Журнал аналитической химии, 2023, T. 78, № 8, стр. 675-689

Белковые молекулы: шаблоны и матрицы в молекулярном импринтинге

П. С. Пиденко a, К. Ю. Пресняков a, Н. А. Бурмистрова a*

a Саратовский государственный университет им. Н.Г. Чернышевского, Институт химии
410012 Саратов, ул. Астраханская, 83, Россия

* E-mail: naburmistrova@mail.ru

Поступила в редакцию 07.12.2022
После доработки 04.02.2023
Принята к публикации 09.02.2023

Аннотация

В обзоре рассмотрены вопросы молекулярного импринтинга с участием белковых молекул. Проведен анализ работ, опубликованных за последние пять лет в области биоимпринтинга и посвященных определению биомолекул, а также усилению ферментативной активности. Основное внимание уделено импринтингу белковых молекул как методу модификации структуры белковой молекулы за счет образования сайтов связывания в присутствии субстратов (белковыми молекулами с молекулярным отпечатками или импринтированными белками). Показана перспективность импринтинга белковых молекул при решении аналитических задач. Обсуждена неоднозначная трактовка термина “биоимпринтинг” при решении различных задач.

Ключевые слова: биоимпринтинг, молекулярно импринтированные полимеры, импринтированные белки, белки с молекулярными отпечатками, ферментативная активность, биосенсоры.

Список литературы

  1. Korbakis D., Schiza C., Brinc D., Soosaipillai A., Karakosta T D., Légaré C., Sullivan R., Mullen B., Jarvi K., Diamandis E.P., Drabovich A.P. Preclinical evaluation of a TEX101 protein ELISA test for the differential diagnosis of male infertility // BMC Medicine. 2017. V. 15. № 1. P. 1. https://doi.org/10.1186/s12916-017-0817-5

  2. Chau C.H., Strope J.D., Figg W.D. COVID-19 clinical diagnostics and testing technology // Pharmacotherapy. 2020. V. 40. № 8. P. 857. https://doi.org/10.1002/phar.2439

  3. Saushkin N.Y., Samsonova J.V., Osipov A.P., Kondakov S.E. Strip-dried blood sampling: applicability for bovine leukemia virus detection with ELISA and real-time PCR // J. Virol. Methods. 2019. V. 263. P. 101. https://doi.org/10.1016/j.jviromet.2018.11.004

  4. Поляков М.В. Адсорбционные свойства силикагеля и его структура // Журн. физ. химии. 1931. Т. 2. № 6. С. 799.

  5. Belbruno J.J. Molecularly imprinted polymers // Chem. Rev. 2019. V. 119. № 1. P. 94. https://doi.org/10.1021/acs.chemrev.8b00171

  6. Гендриксон О.Д., Жердев А.В., Дзантиев Б.Б. Молекулярно импринтированные полимеры и их применение в биохимическом анализе // Успехи биол. химии 2006. Т. 46. С. 149.

  7. Mosbach K. Molecular imprinting // Trends Biochem. Sci. 1994. V. 19. № 1. P. 9.

  8. Sellergren B. Molecularly Imprinted Polymers. Man-Made Mimics of Antibodies and their Applications in Analytical Chemistry. (Techniques and Instrumentation in Analytical Chemistry. Netherlands: Elsevier, 2001. 558 p.

  9. Spivak D.A., Shea K.J. Binding of nucleotide bases by imprinted polymers // Macromolecules. 1998. V. 31. № 7. P. 2160. https://doi.org/10.1021/ma971310d

  10. Mingarro I., Abad C., Braco L. Interfacial activation-based molecular bioimprinting of lipolytic enzymes // Proc. Natl. Acad. Sci. USA. 1995. V. 92. № 8. P. 3308. https://doi.org/10.1073/pnas.92.8.3308

  11. Peißker F., Fischer L. Crosslinking of imprinted proteases to maintain a tailor-made substrate selectivity in aqueous solutions // Bioorg. Med. Chem. 1999. V. 7 № 10. P. 2231. https://doi.org/10.1016/S0968-0896(99)00156-X

