Астрономический вестник, 2023, T. 57, № 3, стр. 232-247

Поиск жизни на Венере: история проблемы и основные концепции

О. Р. Коцюрбенко *

Югорский государственный университет
Югра, Россия

* E-mail: kotsor@mail.ru

Поступила в редакцию 19.05.2022
После доработки 11.01.2023
Принята к публикации 20.01.2023

Аннотация

Венера всегда являлась одним из приоритетных направлений в рамках программы космических исследований в России. История успешного изучения Венеры в Советском Союзе, прежде всего, связана с доставкой к ней целой серии космических аппаратов и организации первой в истории посадки на ее поверхность. Последние несколько лет астробиологическое направление в исследовании Венеры развивается быстрыми темпами. К настоящему времени опубликовано достаточно большое количество теоретических работ, основной целью которых является оценка возможности существования живых организмов на Венере. Наиболее вероятной экосистемой, в которой могли бы развиваться организмы земного типа, считается плотный облачный слой Венеры. Предполагается, что гипотетические микробные сообщества в нем могут существовать в аэрозолях, представляющих собой довольно концентрированный водный раствор серной кислоты. Микроорганизмы в такой специфической воздушной среде обитания должны находиться под воздействием сразу нескольких экстремальных факторов, основными из которых являются чрезвычайно низкие значения рН и активности воды. Основными стратегиями выживания в таких условиях должны быть наличие эффективных биохимических механизмов сопротивления воздействию неблагоприятных факторов окружающей среды и использование всех возможных способов извлечения энергии в такой экосистеме для поддержания биомассы организмов на уровне устойчивого воспроизводства.

Ключевые слова: Венера, астробиология, экстремофилы, внеземная жизнь

Список литературы

  1. Ананьева В.И., Тавров А.В., Петрова Е.В., Кораблев О.И. Зоны обитаемости. От Солнечной системы к экзопланетам // Земля и Вселенная. 2020. № 3. С. 37–45. https://doi.org/10.7868/S0044394820030044

  2. Андрейчиков Б.М., Ахметшин И.К., Корчуганов Б.Н., Мухин Л.М., Огородников Б.И., Петрянов И.В., Скитович В.И. Химический состав и структура облаков Венеры по результатам рентгенорадиометрических экспериментов, проведенных на спускаемых аппаратах AMC “Вега-1,-2” // Космич. исслед. 1987. Т. 25. С. 15.

  3. Коцюрбенко О.Р. Есть ли жизнь… на Венере? // Земля и Вселенная. 2021. Т. 3. С. 6–20. https://doi.org/10.7868/S0044394821030014

  4. Маров М.Я. Владимир Иванович Вернадский: учение о Биосфере и Астробиология // Ноосфера. 2013. № 3. С. 111–131.

  5. Мухин Л.М., Гельман Б.Г., Ламонов Н.И., Мельников В.В., Ненароков Д.Ф., Охотников Б.П., Ротин В.А., Хохлов В.Н. Газохроматографический анализ химического состава атмосферы Венеры на спускаемых аппаратах АМС “Венера-13” и “Венера-14” // Космич. исслед. 1983. Т. 21. С. 225–230.

  6. Поршнев Н.В., Мухин Л.М., Гельман Б.Е., Ненароков Д.Ф., Ротин В.А., Дьячков А.В., Бондарев В.Б. Газохроматографический анализ продуктов термических реакций аэрозоля облачного слоя Венеры на AMC “Вега-1” и “Вега-2” // Космич. исслед. 1987. Т. 25. С. 715–720.

  7. Тихов Г.А. Астроботаника. Алма-Ата: Академия наук Казахской ССР, 1949. 23 с.

  8. Amato P., Joly M., Besaury L., Oudart A., Taib N., Moné A.I., Deguillaume L., Delort A.-M., Debroas D. Active microorganisms thrive among extremely diverse communities in cloud water // PLoS One. 2017. V. 12. № 8. id. e0182869. https://doi.org/10.1371/journal.pone.0182869

  9. Arrhenius S. The Destinies of stars. New York and London: The Knickerbocker Press, 1918.

  10. Bains W., Petkowski J.J., Sousa-Silva C., Seager S. New environmental model for thermodynamic ecology of biological phosphine production // Sci. Total Environment. 2019. V. 658. P. 521–536. https://doi.org/10.1016/j.scitotenv.2018.12.086

  11. Bains W., Petkowski J.J., Zhan Z., Seager S. Evaluating alternatives to water as solvents for life: the example of sulfuric acid // Life. 2021. V. 11. id. 400. https://doi.org/10.3390/life11050400

  12. Barker E.S. Detection of SO2 in the UV spectrum of Venus // Geophys. Res. Lett. 1979. V. 6. P. 117–120.

  13. Bertaux J.-L.,Widemann T., Hauchecorne A., Moroz V.I., Ekonomov A.P. VEGA 1 and VEGA 2 entry probes: an investigation of local UV absorption (220–400nm) in the atmosphere of Venus (SO2 aerosols, cloud structure) // J. Geophys. Res.: Planets. 1996. V. 101. P. 12709–12745.

