Астрономический вестник, 2023, T. 57, № 3, стр. 209-224

Свечение молекулярного кислорода O21Δg) в полосе 1.27 мкм и динамика верхней мезосферы на ночной стороне Венеры

А. В. Шакун a, Л. В. Засова a, Д. А. Горинов a*, И. В. Хатунцев a, Н. И. Игнатьев a, М. В. Пацаева a, А. В. Тюрин a

a Институт космических исследований РАН (ИКИ РАН)
Москва, Россия

* E-mail: dmitry_gorinov@rssi.ru

Поступила в редакцию 18.01.2023
После доработки 25.01.2023
Принята к публикации 26.01.2023

Аннотация

Работа посвящена изучению распределения ночного свечения кислорода O2 (a1Δg) в полосе 1.27 мкм с целью изучения динамики атмосферы. При расчетах исключались факторы, которые могли искажать результат: тепловое излучение нижней атмосферы, отражение от облаков. Показано, что отклонение от SS-AS циркуляции, проявляющееся в смещении области, где сходятся потоки с дневной стороны от терминаторов, и где в нисходящем потоке кислород рекомбинирует и высвечивает, смещено от противосолнечной точки к 22–23 ч. Такое смещение – проявление влияния солнечного термического прилива на атмосферу на ночной стороне Венеры. Сделаны выводы о характере динамики в области верхней мезосферы Венеры.

Ключевые слова: Венера, атмосфера Венеры, инфракрасная спектроскопия, свечение кислорода, циркуляция атмосферы Венеры

Список литературы

  1. Краснопольский В.А., Крысько А.Л., Рогачев В.Н., Паршев В.Л. Спектроскопия ночного свечения Венеры с орбитеров Венера 9, 10 // Космич. исслед. 1976. Т. 14. С. 789–795.

  2. Засова Л.В., Мороз В.И., Линкин В.М., Хатунцев И.В., Майоров Б.С. Строение атмосферы Венеры от поверхности до 100 км // Космич. исслед. 2006. Т. 44. № 4. С. 1–20.

  3. Шакун А.В., Засова Л.В., Пиччиони Дж., Дроссар П., Миглиорини А. Исследование свечения кислорода O2(a1Δg) на ночной стороне Венеры по надирным данным эксперимента VIRTIS-M миссии Венера–Экспресс // Космич. исслед. 2010. Т. 48. № 3. С. 239–245.

  4. Altieri F., Migliorini A., Zasova L., Shakun A., Piccioni G., Bellucci G. Modeling VIRTIS/VEX O2(a1Δg) nightglow profiles affected by the propagation of gravity waves in the Venus upper mesosphere // J. Geophys. Res.: Planets. 2014. V. 119. № 1. P. 2300–2316. https://doi.org/10.1002/2013JE004585

  5. Arnold G., Haus R., Kappel D., Drossart P., Piccioni G. Venus surface data extraction from VIRTIS/Venus Express measurements: Estimation of a quantitative approach // J. Geophys. Res. 2008. V. 113. № 3. id. E00B10. https://doi.org/10.1029/2008JE003087

  6. Bailey J., Meadows V.S., Chamberlain S., Crisp D. The temperature of the Venus mesosphere from O2(a1Δg) airglow observations // Icarus. 2008. V. 197. P. 247–259. https://doi.org/10.1016/j.icarus.2008.04.007

  7. Bailey J. A comparison of water vapor line parameters for modeling the Venus deep atmosphere // Icarus. 2009. V. 201. № 2. P. 444–453. https://doi.org/10.1016/j.icarus.2009.01.013

  8. Bertaux J.-L., Khatuntsev I.V., Hauchecorne A., Markiewicz W.J., Marcq E., Lebonnois S. Influence of Venus topography on the zonal wind and UV albedo at cloud top level: The role of stationary gravity waves // J. Geophys. Res.: Planets. 2016. V. 121. P. 1087–1101. https://doi.org/10.1002/2015JE004958

  9. Bézard B., Tsang C.C.C., Carlson R.W., Piccioni G., Marcq E., Drossart P. Water vapor abundance near the surface of Venus from Venus Express/VIRTIS observations // J. Geophys. Res.: Planets. 2009. V. 114. id. E00B39. https://doi.org/10.1029/2008JE003251