  12. González-Navarro H., Braco L. Improving lipase activity in solvent-free media by interfacial activation-based molecular bioimprinting // J. Mol. Catal. B: Enzym. 1997. V. 3. № 1. P. 111. https://doi.org/10.1016/S1381-1177(96)00038-0

  13. Fishman A., Cogan U. Bio-imprinting of lipases with fatty acids // J. Mol. Catal. B: Enzym. 2003. V. 22. № 3–4. P. 193. https://doi.org/10.1016/S1381-1177(03)00032-8

  14. Gutierrez A.V., Hedström M., Mattiasson B. Bioimprinting as a tool for the detection of aflatoxin B1 using a capacitive biosensor // Biotechnol. Rep. 2016. V. 11. P. 12. https://doi.org/10.1016/j.btre.2016.05.006

  15. Mujahid A., Iqbal N., Afzal A. Bioimprinting strategies: From soft lithography to biomimetic sensors and beyond // Biotechnol. Adv. 2013. V. 31. № 8. P. 1435. https://doi.org/10.1016/j.biotechadv.2013.06.008

  16. Sardaremelli S., Razmi H., Hasanzadeh M., Shadjou N. A novel bioassay for the monitoring of hydrogen peroxide in human plasma samples based on binding of horseradish peroxidase-conjugated prostate specific antigen to poly (toluidine blue) as imprinted polymer receptor // Int. J. Biol. Macromol. 2020. V. 145. P. 311. https://doi.org/10.1016/j.ijbiomac.2019.12.195

  17. Piletsky S., Canfarotta F., Poma A., Bossi A.M., Piletsky S. Molecularly imprinted polymers for cell recognition // Trends Biotechnol. 2020. V. 38. № 4. P. 368. https://doi.org/10.1016/j.tibtech.2019.10.002

  18. Hasanzadeh M., Shadjou N., de la Guardia M. Cytosensing of cancer cells using antibody-based molecular imprinting: A short-review // Trends Anal. Chem. 2018. V. 99. P. 129. https://doi.org/10.1016/j.trac.2017.12.010

  19. Bai W., Spivak D.A. A double-imprinted diffraction-grating sensor based on a virus-responsive super-aptamer hydrogel derived from an impure extract // Angew. Chem. Int. Ed. Engl. 2014. V. 53. № 8. P. 2095. https://doi.org/10.1002/anie.201309462

  20. Shoja Y., Kermanpur A., Karimzadeh F., Ghodsi J., Rafati A.A., Adhami S. Electrochemical molecularly bioimprinted siloxane biosensor on the basis of core/shell silver nanoparticles/EGFR exon 21 L858R point mutant gene/siloxane film for ultra-sensing of Gemcitabine as a lung cancer chemotherapy medication // Biosens. Bioelectron. 2019. V. 145. Article 111611. https://doi.org/10.1016/j.bios.2019.111611

  21. Rezaei B., Boroujeni M.K., Ensafi A.A. Development of Sudan II sensor based on modified treated pencil graphite electrode with DNA, o-phenylenediamine, and gold nanoparticle bioimprinted polymer // Sens. Actuators B: Chem. 2016. V. 222. P. 849. https://doi.org/10.1016/j.snb.2015.09.017

  22. Rezaei B., Boroujeni M.K., Ensafi A.A. Fabrication of DNA, o-phenylenediamine, and gold nanoparticle bioimprinted polymer electrochemical sensor for the determination of dopamine // Biosens. Bioelectron. 2015. V. 66. P. 490. https://doi.org/10.1016/j.bios.2014.12.009

  23. Qi P., Wan Y., Zhang D. Impedimetric biosensor based on cell-mediated bioimprinted films for bacterial detection // Biosens. Bioelectron. 2013. V. 39. № 1. P. 282. https://doi.org/10.1016/j.bios.2012.07.078

