  12. Bradley C.M., Ronning D.R., Ghirlando R., Craigie R., Dyda F. 2005. Structural basis for DNA bridging by barrier-to-autointegration factor. Nat. Struct. Mol. Biol. V. 12. P. 935. https://doi.org/10.1038/nsmb989

  13. Burla R., La Torre M., Maccaroni K., Verni F., Giunta S., Saggio I. 2020. Interplay of the nuclear envelope with chromatin in physiology and pathology. Nucleus. V. 11. P. 205. https://doi.org/10.1080/19491034.2020.1806661

  14. Cabanillas R., Cadinanos J., Villameytide J.A., Perez M., Longo J., Richard J.M., Alvarez R., Duran N.S., Illan R., Gonzalez D.J., López-Otín C. 2011. Nestor-Guillermo progeria syndrome: a novel premature aging condition with early onset and chronic development caused by BANF1 mutations. Am. J. Med. Genet. A. V. 155A. P. 2617. https://doi.org/10.1002/ajmg.a.34249

  15. Cai M., Huang Y., Ghirlando R., Wilson K.L., Craigie R., Clore G.M. 2001. Solution structure of the constant region of nuclear envelope protein LAP2 reveals two LEM-domain structures: one binds BAF and the other binds DNA. EMBO J. V. 20. P. 4399. https://doi.org/10.1093/emboj/20.16.4399

  16. Cai M., Huang Y., Zheng R., Wei S.-Q., Ghirlando R., Lee M.S., Craigie R., Gronenborn A.M., Clore G.M. 1998. Solution structure of the cellular factor BAF responsible for protecting retroviral DNA from autointegration. Nature Struct. Biol. V. 5. P. 903. https://doi.org/10.1038/2345

  17. Caputo S., Couprie J., Duband-Goulet I., Kondé E., Lin F., Braud S., Gondry M., Gilquin B., Worman H.J., Zinn-Justin S. 2006. The carboxyl-terminal nucleoplasmic region of MAN1 exhibits a DNA binding winged helix domain. J. Biol. Chem. V. 281. P. 18 208. https://doi.org/10.1074/jbc.M601980200

  18. Cohen M., Lee K.K., Wilson K.L., Gruenbaum Y. 2001. Transcriptional repression, apoptosis, human disease and the functional evolution of the nuclear lamina. Trends Biochem. Sci. V. 26. P. 41. https://doi.org/10.1016/s0968-0004(00)01727-8

  19. Correia Soeiro M.N., Vergoten G., Bailly C. 2022. Molecular docking of brazilin and its analogs to barrier-to-autointegration factor 1 (BAF1). Ann. N. Y. Acad. Sci. V. 1511. P. 154. https://doi.org/10.1111/nyas.14742

  20. Dechat T., Vlcek S., Foisner R. 2000. Review: lamina-associated polypeptide 2 isoforms and related proteins in cell cycle-dependent nuclear structure dynamics. J. Struct. Biol. V. 129. P. 335. https://doi.org/10.1006/jsbi.2000.4212

  21. Duan T., Cupp R., Geyer P.K. 2021. Drosophila female germline stem cells undergo mitosis without nuclear breakdown. Curr. Biol. V. 31. P. 1450–1462.e3. https://doi.org/10.1016/j.cub.2021.01.033

  22. Duan T., Green N., Tootle T.L., Geyer P.K. 2020a. Nuclear architecture as an intrinsic regulator of Drosophila female germline stem cell maintenance. Curr. Opin. Insect. Sci. V. 37. P. 30–38. https://doi.org/10.1016/j.cois.2019.11.007

  23. Duan T., Kitzman S.C., Geyer P.K. 2020b. Survival of Drosophila germline stem cells requires the chromatin-binding protein Barrier-to-autointegration factor. Development. V. 147: dev186171. https://doi.org/10.1242/dev.186171

  24. Elkhatib R.A., Paci M., Boissier R., Longepied G., Auguste Y., Achard V., Bourgeois P., Levy N., Branger N., Mitchell M.J., Metzler-Guillemain C. 2017. LEM-domain proteins are lost during human spermiogenesis but BAF and BAF-L persist. Reproduction. V. 154. P. 387. https://doi.org/10.1530/REP-17-0358