  10. Bougher S.W., Gérard J.C., Stewart A.I.F., Fesen C.G. The Venus nitric oxide night airglow: Model calculations based on the Venus Thermospheric General Circulation Model // J. Geophys. Res.: Space Physics. 1990. V. 95. № A5. P. 6271–6284. https://doi.org/10.1029/JA095iA05p06271

  11. Bougher S.W., Borucki W.J. Venus O2 visible and IR nightglow: Implications for lower thermosphere dynamics and chemistry // J. Geophys. Res.: Planets. 1994. V. 99. № E2. P. 3759–3776. https://doi.org/10.1029/93JE03431

  12. Brecht A.S., Bougher S.W., Gérard J.-C., Parkinson C.D., Rafkin S., Foster B. Understanding the variability of nightside temperatures, NO UV and O2 IR nightglow emissions in the Venus upper atmosphere // J. Geophys. Res.: Atmosphere. 2011. V. 116. № E8. id. E08004. https://doi.org/10.1029/2010JE003770

  13. Connes P., Noxon J.F., Traub W.A., Carleton P. O2(1D) emission in the day and night airglow of Venus // Astrophys. J. 1979. V. 233. P. L29–L32. https://doi.org/10.1086/183070

  14. Crisp D., Meadows V.S., Bézard B., de Bergh C., Maillard J., Mills F.P. Ground-based near-infrared observations of the Venus nightside: 1.27- μm O2(a1Δg) airglow from the upper atmosphere // J. Geophys. Res. : Physics. 1996. V. 101. P. 4577–4593. https://doi.org/10.1029/95JE03136

  15. D’Incecco P., Filiberto J., López I., Gorinov D., Komatsu G. Idunn Mons: Evidence for ongoing volcano-tectonic activity and atmospheric implications on Venus // Planet. Sci. J. 2021. V. 2. № 5. id. 215. https://doi.org/10.3847/PSJ/ac2258

  16. Drossart P., Piccioni G., Gérard J.C., Lopez-Valverde M.A., Sanchez-Lavega A., Zasova L., Hueso R., Taylor F.W., Bézard B., Adriani A., Angrilli F., Arnold G., Baines K.H., Bellucci G., Benkhoff J. and 89 co-authors. A dynamic upper atmosphere of Venus as revealed by VIRTIS on Venus Express // Nature. 2007. V. 450. P. 641–645. https://doi.org/10.1038/nature06140

  17. Fukuhara T., Futaguchi M., Hashimoto G.L., Horinouchi T., Imamura T., Iwagaimi N., Kouyama T., Murakami S.-Y., Nakamura M., Ogohara K., Sato M., Sato T.M., Suzuki M., Taguchi M., Takagi S. and 4 co-authors. Large stationary gravity wave in the atmosphere of Venus // Nat. Geosci. 2017. V. 10. № 2. P. 85-88. https://doi.org/10.1038/ngeo2873

  18. Gérard J.-C., Saglam A., Piccioni G., Drossart P., Cox C., Erard S., Hueso R., Sánchez-Lavega A. Distribution of the O2 infrared nightglow observed with VIRTIS on board Venus Express // Geophys. Res. Lett. 2008a. V. 35. id. L02207. https://doi.org/10.1029/2007GL032021

  19. Gérard J.-C., Cox C., Saglam A., Bertaux J.-L., Villard E., Nehmé C. Limb observations of the ultraviolet nitric oxide nightglow with SPICAV on board Venus Express // J. Geophys. Res.: Atmospheres. 2008b. V. 113. № 9. id. E00B03. https://doi.org/10.1029/2008JE003078

  20. Gérard J.-C., Soret L., Saglam A., Piccioni G., Drossart P. The distributions of the OH Meinel and O2 (a1Δ–X3R) nightglow emissions in the Venus mesosphere based on VIRTIS observations // J. Adv. Space Res. 2010. V. 45. P. 1268–1275. https://doi.org/10.1016/j.asr.2010.01.022

  21. Gérard J.-C., Soret L., Piccioni G., Drossart P. Latitudinal structure of the Venus O2 infrared airglow: A signature of small-scale dynamical processes in the upper atmosphere // Icarus. 2014. V. 236. P. 92–103. https://doi.org/10.1016/j.icarus.2014.03.028

