Агрохимия, 2023, № 5, стр. 77-82

Способ получения, исследование структуры и механических свойств композиционного материала “хитозан–диоксид титан” сельскохозяйственного назначения

А. С. Баикин 1*, А. А. Мельникова 1, А. В. Михайлова 12, М. А. Каплан 1, Е. О. Насакина 1, К. В. Сергиенко 1, С. В. Конушкин 1, Е. П. Севостьянова 2, Е. В. Степанова 2, С. В. Железова 2, А. П. Глинушкин 2, М. А. Севостьянов 12

1 Институт металлургии и материаловедения им. А.А. Байкова РАН
119332 Москва, Ленинский просп., 49, Россия

2 Всероссийский научно-исследовательский институт фитопатологии
143050 Московская обл., Одинцовский р.-н, р.п. Большие Вяземы, ул. Институт, влад. 5, Россия

* E-mail: imet@imet.ac.ru

Поступила в редакцию 09.12.2022
После доработки 09.01.2023
Принята к публикации 16.02.2023

Аннотация

Биопротекторные материалы для сельского хозяйства являются важной частью современного мира. Для их разработки используют широкий спектр различных соединений. Например, диоксид титана помимо защитных свойств положительно влияет на усваиваемость питательных веществ, улучшает эффективность удобрений и, соответственно, позволяет снизить их потребление, что особенно важно в современном мире. Однако прямое введение диоксида титана является малоэффективным из-за процессов его потери. Наилучшим вариантом является пролонгированное выделение, обеспечивающее требуемую для растения концентрацию диоксида титана в почве. Введение в полимерную матрицу диоксида титана может решить эту задачу за счет постепенного высвобождения. В свою очередь к такой полимерной матрице предъявляется целый ряд требований их свойств. Возможным решением может быть хитозан – нетоксичный, неиммуногенный, антимикробный, биологически безопасный и биодеградируемый материал. В работе рассмотрено получение композиционного материала “хитозан–диоксид титана” в гранулярной форме. Исследована эффективность материала с массовыми соотношениями хитозана к диоксиду титана 1 : 1, 2 : 1 и 3 : 1, а также хитозана без диоксида титана. Исследована структура и механические свойства полученных композиционных материалов.

Ключевые слова: хитозан, диоксид титана, композиционный материал, сельское хозяйство, биопротектор, механические свойства, структура.

Список литературы

  1. Stanley N., Mahanty B. Preparation and characterization of biogenic CaCO3-reinforced polyvinyl alcohol-alginate hydrogel as controlled-release urea formulation // Polym. Bull. 2019. V. 77. P. 529–540.

  2. Vishwakarma K., Upadhyay N., Kumar N., Tripathi D.K., Chauhan D.K., Sharma S., Sahi S. Potential applications and avenues of nanotechnology in sustainable agriculture // Academic Press. 2018. V. 1. P. 473–500.

  3. Babadi F.E., Yunus R., Rashid S.A., Salleh M.M., Ali S. New coating formulation for the slow release of urea using a mixture of gypsum and dolomitic limestone // Particuology. 2015. V. 23. P. 62–67.

  4. Sim D.H.H., Tan I.A.W., Lim L.L.P., Hameed B.H. Encapsulated biochar-based sustained release fertilizer for precision agriculture. A review // J. Cleaner Product. 20 June 2021. V. 303. 127018. https://doi.org/10.1016/j.jclepro.2021.127018

  5. Liu R., Lal R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions // Sci. Total Environ. 2015. V. 514. P. 131–139.

