Агрохимия, 2023, № 9, стр. 28-36

Совместное воздействие штамма PGPB Pseudomonas plecoglossicida 2,4-D и гуминовых веществ на рост, содержание фотосинтетических пигментов и фитогормонов в растениях пшеницы в условиях засухи

А. В. Феоктистова 1*, М. Д. Тимергалин 1, Т. В. Рамеев 1, С. П. Четвериков 1

1 Уфимский институт биологии – обособленное структурное подразделение Уфимского федерального исследовательского центра РАН
450054 Уфа, просп. Октября, 69, Россия

* E-mail: feoktistova.arisha@yandex.ru

Поступила в редакцию 01.03.2023
После доработки 08.04.2023
Принята к публикации 14.06.2023

Аннотация

Показано накопление сырой массы растений пшеницы при обработке штаммом бактерий Pseudomonas plecoglossicida 2,4-D и гуминовыми веществами при дефиците почвенной влаги. Стимуляция роста растений связана с активацией роста корня, что приводило к увеличению индекса азотного баланса и концентрации хлорофилла в побегах обработанных растений. Обнаруженное увеличение концентрации хлорофилла в растениях, обработанных P. plecoglossicida 2,4-D, коррелировало со снижением содержания абсцизовой кислоты в побегах, а у растений, обработанных гуматами – с увеличением цитокининов в побегах. Более высокая эффективность обработки растений комбинацией бактерий и гуминовых веществ, чем любым из них в отдельности, может быть связана с аддитивным эффектом этих обработок на гормональный баланс.

Ключевые слова: Pseudomonas plecoglossicida 2,4-D, пшеница, засуха, фитогормоны.

Список литературы

  1. Ruzzi M., Aroca R. Plant growth-promoting rhizobacteria act as biostimulants in horticulture // Sci. Hortic. 2015. V. 196. P. 124–134. https://doi.org/10.1016/j.scienta.2015.08.042

  2. Backer R., Rokem J.S., Ilangumaran G., Lamont J., Praslickova D., Ricci E., Subramanian S., Smith D.L. Plant growth-promoting rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture // Front. Plant Sci. 2018. V. 9. P. 1473. https://doi.org/10.3389/fpls.2018.01473

  3. Kudoyarova. G., Arkhipova T., Korshunova T., Bakaeva M., Loginov O., Dodd I.C. Phytohormone mediation of interactions between plants and non-symbiotic growth promoting bacteria under edaphic stresses // Front. Plant Sci. 2019. V. 10. P. 1368. https://doi.org/10.3389/fpls.2019.01368

  4. Richardson A.E., Barea J.M., Mc Neill A.M., Prigent-Combaret C. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms // Plant Soil. 2009. V. 321. P. 305–339. https://doi.org/10.1007/s11104-009-9895-2

  5. Kudoyarova G.R., Vysotskaya L.B., Arkhipova T.N., Kuzmina L.Y., Galimsyanova N.F., Sidorova L.V., Gabbasova I.M., Melentiev A.I., Veselov S.Y. Effect of auxin producing and phosphate solubilizing bacteria on mobility of soil phosphorus, growth rate, and P acquisition by wheat plants // Acta Physiol. Plant. 2017. V. 39. P. 253. https://doi.org/10.1007/s11738-017-2556-9

  6. Meena V.S., Mauryaa B.R., Verma J.P. Does a rhizospheric microorganism enhance K+ availability in agricultural soils? // Microbiol. Res. 2014. V. 169. P. 337–334. https://doi.org/10.1016/j.micres.2013.09.003

  7. Islam M.R., Sultana T., Joe M.M., Yim W., Cho J.-C., Sa T. Nitrogen-fixing bacteria with multiple plant growth-promoting activities enhance growth of tomato and red pepper // J. Basic Microbiol. 2013. V. 53. P. 1004–1015. https://doi.org/10.1002/jobm.201200141

  8. Asari S., Tarkowská D., Rolčík J., Novák O., David Palmero D.V., Bejai S., Meijer J. Analysis of plant growth-promoting properties of Bacillus amyloliquefaciens UCMB5113 using Arabidopsis thaliana as host plant // Planta. 2017. V. 245. P. 15–30.