  25. Foisner R. 2003. Cell cycle dynamics of the nuclear envelope. Scientific World J. V. 3. P. 1. https://doi.org/10.1100/tsw.2003.06

  26. Furukawa K. 1999. LAP2 binding protein 1 (L2BP1/BAF) is a candidate mediator of LAP2-chromatin interaction. J. Cell Sci. V. 112. P. 2485. https://doi.org/10.1242/jcs.112.15.2485

  27. Furukawa K., Sugiyama S., Osouda S., Goto H., Inagaki M., Horigome T., Omata S., McConnell M., Fisher P.A., Nishida Y. 2003. Barrier-to-autointegration factor plays crucial roles in cell cycle progression and nuclear organization in Drosophila. J. Cell Sci. V. 116. P. 3811. https://doi.org/10.1242/jcs.00682

  28. Gant T.M., Harris C.A., Wilson K.L. 1999. Roles of LAP2 proteins in nuclear assembly and DNA replication: truncated LAP2β proteins alter lamina assembly, envelope formation, nuclear size, and DNA replication efficiency in Xenopus laevis extracts. J. Cell Biol. V. 144. P. 1083. https://doi.org/10.1083/jcb.144.6.1083

  29. Gorjánácz M., Klerkx E.P., Galy V., Santarella R., López-Iglesias C., Askjaer P., Mattaj I.W. 2007. Caenorhabditis elegans BAF-1 and its kinase VRK-1 participate directly in post-mitotic nuclear envelope assembly. EMBO J. V. 26. P. 132. https://doi.org/10.1038/sj.emboj.7601470

  30. Göb E., Schmitt J., Benavente R., Alsheimer M. 2010. Mammalian sperm head formation involves different polarization of two novel LINC complexes. PLoS One. V. 5: e12072. https://doi.org/10.1371/journal.pone.0012072

  31. Haraguchi T., Koujin T., Segura-Totten M., Lee K.K., Matsuoka Y., Yoneda Y., Wilson K.L., Hiraoka Y. 2001. BAF is required for emerin assembly into the reforming nuclear envelope. J. Cell Sci. V. 114. P. 4575. https://doi.org/10.1242/jcs.114.24.4575

  32. Hirano Y., Segawa M., Ouchi F.S., Yamakawa Y., Furukawa K., Takeyasu K., Horigome T. 2005. Dissociation of emerin from barrier-to-autointegration factor is regulated through mitotic phosphorylation of emerin in a Xenopus egg cell-free system. J. Biol. Chem. V. 280. P. 39925. https://doi.org/10.1074/jbc.m503214200

  33. Holaska J.M., Lee K.K., Kowalski A.K., Wilson K.L. 2003. Transcriptional repressor germ cell-less (GCL) and barrier-to-autointegration factor (BAF) compete for binding to emerin in vitro. J. Biol. Chem. V. 278. P. 6969. https://doi.org/10.1074/jbc.M208811200

  34. Huber M.D., Guan T., Gerace L. 2009. Overlapping functions of nuclear envelope proteins NET25 (Lem2) and emerin in regulation of extracellular signal-regulated kinase signaling in myoblast differentiation. Mol. Cell Biol. V. 29. P. 5718. https://doi.org/10.1128/MCB.00270-09

  35. Jamin A., Wiebe M.S. 2015. Barrier to autointegration factor (BANF1): interwoven roles in nuclear structure, genome integrity, innate immunity, stress responses and progeria. Curr. Opin. Cell Biol. V. 34. P. 61. https://doi.org/10.1016/j.ceb.2015.05.006

  36. Jiang X., Xia L., Chen D., Yang Y., Huang H., Yang L., Zhao Q., Shen L., Wang J., Chen D. 2008. Otefin, a nuclear membrane protein, determines the fate of germline stem cells in Drosophila via interaction with Smad complexes. Dev. Cell. V. 14. P. 494. https://doi.org/10.1016/j.devcel.2008.02.018

  37. Lancaster O.M., Cullen C.F., Ohkura H. 2007. NHK-1 phosphorylates BAF to allow karyosome formation in the Drosophila oocyte nucleus. J. Cell Biol. V. 179. P. 817. https://doi.org/10.1083/jcb.200706067

  38. Leatherman J.L., Levin L., Boero J., Jongens T.A. 2002. germ cell-less Acts to repress transcription during the establishment of the Drosophila germ cell lineage. Curr. Biol. V. 12. P. 1681. https://doi.org/10.1016/S0960-9822(02)01182-X