  6. Dimkpa C.O., Bindraban P.S. Nanofertilizers: new products for the industry? // J. Agric. Food Chem. 2017. https://doi.org/10.1021/acs.jafc.7b02150

  7. Kah M., Kookana R.S., Gogos A., Bucheli T.D. A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues // Nat. Nanotechnol. 2018. https://doi.org/10.1038/s41565-018-0131-1

  8. Raliya R., Saharan V., Dimkpa C., Biswas P. Nanofertilizer for precision and sustainable agriculture: current state and future perspectives // J. Agric. Food Chem. 2017. https://doi.org/10.1021/acs.jafc.7b02178

  9. Sangeeta Chavan, Vishwas Sarangdhar, Vigneshwaran Nadanathangam. Toxicological effects of TiO2 nanoparticles on plant growth promoting soil bacteria // Emerg. Contamin. 2020. V. 6. P. 87–92. https://doi.org/10.1016/j.emcon.2020.01.003

  10. Selma M.H., Jawad A.L., Taha Ali A., Salim M.M. Synthesis and characterization of pure and Fe doped TiO2 thin films for antimicrobial activity // Optik. 2017. V. 142. P. 42–53. https://doi.org/10.1016/j.ijleo.2017.05.048

  11. Sreeja S., Shetty K.V. Photocatalytic water disinfection under solar irradiation by Ag@TiO2 core-shell structured nanoparticles // Solar Energy. 2017. V. 157. P. 236–243. https://doi.org/10.1016/j.solener.2017.07.057

  12. Grégori D., Benchenaa I., Chaput F., Thérias S., Gardette J.-L., Léonard D., Guillard C., Parola S. Mechanically stable and photocatalytically active TiO2/SiO2 hybrid films on flexible organic substrates // J. Mater. Chem. 2014. V. 2. P. 20096–20104. https://doi.org/10.1039/C4TA03826F

  13. Vladkova T., Angelov O., Stoyanova D., Gospodinova D., Gomes L., Soares A., Mergulhao F., Ivanova I. Magnetron co-sputtered TiO2/SiO2/Ag nanocomposite thin coatings inhibiting bacterial adhesion and biofilm formation // Surface Coat. Technol. 2020. V. 384. Iss. 125322. https://doi.org/10.1016/j.surfcoat.2019.125322

  14. Xing Y., Yang H., Guo X., Bi X., Liu X., Xu Q., Wang Q., Li W., Li X., Shui Y., Chen C., Zheng Y. Effect of chitosan/Nano-TiO2 composite coatings on the postharvest quality and physicochemical characteristics of mango fruits // Sci. Horticult. 2020. V. 263. Iss. 109135. https://doi.org/10.1016/j.scienta.2019.109135

  15. González-Saucedo A., Barrera-Necha L.L., Ventura-Aguilar R.I., Correa-Pacheco Z.N., Bautista-Baños S., Hernández-López M. Extension of the postharvest quality of bell pepper by applying nanostructured coatings of chitosan with Byrsonima crassifolia (L.) Kunth extract // Postharvest Biol. Technol. 2019. V. 149. P. 74–82. https://doi.org/10.1016/j.postharvbio.2018.11.019

  16. Waani S.P.T., Irum S., Gul I., Yaqoob K., Khalid M.U., Ali M.A., Manzoor U., Noor T., Ali S., Rizwan M., Arshad M. TiO2 nanoparticles dose, application method and phosphorous levels influence genotoxicity in Rice (Oryza sativa L.), soil enzymatic activities and plant growth // Ecotoxicol. Environ. Saf. 2021. V. 213. Iss. 111977. https://doi.org/10.1016/j.ecoenv.2021.111977

  17. Bakshi M., Liné C., Bedolla D.E., Stein R.J., Kaegi R., Sarret G., Pradas del Real A.E., Castillo-Michel H., Abhilash P.C., Larue C. Assessing the impacts of sewage sludge amendment containing nano-TiO2 on tomato plants: A life cycle study // J. Hazard. Material. 2019. V. 369. P. 191–198. https://doi.org/10.1016/j.jhazmat.2019.02.036

  18. Ullah S., Adeel M., Zain M., Rizwan M., Irshad M.K., Jilani G., Hameed A., Khan A., Arshad M., Raza A., Baluch M.A., Rui Y. Physiological and biochemical response of wheat (Triticum aestivum) to TiO2 nanoparticles in phosphorous amended soil: A full life cycle study // J. Environ. Manag. 2020. V. 263. Iss. 110365. https://doi.org/10.1016/j.jenvman.2020.110365

Дополнительные материалы отсутствуют.