  24. Beloglazova N., Lenain P., Tessier M., Goryacheva I., Hens Z., De Saeger S. Bioimprinting for multiplex luminescent detection of deoxynivalenol and zearalenone // Talanta. 2019. V. 192. P. 169. https://doi.org/10.1016/j.talanta.2018.09.042

  25. Sakamoto S., Minami K., Nuntawong P., Yusakul G., Putalun W., Tanaka H., Fujii S., Morimoto S. Bioimprinting as a receptor for detection of kwakhurin // Biomolecules. 2022. V. 12. № 8. Article 1064. https://doi.org/10.3390/biom12081064

  26. Liu J., Zhang K., Ren X., Luo G., Shen J. Bioimprinted protein exhibits glutathione peroxidase activity // Anal. Chim. Acta. 2004. V. 504. № 1. P. 185. https://doi.org/10.1016/S0003-2670(03)00763-3

  27. Gao J., Yin L., Feng K., Zhou L., Ma L., He Y., Wang L., Jiang Y. Lipase Immobilization through the combination of bioimprinting and cross-linked protein-coated microcrystal technology for biodiesel production // Ind. Eng. Chem. Res. 2016. V. 55 № 42. P. 11037. https://doi.org/10.1021/acs.iecr.6b03273

  28. Mukherjee J., Gupta M.N. Dual bioimprinting of Ther-momyces lanuginosus lipase for synthesis of biodiesel // Biotechnol. Rep. 2016. V. 10. P. 38. https://doi.org/10.1016/j.btre.2016.02.005

  29. Fan Y., Ke C., Su F., Li K., Yan Y. Various types of lipases immobilized on dendrimer-functionalized magnetic nanocomposite and application in biodiesel preparation // Energy and Fuels. 2017. V. 31. № 4. P. 4372. https://doi.org/10.1021/acs.energyfuels.7b00036

  30. Keyes M.H., Albert D.E., Saraswathi S. Enzyme semisynthesis by conformational modification of proteins // Ann. N.Y. Acad. Sci. 1987. V. 501 № 1. P. 201. https://doi.org/10.1111/j.1749-6632.1987.tb45709.x

  31. Russell A.J., Klibanov A.M. Inhibitor-induced enzyme activation in organic solvents // J. Biol. Chem. 1988. V. 263. № 24. P. 11624. https://doi.org/10.1016/s0021-9258(18)37828-1

  32. Ohya Y., Miyaoka J., Ouchi T. Recruitment of enzyme activity in albumin by molecular imprinting // Macromol. Rapid Commun. 1996. V. 17. № 12. P. 871. https://doi.org/10.1002/marc.1996.030171205

  33. Slade C.J., Vulfson E.N. Induction of catalytic activity in proteins by lyophilization in the presence of a transition state analogue // Biotechnol. Bioeng. 1998. V. 57. № 2. P. 211. https://doi.org/10.1002/(SICI)1097-0290(19980120)57: 2<211::AID-BIT9>3.0.CO;2-Q

  34. Дмитриенко Е.В., Пышная И.А., Мартьянов О.Н., Пышный Д.В. Молекулярно импринтированные полимеры для биомедицинских и биотехнологических применений // Успехи химии. 2016. Т. 85. № 5. С. 513. https://doi.org/10.1070/RCR4542

  35. Medlock J., Das A.A.K., Madden L.A., Allsup D.J., Paunov V.N. Cancer bioimprinting and cell shape recognition for diagnosis and targeted treatment // Chem. Soc. Rev. 2017. V. 46. № 16. P. 5110. https://doi.org/10.1039/c7cs00179g

  36. Filby B.W., Hardman M.J., Paunov V.N. Antibody-free bioimprint aided sandwich ELISA technique for cell recognition and rapid screening for bacteria // Nano Select. 2020. V. 1. № 6. P. 673. https://doi.org/10.1002/nano.202000113

  37. Remaud P., Medlock J., Das A.A.K., Allsup D.J., Madden L.A., Nees D., Weldrick P.J., Paunov V.N. Targeted removal of blood cancer cells from mixed cell populations by cell recognition with matching particle imprints // Mater. Chem. Front. 2020. V. 4. № 1. P. 197. https://doi.org/10.1039/c9qm00531e