  39. Lee K.K., Gruenbaum Y., Spann P., Liu J., Wilson K.L. 2000. C. elegans nuclear envelope proteins emerin, MAN1, lamin, and nucleoporins reveal unique timing of nuclear envelope breakdown during mitosis. Mol. Biol. Cell. V. 11. P. 3089. https://doi.org/10.1091/mbc.11.9.3089

  40. Lee M.S., Craigie R. 1998. A previously unidentified host protein protects retroviral DNA from autointegration. Proc. Natl. Acad. Sci. USA. V. 95. P. 1528. https://doi.org/10.1073/pnas.95.4.1528

  41. Li J., Hu B., Fang L., Gao Y., Shi S., He H., Liu X., Yuan C. 2018. Barrier-to-autointegration factor 1: A novel biomarker for gastric cancer. Oncol. Lett. V. 16. P. 6488. https://doi.org/10.3892/ol.2018.9432

  42. Li J., Wang T., Pei L., Jing J., Hu W., Sun T., Liu H. 2017. Expression of VRK1 and the downstream gene BANF1 in esophageal cancer. Biomed. Pharmacother. V. 89. P. 1086. https://doi.org/10.1016/j.biopha.2017.02.095

  43. Liu J., Rolef-Ben Shahar T., Riemer D., Treinin M., Spann P., Weber K., Fire A., Gruenbaum Y. 2000. Essential roles for Caenorhabditis elegans lamin gene in nuclear organization, cell cycle progression, and spatial organization of nuclear pore complexes. Mol. Biol. Cell. V. 11. P. 3937. https://doi.org/10.1091/mbc.11.11.3937

  44. Marcelot A., Petitalot A., Ropars V., Le Du M.H., Samson C., Dubois S., Hoffmann G., Miron S., Cuniasse P., Marquez J.A., Thai R., Theillet F.X., Zinn-Justin S. 2021a. Di-phosphorylated BAF shows altered structural dynamics and binding to DNA, but interacts with its nuclear envelope partners. Nucleic Acids Res. V. 49. P. 3841. https://doi.org/10.1093/nar/gkab184

  45. Marcelot A., Worman H.J., Zinn-Justin S. 2021b. Protein structural and mechanistic basis of progeroid laminopathies. FEBS J. V. 288. P. 2757.

  46. https://doi.org/10.1111/febs.15526

  47. Marcelot A., Zinn-Justin S., Cuniasse P. 2022. The conformation of the intrinsically disordered N-terminal region of Barrier-to-autointegration factor (BAF) is regulated by pH and phosphorylation. J. Mol. Biol. V. 435: 167888. https://doi.org/10.1016/j.jmb.2022.167888

  48. Martins S., Eikvar S., Furukawa K., Collas P. 2003. HA95 and LAP2β mediate a novel chromatin–nuclear envelope interaction implicated in initiation of DNA replication. J. Cell Biol. V. 160. P. 177. https://doi.org/10.1083/jcb.200210026

  49. Mattout-Drubezki A., Gruenbaum Y. 2003. Dynamic interactions of nuclear lamina proteins with chromatin and transcriptional machinery. Cell Mol. Life Sci. V. 60. P. 2053. https://doi.org/10.1007/s00018-003-3038-3

  50. Molitor T.P., Traktman P. 2014. Depletion of the protein kinase VRK1 disrupts nuclear envelope morphology and leads to BAF retention on mitotic chromosomes. Mol. Biol. Cell. V. 25. P. 891. https://doi.org/10.1091/mbc.E13-10-0603

  51. Naetar N., Ferraioli S., Foisner R. 2017. Lamins in the nuclear interior – life outside the lamina. J. Cell Sci. V. 130. P. 2087. https://doi.org/10.1242/jcs.203430

  52. Nili E., Cojocaru G.S., Kalma Y., Ginsberg D., Copeland N.G., Gilbert D.J., Jenkins N.A., Berger R., Shaklai S., Amariglio N., Brok-Simoni F., Simon A.J., Rechavi G. 2001. Nuclear membrane protein, LAP2β, mediates transcriptional repression alone and together with its binding partner GCL (germ-cell-less). J. Cell Sci. V. 114. P. 3297. https://doi.org/10.1242/jcs.114.18.3297