  14. Clarke A., Morris G.J., Fonseca F., Murray B.J., Acton E., Price H.C. A low temperature limit for life on Earth // PloS One. 2013. V. 8. № 6. id. e66207.pone.0066207.https://doi.org/10.1371/journal

  15. Cockell C.S. Life on Venus // Planet. and Space Sci. 1999. V. 47. P. 1487–1501.

  16. Cockell C.S., Bush T., Bryce C.S., Direito S., Fox-Powell M., Harrison P., Lammer H., Landenmark H., Martin-Torres J., Nicholson N., Noack L., O’Malley-James J., Payler S.J., Rushby A., Samuels T., Schwendner P., Wadsworth J., Zorzano M.P. Habitability: a review // Astrobiology. 2016. V. 16. P. 89–117.

  17. Cockell C.S., Higgins P.M., Johnstone A.A. Biologically available chemical energy in the temperate but uninhabitable Venusian cloud layer: What do we want to know? // Astrobiology. 2021. V. 21. № 10. https://doi.org/10.1089/ast.2020.2280

  18. Delort A.-M., Vaïtilingom M., Amato P., Sancelme M., Parazols M., Mailhot G., Laj P., Deguillaume L. A short overview of the microbial population in clouds: Potential roles in atmospheric chemistry and nucleation processes // Atmos. Res. 2010. V. 98. P. 249–260.

  19. Delort A.-M., Vaïtilingom M., Joly M., Amato P., Wirgot N., Lallement A., Sancelme M., Deguillaume L. Clouds: a transient and stressing habitat for microorganisms // Microbial Ecology of Extreme Environments / Eds Chénard C., Lauro F.M. Cham, Switzerland: Springer Int. Publ, 2017. P. 215–245.

  20. Donahue T.M., Hodges R.R. Past and present water budget of Venus // J. Geophys. Res. 1992. V. 97. P. 6083–6091.

  21. Gottesman S. Trouble is coming: Signaling pathways that regulate general stress responses in bacteria // J. Biol. Chem. 2019. V. 294. № 31. P. 11685–11700. .https://doi.org/10.1074/jbc.REV119.005593

  22. Greaves greav J.S., Richards A.M.S., Bains W., Rimmer P.B., Sagawa H., Clements D.L., Seager S., Petkowski J.J., Sousa-Silva C., Sukrit Ranjan S., Drabek-Maunder E., Fraser H.J., Cartwright A., Mueller-Wodarg I., Zhan Z., Friberg P., Coulson I., Lee E., Hoge J. Phosphine gas in the cloud decks of Venus // Nature Astronomy. 2020. V. 5, № 7. P. 655–664. https://doi.org/10.1038/s41550-020-1174-4

  23. Grinspoon D.H. Venus Revealed: A New Look Below the Clouds of Our Mysterious Twin Planet. MA: Addison Wesley, Reading, 1997. 355 p.

  24. Grinspoon D.H., Bullock M.A. Astrobiology and Venus exploration // Exploring Venus as a Terrestrial Planet / Eds Esposito L.W., Stofan E.R., Cravens T.E. New York: John Wiley & Sons, 2007. V. 176. P. 191–206.

  25. Hallsworth J.E., Koop T., Dallas T.D., Zorzano M.-P., Burkhardt J., Golyshina O.V., Martin-Torres J., Dymond M.K., Ball P., McKay C.P. Water activity in Venus’s uninhabitable clouds and other planetary atmospheres // Nature Astronomy. 2021. V. 5. P. 665–675. https://doi.org/10.1038/s41550-021-01391-3

  26. Izenberg N.R., Gentry D.M., Smith D.J., Gilmore M.S., Grinspoon D.H., Bullock M.A., Boston P.J., Słowik G.P. The Venus life equation // Astrobiology. 2021. V. 21. № 10. https://doi.org/10.1089/ast.2020.2326

  27. Kelly D.P., Wood A.P. Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov // Int. J. Syst. Evol. Microbiol. 2000. V. 50. P. 511–516.