  38. Sardaremelli S., Hasanzadeh M., Razmi H. Chemical binding of horseradish peroxidase enzyme with poly beta-cyclodextrin and its application as molecularly imprinted polymer for the monitoring of H2O2 in human plasma samples // J. Mol. Recognit. 2021. V. 34. № 5. Article e2884. https://doi.org/10.1002/jmr.2884

  39. Cai W., Li H.H., Lu Z.X., Collinson M.M. Bacteria assisted protein imprinting in sol-gel derived films // Analyst. 2018. V. 143. № 2. P. 555. https://doi.org/10.1039/c7an01509g

  40. Pelle M., Das A.A.K., Madden L.A., Paunov V.N. Bioimprint mediated label-free isolation of pancreatic tumor cells from a healthy peripheral blood cell population // Adv. Biosyst. 2020. V. 4. № 11. P. 1. https://doi.org/10.1002/adbi.202000054

  41. Sarwar M., Evans J.J. Bioimprinting: bringing together 2D and 3D in dissecting cancer biology // BioTechniques. 2021. V. 71. № 5. P. 543. https://doi.org/10.2144/btn-2021-0058

  42. Hashemi A., Nock V., Alkaisi M., Ali A. Enhancing the resolution of bioimprinted casein microdevices // Int. J. Nanotechnol. 2018. V. 15. № 8. P. 676–682. https://doi.org/10.1504/IJNT.2018.098433

  43. Ansari S., Masoum S. Molecularly imprinted polymers for capturing and sensing proteins: current progress and future implications // Trends Anal Chem. 2019. V. 114. P. 29. https://doi.org/10.1016/j.trac.2019.02.008

  44. Abbasy L., Mohammadzadeh A., Hasanzadeh M., Razmi N. Development of a reliable bioanalytical method based on prostate specific antigen trapping on the cavity of molecular imprinted polymer towards sensing of PSA using binding affinity of PSA-MIP receptor: A novel biosensor // J. Pharm. Biomed. Anal. 2020. V. 188. Article 113447. https://doi.org/10.1016/j.jpba.2020.113447

  45. Teke M., Sezgintürk M.K., Dinçkaya E., Telefoncu A. A bio-imprinted urease biosensor: Improved thermal and operational stabilities // Talanta. 2008. V. 74. № 4. P. 661. https://doi.org/10.1016/j.talanta.2007.06.031

  46. Piletsky S. Molecular Imprinting of Polymers. CRC Press, 2006. https://doi.org/10.1201/9781498713542

  47. Whitty A. Cooperativity and biological complexity // Nat. Chem. Biol. 2008. V. 4. № 8. P. 435. https://doi.org/10.1038/nchembio0808-435

  48. Brandão L.M.S., Barbosa M.S., Souza R.L., Pereira M.M., Lima Á.S., Soares C.M. Lipase activation by molecular bioimprinting: The role of interactions between fatty acids and enzyme active site // Biotechnol. Prog. 2021. V. 37 № 1. P. 1. https://doi.org/10.1002/btpr.3064

  49. Pauling L. A theory of the formation of antibodies // J. Am. Chem. Soc. 1940. V. 372. № 62. P. 2643.

  50. Pauling L., Campbell D.H. The production of antibodies in vitro // Science. 1942. V. 95. № 2469. P. 440. https://doi.org/10.1126/science.95.2469.440

  51. Pauling L., Campbell D.H. The manufacture of antibodies in vitro // J. Exp. Med. 1942. V. 76. № 2. P. 211. https://doi.org/10.1084/jem.76.2.211

  52. Dickey F.H. The preparation of specific adsorbents. // Proc. Natl. Acad. Sci. USA. 1949.V. 35. № 5. P. 227. https://doi.org/10.1073/pnas.35.5.227