  53. Paquet N., Box J.K., Ashton N.W., Suraweera A., Croft L.V., Urquhart A.J., Bolderson E., Zhang S.D., O’Byrne K.J., Richard D.J. 2014. Néstor-Guillermo Progeria Syndrome: A biochemical insight into Barrier-to-autointegration factor 1, alanine 12 threonine mutation. BMC Mol. Biol. V. 15: 27. https://doi.org/10.1186/s12867-014-0027-z

  54. Pereira C.D., Serrano J.B., Martins F., da Cruz E. Silva O.A.B., Rebelo S. 2019. Nuclear envelope dynamics during mammalian spermatogenesis: new insights on male fertility. Biol. Rev. Camb. Philos. Soc. V. 94. P. 1195. https://doi.org/10.1111/brv.12498

  55. Pekovic V., Harborth J., Broers J.L., Ramaekers F.C., van Engelen B., Lammens M., von Zglinicki T., Foisner R., Hutchison C., Markiewicz E. 2007. Nucleoplasmic LAP2α–lamin A complexes are required to maintain a proliferative state in human fibroblasts. J. Cell Biol. V. 176. P. 163. https://doi.org/10.1083/jcb.200606139

  56. Puente X.S., Quesada V., Osorio F.G., Cabanillas R., Cadiñanos J., Fraile J.M., Ordóñez G.R., Puente D.A., Gutiérrez-Fernández A., Fanjul-Fernández M., Lévy N., Freije J.M.P., López-Otín C. 2011. Exome sequencing and functional analysis identifies BANF1 mutation as the cause of a hereditary progeroid syndrome. Am. J. Hum. Genet. V. 88. P. 650. https://doi.org/10.1016/j.ajhg.2011.04.010

  57. Qi R., Xu N., Wang G., Ren H., Li S., Lei J., Lin Q., Wang L., Gu X., Zhang H., Jiang Q., Zhang C. 2015. The laminA/C-LAP2α-BAF1 protein complex regulates mitotic spindle assembly and positioning. J. Cell Sci. V. 128. P. 2830. https://doi.org/10.1242/jcs.164566

  58. Rose M., Bai B., Tang M., Cheong C.M., Beard S., Burgess J.T., Adams M.N., O’Byrne K.J., Richard D.J., Gandhi N.S., Bolderson E. 2021. The impact of rare human variants on barrier-to-auto-integration factor 1 (Banf1) structure and function. Front. Cell Dev. Biol. V. 9: 775441. https://doi.org/10.3389/fcell.2021.775441

  59. Samson C., Petitalot A., Celli F., Herrada I., Ropars V., Le Du M.H., Nhiri N., Jacquet E., Arteni A.-A., Buendia B., Zinn-Justin S. 2018. Structural analysis of the ternary complex between lamin A/C, BAF and emerin identifies an interface disrupted in autosomal recessive progeroid diseases. Nucleic Acids Res. V. 46. P. 10460. https://doi.org/10.1093/nar/gky736

  60. Samwer M., Schneider M.W.G., Hoefler R., Schmalhorst P.S., Jude J.G., Zuber J., Gerlich D.W. 2017. DNA cross-bridging shapes a single nucleus from a set of mitotic chromosomes. Cell. V. 170. P. 956–972.e923. https://doi.org/10.1016/j.cell.2017.07.038

  61. Segura-Totten M., Kowalski A.K., Craigie R., Wilson K.L. 2002. Barrier-to-autointegration factor: major roles in chromatin decondensation and nuclear assembly. J. Cell Biol. V. 158. P. 475. https://doi.org/10.1083/jcb.200202019

  62. Segura-Totten M., Wilson K.L. 2004. BAF: roles in chromatin, nuclear structure and retrovirus integration. Trends Cell Biol. V. 14. P. 261. https://doi.org/10.1016/j.tcb.2004.03.004

  63. Serrano J.B., Martins F., Sousa J.C., Pereira C.D., van Pelt A.M., Rebelo S., da Cruz E., Silva O.A. 2017. Descriptive analysis of LAP1 distribution and that of associated proteins throughout spermatogenesis. Membranes (Basel). V. 7: 22. https://doi.org/10.3390/membranes7020022