  9. Bakhshandeh E., Gholamhosseini M., Yaghoubian Y., Pirdashti H. Plant growth promoting microorganisms can improve germination, seedling growth and potassium uptake of soybean under drought and salt stress // Plant Growth Regul. 2020. V. 90. P. 123–136. https://doi.org/10.1007/s10725-019-00556-5

  10. Czarnes S., Mercier P.-E., Lemoine D.G., Hamzaoui J., Legendre L. Impact of soil water content on maize responses to the plant growth-promoting rhizobacterium Azospirillum lipoferum CRT1 // J. Agro. Crop Sci. 2020. V. 206. P. 505–516. https://doi.org/10.1111/jac.12399

  11. Mukhtar T., Rehman S., Smith D., Sultan T., Seleiman M.F., Alsadon A.A. Mitigation of heat stress in Solanum lycopersicum L. by ACC-deaminase and exopolysaccharide producing Bacillus cereus: Effects on biochemical profiling // Sustainability. 2020. V. 12. P. 2159. https://doi.org/10.3390/su12062159

  12. El-Sayed S.Y.S., Hagab R.H. Effect of organic acids and plant growth promoting rhizobacteria (PGPR) on biochemical content and productivity of wheat under saline soil conditions // Middle East J. Agric. Res. 2020. V. 9. P. 227–242. https://doi.org/10.36632/mejar/2020.9.2.2

  13. Shen J., Guo M., Wang Y., Yuan X., Wen Y., Song X., Dong S., Guo P. Humic acid improves the physiological and photosynthetic characteristics of millet seedlings under drought stress // Plant Signal. Behav. 2020. V. 15. № 8. P. 1774212. https://doi.org/10.1080/15592324.2020.1774212

  14. Canellas L.P., Olivares F.L., Aguiar N.O., Jones D.L., Nebbioso A., Mazzei P. Humic and fulvic acids as biostimulants in horticulture // Sci. Hortic. 2015. V. 196. P. 15–27. https://doi.org/10.1016/j.scienta.2015.09.013

  15. Olaetxea M., De Hita D., Garcia C.A., Fuentes M., Baigorri R., Mora V. Hypothetical framework integrating the main mechanisms involved in the promoting action of rhizospheric humic substances on plant root and shoot-growth // Appl. Soil Ecol. 2017. V. 123. P. 521–537. https://doi.org /https://doi.org/10.1016/j.apsoil.2017.06.007

  16. Nazarov A.M., Garankov I.N., Tuktarova I.O., Salmanova E.R., Arkhipova T.N., Ivanov I.I., Feoktistova A.V., Prostyakova Z.G., Kudoyarova G.R. Hormone balance and shoot growth in wheat (Triticum durum Desf.) plants as influenced by sodium humates of the granulated organic fertilizer // Agricult. Biol. 2020. V. 55. P. 945–955.

  17. Ullah A., Ali M., Shahzad K., Ahmad F., Iqbal S., Rahman M.H.U., Ahmad S., Iqbal M.M., Danish S., Fahad S., Alkahtani J. Impact of seed dressing and soil application of potassium humate on cotton plants productivity and fiber quality // Plants. 2020. V. 9. P. 1444. https://doi.org/10.3390/plants9111444

  18. Olaetxea M., Mora V., Bacaicoa E., Garnica M., Fuentes M., Casanova E., Zamarreño A.M., Iriarte J.C., Etayo D., Ederra I. Abscisic acid regulation of root hydraulic conductivity and aquaporin gene expression is crucial to the plant shoot growth enhancement caused by rhizosphere humic acids // Plant Physiol. 2015. V. 169. P. 2587–2596. https://doi.org/10.1104/pp.15.00596

  19. Tikhonov V.V., Yakushev A.V., Zavgorodnyaya Y.A., Byzov B.A., Demin V.V. Effects of humic acids on the growth of bacteria // Euras. J. Soil Sci. 2010. V. 43. P. 305–313. https://doi.org/10.1134/S1064229310030087

  20. Verbon E.H., Liberman L.M. Beneficial microbes affect endogenous mechanisms controlling root development // Trends Plant Sci. 2016. V. 21. P. 218–229. https://doi.org/10.1016/j.tplants.2016.01.013

  21. Cueva-Yesquén L.G., Goulart M.C., Attili de Angelis D., Nopper Alves M., Fantinatti-Garboggini F. Multiple plant growth-promotion traits in endophytic bacteria retrieved in the vegetative stage from passionflower // Front. Plant Sci. 2021. V. 11. P. 621740. https://doi.org/10.3389/fpls.2020.621740

  22. Feoktistova A., Bakaeva M., Timergalin M., Chetverikova D., Kendjieva A., Rameev T., Hkudaygulov G., Nazarov A., Kudoyarova G., Chetverikov S. Effects of humic substances on the growth of Pseudomonas plecoglossicida 2,4-D and wheat plants inoculated with this strain // Microorganisms. 2022. V. 10. P. 1066. https://doi.org/10.3390/microorganisms10051066

  23. Hai N.N., Chuong N.N., Tu N.H.C., Kisiala A., Hoang X.L.T., Thao N.P. Role and regulation of cytokinins in plant response to drought stress // Plants (Basel). 2020. V. 9. P. 422. https://doi.org/10.3390/plants9040422