  53. Li Z., Liu H., Zhao G., Wang P., Wang L., Wu H., Fang X., Sun X., Wu X., Zheng Z. Enhancing the performance of a phospholipase A1 for oil degumming by bio-imprinting and immobilization // J. Mol. Catal. B: Enzym. 2016. V. 123. P. 122. https://doi.org/10.1016/j.molcatb.2015.11.018

  54. Pidenko P., Presnyakov K., Beloglazova N., Burmistrova N. Imprinted proteins for determination of ovalbumin // Anal. Bioanal. Chem. 2022. P. 1. https://doi.org/10.1007/s00216-022-04009-3

  55. Pidenko P., Zhang H., Lenain P., Goryacheva I., De Saeger S., Beloglazova N. Imprinted proteins as a receptor for detection of zearalenone // Anal. Chim. Acta. 2018. V. 1040. P. 99. https://doi.org/10.1016/j.aca.2018.07.062

  56. Yin Y., Dong Z., Luo Q., Liu J. Biomimetic catalysts designed on macromolecular scaffolds // Prog. Polym. Sci. 2012. V. 37. № 11. P. 1476. https://doi.org/10.1016/j.progpolymsci.2012.04.001

  57. Klibanov A.M. Improving enzymes by using them in organic solvents // Nature. 2001. V. 409. № 6817. P. 241. https://doi.org/10.1038/35051719

  58. Zaks A., Klibanov A.M. Enzyme-catalyzed processes in organic solvents // Proc. Natl. Acad. Sci. USA. 1985. V. 82. № 10. Article 31923196. https://doi.org/10.1073/pnas.82.10.3192

  59. Zaks A., Klibanov A.M. Enzymatic catalysis in nonaqueous solvents // J. Biol. Chem. 1988. V. 263. № 7. P. 3194. https://doi.org/10.1016/s0021-9258(18)69054-4

  60. Sánchez D.A., Alnoch R.C., Tonetto G.M., Krieger N., Ferreira M.L. Immobilization and bioimprinting strategies to enhance the performance in organic medium of the metagenomic lipase LipC12 // J. Biotechnol. 2021. V. 342. P. 13. https://doi.org/10.1016/j.jbiotec.2021.09.022

  61. Mustafa A., Niikura F., Pastore C., Allam H.A., Hassan O.B., Mustafa M., Inayat A., Salah S.A., Salam A.A., Mohsen R. Selective synthesis of alpha monoglycerides by a clean method: Techno-economic and environmental assessment // Sustain. Chem. Pharm. 2022. V. 27. Article 100690. https://doi.org/10.1016/j.scp.2022.100690

  62. Almeida F.L.C., Castro M.P.J., Travália B.M., Forte M.B.S. Trends in lipase immobilization: Bibliometric review and patent analysis // Process Biochem. 2021. V. 110. P. 37. https://doi.org/10.1016/j.procbio.2021.07.005

  63. Joyce P., Gustafsson H., Prestidge C.A. Engineering intelligent particle-lipid composites that control lipase-mediated digestion // Adv. Colloid Interface Sci. 2018. V. 260. P. 1. https://doi.org/10.1016/j.cis.2018.08.001

  64. Bordes F., Cambon E., Dossat-Létisse V., An dré I., Croux C., Nicaud J.M., Narty A. Improvement of Yarrowia lipolytica lipase enantioselectivity by using mutagenesis targeted to the substrate binding site // Chem Bio Chem 2009. V. 10. № 10. P. 1705. https://doi.org/10.1002/cbic.200900215

  65. Yan Y., Zhang X., Chen D. Enhanced catalysis of Yarrowia lipolytica lipase LIP2 immobilized on macroporous resin and its application in enrichment of polyunsaturated fatty acids // Bioresour. Technol. 2013. V. 131. P. 179. https://doi.org/10.1016/j.biortech.2012.12.092

  66. Matsumoto M., Matsui E. Enhanced activities and thermostability of lipase pretreated with carboxylic and perflurocarboxylic acids in transesterification // J. Chem. Technol. Biotechnol. 2018. V. 93. № 11. P. 3219. https://doi.org/10.1002/jctb.5678