  64. Shen Q., Eun J.W., Lee K., Kim H.S., Yang H.D., Kim S.Y., Lee E.K., Kim T., Kang K., Kim S., Min D.H., Oh S.N., Lee Y.J., Moon H., Ro S.W. et al. 2018. Barrier to autointegration factor 1, procollagen-lysine, 2-oxoglutarate 5-dioxygenase 3, and splicing factor 3b subunit 4 as early-stage cancer decision markers and drivers of hepatocellular carcinoma. Hepatology. V. 67. P. 1360. https://doi.org/10.1002/hep.29606

  65. Snyers L., Erhart R., Laffer S., Pusch O., Weipoltshammer K., Schöfer C. 2018. LEM4/ANKLE-2 deficiency impairs post-mitotic re-localization of BAF, LAP2α and LaminA to the nucleus, causes nuclear envelope instability in telophase and leads to hyperploidy in HeLa cells. Eur. J. Cell Biol. V. 97. P. 63. https://doi.org/10.1016/j.ejcb.2017.12.001

  66. Snyers L., Löhnert R., Weipoltshammer K., Schöfer C. 2022. Emerin prevents BAF-mediated aggregation of lamin A on chromosomes in telophase to allow nuclear membrane expansion and nuclear lamina formation. Mol. Biol Cell. V. 33: ar137. https://doi.org/10.1091/mbc.E22-01-0007

  67. Torras-Llort M., Medina-Giró S., Escudero-Ferruz P., Lipinszki Z., Moreno-Moreno O., Karman Z., Przewloka M.R., Azorín F. 2020. A fraction of barrier-to-autointegration factor (BAF) associates with centromeres and controls mitosis progression. Commun. Biol. V. 3: 454. https://doi.org/10.1038/s42003-020-01182-y

  68. Vivante A., Brozgol E., Bronshtein I., Levi V., Garini Y. 2019. Chromatin dynamics governed by a set of nuclear structural proteins. Genes Chromosomes Cancer. V. 58. P. 437. https://doi.org/10.1002/gcc.22719

  69. Wagner N., Kagermeier B., Loserth S., Krohne G. 2006. The Drosophila melanogaster LEM-domain protein MAN1. Eur. J. Cell Biol. V. 85. P. 91. https://doi.org/10.1016/j.ejcb.2005.10.002

  70. Wagner N., Krohne G. 2007. LEM-domain proteins: new insights into lamin-interacting proteins. Int. Rev. Cytol. V. 261. P. 1. https://doi.org/10.1016/S0074-7696(07)61001-8

  71. Wang X., Xu S., Rivolta C., Li L.Y., Peng G.-H., Swain P.K., Sung C.-H., Swaroop A., Berson E.L., Dryja T.P., Chen S. 2002. Barrier to autointegration factor interacts with the cone-rod homeobox and represses its transactivation function. J. Biol. Chem. V. 277. P. 43288. https://doi.org/10.1074/jbc.M207952200

  72. Wong X., Melendez-Perez A.J., Reddy K.L. 2022. The nuclear lamina. Cold Spring Harb. Perspect. Biol. V. 14: a040113. https://doi.org/10.1101/cshperspect.a040113

  73. Zetka M., Paouneskou D., Jantsch V. 2020. The nuclear envelope, a meiotic jack-of-all-trades. Curr. Opin. Cell Biol. V. 64. P. 34. https://doi.org/10.1016/j.ceb.2019.12.010

  74. Zhang G. 2020. Expression and prognostic significance of BANF1 in triple-negative breast cancer. Cancer Manag. Res. V. 12. P. 145. https://doi.org/10.2147/CMAR.S229022

  75. Zheng R., Ghirlando R., Lee M.S., Mizuuchi K., Krause M., Craigie R. 2000. Barrier-to-autointegration factor (BAF) bridges DNA in a discrete, higher-order nucleoprotein complex. Proc. Natl. Acad. Sci. USA. V. 97. P. 8997. https://doi.org/10.1073/pnas.150240197

  76. Zhuang X., Semenova E., Maric D., Craigie R. 2014. Dephosphorylation of barrier-to-autointegration factor by protein phosphatase 4 and its role in cell mitosis. J. Biol. Chem. V. 289. P. 1119. https://doi.org/10.1074/jbc.M113.492777

Дополнительные материалы отсутствуют.