  28. Kotsyurbenko O.R., Glagolev M.V., Sabrekov A.F., Terentieva I.E. Systems approach to the study of microbial methanogenesis in West-Siberian wetlands // Environ. Dyn. Glob. Clim. Chang. 2020. V. 11. № 1. P. 54–68.

  29. Kotsyurbenko O.R., Cordova Jr J.A., Belov A.A., Cheptsov V.S., Khrunyk J., Kölbl D., Kryuchkova M.O., Milojevic T., Mogul R., Sasaki S., Słowik G.P., Snytnikov V., Vorobyova E.A. Exobiology of Venus clouds: New insights into habitability through terrestrial models and methods of detection // Astrobiology. 2021. V. 21. № 10. P. 1186–1205 https://doi.org/10.1089/ast.2020.2296

  30. Krasnopolsky V.A. Chemical composition of Venus atmosphere and clouds: Some unsolved problems // Planet. and Space Sci. 2006. V. 54. P. 1352–1359.

  31. Ksanfomality L.V., Selivanov A.S., Gektin Yu.M. Signs of hypothetical flora and fauna of the planet Venus: Returning to archive of the old TV-experiments // Int. J. Opt. Photonic Eng. 2018. id. 3:007.

  32. Ksanfomality L.V., Zelenyi L.M., Parmon V.N., Snytnikov V.N. Hypothetical signs of life on Venus: Revising results of 1975–1982 TV experiments // Phys. Usp. 2019. V. 62. P. 378–404. https://doi.org/10.3367/UFNe.2018.12.038507

  33. Limaye S.S., Mogul R., Smith D.J., Ansari A.H., Słowik G.P., Vaishampayan P. Venus’ spectral signatures and the potential for life in the clouds // Astrobiology. 2018. V. 18. P. 1181–1198.

  34. Limaye S.S., Mogul R., Baines K.H., Bullock M.A., Cockell C., Cutts J.A., Gentry D.M., Grinspoon D.H., Head J.W., Jessup K.-L., Kompanichenko V., Lee Y.J., Mathies R., Milojevic T., Pertzborn R.A., Rothschild L., Sasaki S., Schulze-Makuch D., Smith D.J., Way M.J. Venus, an astrobiology target // Astrobiology. 2021. V. 21. № 10. P. 1163–1185. https://doi.org/10.1089/ast.2020.2268

  35. Milojevic T., Treiman A.H., Limaye S.S. Phosphorus in the clouds of Venus: Potential for bioavailability // Astrobiology. 2021. V. 21. № 10. https://doi.org/10.1089/ast.2020.2267

  36. Mogul R., Limaye S.S., Lee Y.J., Pasillas M. Potential for phototrophy in Venus’ clouds // Astrobiology. 2021a. V. 21. № 10. P. 1237–1249. https://doi.org/10.1089/ast.2021.0032

  37. Mogul R., Limaye S.S., Way M.J., Cordova J.A. Venus’ mass spectra show signs of disequilibria in the middle clouds // Geophys. Res. Lett. 2021b. V. 48. № 7. id. e2020GL091327. https://doi.org/10.1029/2020GL091327

  38. Morowitz H., Sagan C. Life in the clouds of Venus? // Nature. 1967. V. 215. № 5107. P. 1259–1260. https://doi.org/10.1038/2151259a0

  39. Noack L., Höning D., Rivoldini A., Heistracher C., Zimov N., Journaux B., Lammer H., Van Hoolst T., Bredehöft J.H. Water-rich planets: How habitable is a water layer deeper than on Earth? // Icarus. 2016. V. 277. P. 215–236. https://doi.org/10.1016/j.icarus.2016.05.009

  40. Nimmo F., Pappalardo R.T. Ocean worlds in the outer Solar system // J. Geophys. Res.: Planets. 2016. V. 121. P. 1378–1399. https://doi.org/10.1002/2016JE005081

  41. Ohmura N., Sasaki K., Matsumoto N., Saiki H. Anaerobic respiration using Fe3+, S0, and H2 in the chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans // J. Bacteriol. 2002. V. 184. P. 2081–2087.

  42. Oyama V.I., Carle G.C., Woeller F., Pollack J.B., Reynolds R.T., Craig R.A. Pioneer Venus gas chromatography of the lower atmosphere of Venus // J. Geophys. Res.: Space Phys. 1980. V. 85. P. 7891–7902.