  24. Muhammad Aslam M., Waseem M., Jakada B.H., Okal E.J., Lei Z., Saqib H.S.A., Yuan W., Xu W., Zhang Q. Mechanisms of abscisic acid-mediated drought stress responses in plants // Inter. J. Mol. Sci. 2022. V. 23. P. 1084. https://doi.org/10.3390/10.3390/ijms23031084

  25. Chetverikov S.P., Sharipov D.A., Korshunova T.Y., Loginov O.N. Degradation of perfluorooctanyl sulfonate by strain Pseudomonas plecoglossicida 2,4-D // Appl. Biochem. Microbiol. 2017. V. 53. P. 533–538. https://doi.org/10.1134/S0003683817050027

  26. Bakaeva M., Kuzina E., Vysotskaya L., Kudoyarova G., Arkhipova T., Rafikova G., Chetverikov S., Korshunova T., Chetverikova D., Loginov O. Capacity of Pseudomonas strains to degrade hydrocarbons, produce auxins and maintain plant growth under normal conditions and in the presence of petroleum contaminants // Plants. 2020. V. 9. P. 379. https://doi.org/10.3390/plants9030379

  27. Vysotskaya L.B., Korobova A.V., Veselov S.Y., Dodd I.C., Kudoyarova G.R. ABA mediation of shoot cytokinin oxidase activity: assessing its impacts on cytokinin status and biomass allocation of nutrient deprived durum wheat // Funct. Plant Biol. 2009. V. 36. P. 66–72.

  28. Kudoyarova G.R., Melentiev A.I., Martynenko E.V., Arkhipova T.N., Shendel G.V., Kuzmina L.Y., Dodd I.C., Veselov S.Yu. Cytokinin producing bacteria stimulate amino acid deposition by wheat roots // Plant Physiol. Biochem. 2014. V. 83. P. 285–291. https://doi.org/10.1016/j.plaphy.2014.08.015

  29. Nacry P., Canivenc G., Muller B., Azmi A., Onckelen H.V., Rossignol M., Doumas P. A role for auxin redistribution in the response of the root system architecture to phosphate starvation in Arabidopsis // Plant Physiol. 2005. V. 138. P. 2061–2074. https://doi.org/10.1104/pp.105.060061

  30. Yang J., Worley E., Udvardi M. A NAP-AAO3 regulatory module promotes chlorophyll degradation via aba biosynthesis in Arabidopsis leaves // Plant Cell. 2014. V. 26. P. 4862–4874. https://doi.org/10.1105/tpc.114.133769

  31. Belimov A.A., Dodd I.C., Safronova V.I., Dumova V.A., Shaposhnikov A.I., Ladatko A.G., Davies W.J. Abscisic acid metabolizing rhizobacteria decrease ABA concentrations in planta and alter plant growth // Plant Physiol. Biochem. 2014. V. 74. P. 84–91. https://doi.org/10.1016/j.plaphy.2013.10.032

  32. Pizzeghello D., Francioso O., Ertani A., Muscolo A., Nardi S. Isopentenyladenosine and cytokinin-like activity of different humic substances // J. Geochem. Explor. 2013. V. 129. P. 70–75.

  33. Hönig M., Plíhalova L., Husičkova A., Nisler J., Doležal K. Role of cytokinins in senescence, antioxidant defence and photosynthesis // Inter. J. Mol. Sci. 2018. V. 19. P. 4045. https://doi.org/10.3390/ijms19124045

  34. Korobova A.V., Akhiyarova G.R., Veselov S.Y., Kudoyarova G.R., Fedyaev V.V., Farkhutdinov R.G. Participation of nitrate sensor NRT1.1 in the control of cytokinin level and root elongation under normal conditions and nitrogen deficit // Mosc. Univ. Biol. Sci. Bull. 2019. V. 74. P. 221–226. https://doi.org/10.3103/S0096392519040072

  35. Werner T., Nehnevajova E., Köllmer I., Novak O., Strnad M., Krämer U., Schmülling T. Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and Tobacco // Plant Cell. 2010. V. 22. P. 3905–3920. https://doi.org/10.1105/tpc.109.072694

  36. Liu S., Strauss S., Adibi M., Mosca G., Yoshida S., Ioio R.D., Runions A., Andersen T.G., Grossmann G., Huijser P., Smith R.S., Tsiantis M. Cytokinin promotes growth cessation in the Arabidopsis root // Curr. Biol. 2022. V. 32. P. 1974–1985. https://doi.org/10.1016/j.cub.2022.03.019

  37. Jones B.J., Ljung K. Auxin and cytokinin regulate each other’s levels via a metabolic feedback loop // Plant Signal. Behav. 2011. V. 6. P. 901–904. https://doi.org/10.4161/psb.6.6.15323

Дополнительные материалы отсутствуют.