  22. Gorinov D.A., Khatuntsev I.V., Zasova L.V., Turin A.V., Piccioni G. Circulation of Venusian atmosphere at 90–110 km based on apparent motions of the O2 1.27 μm nightglow from VIRTIS-M (Venus Express) data // Geophys. Res. Letters. 2018. V. 45. № 5. P. 2554–2562. https://doi.org/10.1002/2017GL076380

  23. Haus R., Kappel G., Arnold G. Atmospheric thermal structure and cloud features in the southern hemisphere of Venus as retrieved from VIRTIS/VEX radiation measurements // Icarus. 2014. V. 232. P. 232–248. https://doi.org/10.1016/j.icarus.2014.01.020

  24. Hueso R., Sánchez-Lavega A., Piccioni G., Drossart P., Gérard J.C., Khatuntsev I., Zasova L., Migliorini A. Morphology and dynamics of Venus oxygen airglow from Venus Express/Visible and Infrared Thermal Imaging Spectrometer observations // J. Geophys. Res.: Planets. 2008. V. 113. id. E00B02. https://doi.org/10.1029/2008JE003081

  25. Ignatiev N.I., Moroz V.I., Moshkin B.E., Ekonomov A.P., Gnedykh V.I., Grigoriev A.V., Khatuntsev I.V. Water vapour in the lower atmosphere of Venus: A new analysis of optical spectra measured by entry probes // Adv. Space. Res. 1997. V. 19. № 8. P. 1159–1168. https://doi.org/10.1016/S0273-1177(97)00267-6

  26. Khatuntsev I.V., Patsaeva M.V., Titov D.V., Ignatiev N.I., Turin A.V., Limaye S.S., Markiewicz W.J., Almeida M., Roatsch Th., Moissl R. Cloud level winds from the Venus Express Monitoring Camera imaging // Icarus. 2013. V. 226. P. 140–158. https://doi.org/10.1016/j.icarus.2013.05.018

  27. Khatuntsev I.V., Patsaeva M.V., Titov D.V., Ignatiev N.I., Turin A.V., Fedorova A.A., Markiewicz W.J. Winds in the middle cloud deck from the near-IR imaging by the Venus Monitoring Camera onboard Venus Express // J. Geophys. Res.: Planets. 2017. V. 122. P. 2312–2327. https://doi.org/10.1002/2017JE005355

  28. Krasnopolsky V.A. Venus night airglow: Ground-based detection of OH, observations of O2 emissions, and photochemical model // Icarus. 2010. V. 207. P. 17–27. https://doi.org/10.1016/j.icarus.2009.10.019

  29. Marcq E., Bézard B., Drossart P., Piccioni G., Reess J.M., Henry F.A. Latitudinal survey of CO, OCS, H2O, and SO2 in the lower atmosphere of Venus: Spectroscopic studies using VIRTIS-H // J. Geophys. Res.: Planets. 2008. V. 113. id. E00B07. https://doi.org/10.1029/2008JE003074

  30. Meadows V.S., Crisp D. Ground-based near-infrared observations of the Venus nightside: The thermal structure and water abundance near the surface // J. Geophys. Res. 1996. V. 101. P. 4595–4622.

  31. Migliorini A., Piccioni G., Gérard J.C., Soret L., Slanger T., Politi R., Snels M., Drossart P., Nuccilli F. The characteristics of the O2 Herzberg II bands observed with VIRTIS/Venus Express // Icarus. 2013. V. 223. № 1. P. 609–614. https://doi.org/10.1016/j.icarus.2012.11.017

  32. Navarro T., Gilli G., Schubert G., Soret L., Lebonnois S., Lefèvre F., Quirino D. Venus’ upper atmosphere revealed by a GCM: I. Structure and variability of the circulation // Icarus. 2021. V. 366. id. 114400. https://doi.org/10.1016/j.icarus.2021.114400

  33. Ohtsuki S., Iwagami N., Sagawa H., Ueno M., Kasaba Y., Imamura T., Yanagisawa K., Nishihara E. Distributions of the Venus 1.27-μm O2 airglow and rotational temperature // Planet. and Space Sci. 2008. V. 56. P. 1391–1398. https://doi.org/10.1016/j.pss.2008.05.013