  43. Pérez-Hoyos S., Sάnchez-Lavega A., García-Muňoz A., Irwin P.G.J., Peralta J., Holsclaw G., McClintock W.M., Sanz-Requena J.F. Venus upper clouds and the UV absorber from MESSENGER/MASCS observations // J. Geophys. Res: Planets. 2018. V. 123. № 1. P. 145–162. https://doi.org/10.1002/2017JE005406

  44. Plumb J.J., Haddad C.M., Gibson J.A.E., Franzmann P.D. Acidianus sulfidivorans sp. nov., an extremely acidophilic, thermophilic archaeon isolated from a solfatara on Lihir Island, Papua New Guinea, and emendation of the genus description // Int. J. Syst. Evol. Microbiol. 2007. V. 57. P. 1418–1423. https://doi.org/10.1099/ijs.0.64846-0

  45. Proctor R.A. Other Worlds Than Ours: The Plurality of Worlds Studied Under the Light of Recent Scientific Researches. New York: J.A. Hill and Co., 1870. 74 p.

  46. Schulze-Makuch D., Grinspoon D.H., Abbas O., Irwin L.N., Bullock M.A. A sulfur-based survival strategy for putative phototrophic life in the venusian atmosphere // Astrobiology. 2004. V. 4. P. 11–18.

  47. Seager S., Petkowski J.J., Gao P., Bains W., Bryan N.C., Ranjan S., Greaves J. The Venusian lower atmosphere haze as a depot for desiccated microbial life: A proposed life cycle for persistence of the Venusian aerial biosphere // Astrobiology. 2021. V. 21. № 2. id. 2244 (18 p.). https://doi.org/10.1089/ast.2020.2244

  48. Segerer A.H., Neuner A., Kristjansson J.K., Stetter K.O. Acidianus infernus gen. nov., sp. nov., and Acidianus brierleyi comb. nov.: facultatively aerobic, extremely acidophilic thermophilic sulfur-metabolizing archaebacterial // Int. J. Syst. Bacteriol. 1986. V. 36. P. 559–564.

  49. Segerer A.H., Trincone A., Gahrtz M., Stetter K.O. Stygiolobus azoricus gen. nov., sp. nov. represents a novel genus of anaerobic, extremely thermoacidophilic archaebacteria of the order Sulfolobales // Int. J. Syst. Bacteriol. 1991. V. 41. P. 495–501.

  50. Shematovich V.I. Ocean worlds in the outer regions of the Solar System (review) // Sol. Syst. Res. 2018. V. 52. № 5. P. 371–381. https://doi.org/10.1134/S0038094618050076

  51. Skladnev D.A., Karlov S.P., Khrunyk Y.Y., Kotsyurbenko O.R. Water–sulfuric acid foam as a possible habitat for hypothetical microbial community in the cloud layer of Venus // MDPI Life. 2021. V. 11. id. 1034. https://doi.org/10.3390/life11101034

  52. Snytnikov V.N. Chemical base of hypothetical life on Venus // Venera-D Landing Sites Selection and Cloud Layer Habitability Workshop. 2–5 October, Space Research Institute, Moscow, Russia. 2019. http://venera-d.cosmos.ru/uploads/media/7.

  53. Surkov Y.A., Kirnozov F.F., Glazov V.N., Dunchenko A.G., Atrashkevich V.V. Aerosols in the clouds onVenus: preliminary Venera-14 data // Pis’ma Astron. Zh. 1982. V. 8. P. 700–704.

  54. Vaïtilingom M., Deguillaume L, Vinatier V., Sancelme M., Amato P., Chaumerliac N., Delort A.-N. Potential impact of microbial activity on the oxidant capacity and organic carbon budget in clouds // Proc. Natl. Acad. Sci. USA. 2013. V. 110. P. 559–564.

  55. Valdés J., Pedroso I., Quatrini R., Dodson R.J., Tettelin H., Blake R., Eisen J.A., Holmes D.S. Acidithiobacillus ferrooxidans metabolism: From genome sequence to industrial applications // BMC Genomics. 2008. V. 9. id. 597. https://doi.org/10.1186/1471-2164-9-597

  56. Vinogradov A.P., Surkov U.A., Florensky C.P. The chemical composition of the Venus atmosphere based on the data of the interplanetary station Venera 4 // J. Atmos. Sci. 1968. V. 25. P. 535–536.

  57. Yoshida N., Nakasato M., Ohmura N., Ando A., Saiki H., Ishii M., Igarashi Y. Acidianus manzaensis sp. nov., a novel thermoacidophilic archaeon growing autotrophically by the oxidation of H2 with the reduction of Fe3+ // Curr. Microbiol. 2006. V. 53. P. 406–411.

  58. Zasova L.V., Krasnopolsky V.A., Moroz V.I. Vertical distribution of SO2 in upper cloud layer of Venus and origin of UV absorption // Adv. Space Res. 1981. V. 1. P. 13–16.

Дополнительные материалы отсутствуют.