  67. Matsumoto M., Nakao K., Tahara Y. Effects of imprinting and water activity on transesterification and thermostability with lipases in ionic liquid // Chem. Biochem. Eng. Q. 2021. V. 35. № 1. P. 57. https://doi.org/10.15255/CABEQ.2020.1899

  68. Matsumoto M., Hasegawa Y. Enzymatic kinetics of solvent-free esterification with bio-imprinted lipase // Chem. Biochem. Eng. Q. 2020. V. 33. № 4. P. 495. https://doi.org/10.15255/CABEQ.2019.1692

  69. Li B., Duan D., Wang J., Li H., Zhang X., Zhao B. Improving phospholipase D activity and selectivity by bio-imprinting-immobilization to produce phosphatidylglycerol // J. Biotechnol. 2018. V. 281. P. 67. https://doi.org/10.1016/j.jbiotec.2018.06.343

  70. Mateo C., Palomo J.M., Fernandez-Lorente G., Guisan J.M., Fernandez-Lafuente R. Improvement of enzyme activity, stability and selectivity via immobilization techniques // Enzyme Microb. Technol. 2007. V. 40. № 6. P. 1451. https://doi.org/10.1016/j.enzmictec.2007.01.018

  71. Burmistrova N.A., Pidenko P.S., Pidenko S.A., Zacharevich A.M., Skibina Y.S., Beloglazova N.V., Goryacheva I.Y. Soft glass multi-channel capillaries as a platform for bioimprinting // Talanta. 2020. V. 208. Article 120445. https://doi.org/10.1016/j.talanta.2019.120445

  72. Sampath C., Belur P.D., Iyyasami R. Enhancement of n-3 polyunsaturated fatty acid glycerides in sardine oil by a bioimprinted cross-linked Candida rugosa lipase // Enzyme Microb. Technol. 2018. V. 110. P. 20. https://doi.org/10.1016/j.enzmictec.2017.12.003

  73. Kahveci D., Xu X. Enhancement of activity and selectivity of Candida rugosa lipase and Candida antarctica lipase A by bioimprinting and/or immobilization for application in the selective ethanolysis of fish oil // Biotechnol. Lett. 2011. V. 33. № 10. P. 2065. https://doi.org/10.1007/s10529-011-0671-z

  74. Sheldon R.A., van Pelt S. Enzyme immobilisation in biocatalysis: Why, what and how // Chem. Soc. Rev. 2013. V. 42. № 15. P. 6223. https://doi.org/10.1039/c3cs60075k

  75. Cui J.D., Zhang S., Sun L.M. Cross-Linked enzyme aggregates of phenylalanine ammonia lyase: Novel biocatalysts for synthesis of L-phenylalanine // Appl. Biochem. Biotechnol. 2012. V. 167. № 4. P. 835. https://doi.org/10.1007/s12010-012-9738-0

  76. Diaz-Vidal T., Armenta-Perez V.P., Rosales-Rivera L.C., Mateos-Díaz J.C., Rodríguez J.A. Cross-linked enzyme aggregates of recombinant Candida antarctica lipase B for the efficient synthesis of olvanil, a nonpungent capsaicin analogue // Biotechnol. Prog. 2019. V. 35. № 4. P. 1. https://doi.org/10.1002/btpr.2807

  77. Li K., Wang J., He Y., Cui G., Abdulrazaq M.A., Yan Y. Enhancing enzyme activity and enantioselectivity of Burkholderia cepacia lipase via immobilization on melamine-glutaraldehyde dendrimer modified magnetic nanoparticles // Chem. Eng. J. 2018. V. 351. P. 258. https://doi.org/10.1016/j.cej.2018.06.086

  78. Murtaza G., Rizvi A.S., Irfan M., Yan D., Khan R.U., Rafique B., Xue M., Meng Z.S. Glycated albumin based photonic crystal sensors for detection of lipopolysaccharides and discrimination of gram-negative bacteria // Anal. Chim. Acta. 2020. V. 1117. P. 1. https://doi.org/10.1016/j.aca.2020.04.018

Дополнительные материалы отсутствуют.