  34. Patsaeva M.V., Khatuntsev I.V., Zasova L.V., Hauchecorne A., Titov D.V., Bertaux J.-L. Solar related variations of the cloud top circulation above Aphrodite Terra from VMC/Venus Express wind fields // J. Geophys. Res.: Planets. 2019. V. 124. P. 1864–1879. https://doi.org/10.1029/2018JE005620

  35. Piccioni G., Zasova L., Migliorini A., Drossart P., Shakun A., García Muñoz A., Mills F.P., Cardesin-Moinelo A. Near-IR oxygen nightglow observed by VIRTIS in the Venus upper atmosphere // J. Geophys. Res.: Atmospheres. 2009. V. 114. id. E00B38. https://doi.org/10.1029/2008JE003133

  36. Rothman L.S., Jacquemart D., Barbe A., Chris Benner B., Birk M., Brown L.R., Carleer M.R., Chackerian Jr C., Chance K., Coudert L.H., Dana V., Devi V.M., Flaud J.-M., Gamache R.R., Goldman A. and 15 co-authors. The HITRAN 2004 molecular spectroscopic database // J.Q.S.R.T. 2005. V. 96. № 2. P. 139–204. https://doi.org/10.1016/j.jqsrt.2004.10.008

  37. Saunders R.S., Pettengill G.H. Magellan: Mission summary // Science. 1991. V. 252. P. 247–249. https://doi.org/10.1126/science.252.5003.247

  38. Soret L., Gérard J.-C., Piccioni G., Drossart P. Venus OH nightglow distribution based on VIRTIS limb observations from Venus Express // Geophys. Res. Lett. 2010. V. 37. № 6. id. L06805. https://doi.org/10.1029/2010GL042377

  39. Soret L., Gérard J-C., Piccioni G., Drossart P. Time variations of O2(a1Δ) nightglow spots on the Venus nightside and dynamics of the upper mesosphere // Icarus. 2014. V. 237. P. 306–314. https://doi.org/10.1016/j.icarus.2014.03.034

  40. Soret L., Gérard J-C. Is the O2(a1Δg) Venus nightglow emission controlled by solar activity? // Icarus. 2015. V. 262. P. 170–172. https://doi.org/10.1016/j.icarus.2015.08.030

  41. Stamnes K., Tsay S.-C., Wiscombe W., Jayaweera K. Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media // Appl. Optics. 1988. V. 27. P. 2502–2509. https://doi.org/10.1364/AO.27.002502

  42. Stewart A.I.F., Gérard J.-C., Rusch D.W., Bougher S.W. Morphology of the Venus ultraviolet night airglow // J. Geophys. Res.: Space Physics. 1980. V. 85. P. 7861–7870. https://doi.org/10.1029/JA085iA13p07861

  43. Svedhem H., Titov D.V., Taylor F.W., Witasse O. The Venus Express mission // J. Geophys. Res.: Planets. 2009. V. 114. id. E00B33. https://doi.org/10.1029/2008JE003290

  44. Tashkun S.A., Perevalov V.I., Teffo J.-L., Bykov A.D., Lavrentieva N.N. CDSD-1000, the high-temperature carbon dioxide spectroscopic databank // J. Quant. Spec. Rad. Transfer. 2003. V. 82. № 1–4. P. 165–196. https://doi.org/10.1016/S0022-4073(03)00152-3

  45. Titov D.V., Svedhem H., Koschny D., Hoofs R., Barabash S., Bertaux J.-L., Drossar P., Formisano V., Häusler B., Korablev O., Markiewicz W.J., Nevejans D., Pätzold M., Piccioni G., Zhang T.L., 5 co-authors. Venus Express science planning // Planet. and Space Sci. 2006. V. 54. P. 1279–1297. https://doi.org/10.1016/j.pss.2006.04.017

  46. Zasova L.V., Ignatiev N., Khatuntsev I., Linkin V. Structure of the Venus atmosphere // Planet. and Space Sci. 2007. V. 55. P. 1712–1728. https://doi.org/10.1016/j.pss.2007.01.011

Дополнительные материалы отсутствуют.