Известия РАН. Теория и системы управления, 2023, № 4, стр. 25-49

ТРЕХМЕРНОЕ МНОЖЕСТВО ДОСТИЖИМОСТИ ДЛЯ МАШИНЫ ДУБИНСА: СВЕДЕНИЕ ОБЩЕГО СЛУЧАЯ ОГРАНИЧЕНИЙ НА ПОВОРОТЫ К КАНОНИЧЕСКОМУ

В. С. Пацко a*, А. А. Федотов a

a Институт математики и механики УрО РАН
Екатеринбург, Россия

* E-mail: patsko@imm.uran.ru

Поступила в редакцию 06.11.2022
После доработки 12.12.2022
Принята к публикации 06.02.2023

Аннотация

В математической теории управления “машина Дубинса” – нелинейная модель движения, описываемая дифференциальными соотношениями, в которой скалярное управление определяет мгновенную угловую скорость поворота. Величина линейной скорости предполагается постоянной. Фазовый вектор системы является трехмерным. Он включает в себя две координаты геометрического положения и одну координату, имеющую смысл угла наклона вектора скорости. Подобная модель является очень популярной и используется в различных задачах управления, связанных с движением самолета в горизонтальной плоскости, c упрощенным описанием движения автомобиля или небольших надводных и подводных аппаратов и т.д. Скалярное управление может быть стеснено либо симметричным ограничением (когда минимальные радиусы поворота влево и вправо совпадают), либо несимметричным (когда поворот возможен в обе стороны, но минимальные радиусы поворотов не совпадают). Обычно задачи с симметричными и несимметричными ограничениями рассматриваются отдельно. Показано, что при построении множества достижимости “в момент” случай несимметричного ограничения может быть сведен к симметричному случаю.

Список литературы

  1. Dubins L.E. On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial and Terminal Positions and Tangents // American J. Math. 1957. V. 79. № 3. P. 497–516.

  2. Марков А.А. Несколько примеров решения особого рода задач о наибольших и наименьших величинах // Сообщ. Харьков. матем. общ. Вторая сер. 1889. Т. 1. Вып. 2. С. 250–276.

  3. Айзекс Р. Дифференциальные игры. М.: Мир, 1967.

  4. Patsko V.S., Fedotov A.A. Three-dimensional Reachable Set for the Dubins Car: Foundation of Analytical Description // Commun. Optim. Theory. 2022. V. 2022. Article ID 23. P. 1–42.

  5. Laumond J.-P. (ed.) Robot Motion Planning and Control. Berlin; Heidelberg: Springer-Verlag, 1998 (Lecture Notes in Control and Information Sciences. V. 229).

  6. LaValle S.M. Planning Algorithms. Cambridge: Cambridge University Press, 2006.

  7. Бузиков М.Э., Галяев А.А. Перехват подвижной цели машиной Дубинса за кратчайшее время // АиТ. 2021. № 5. С. 3–19.

  8. Ардентов А.А., Локуциевский Л.В., Сачков Ю.Л. Решение серии задач оптимального управления с 2-мерным управлением на основе выпуклой тригонометрии // Доклады Российской академии наук. Математика, информатика, процессы управления. 2020. Т. 494. № 1. С. 86–92.

  9. Хабаров С.П., Шилкина М.Л. Геометрический подход к решению задачи для машин Дубинса при формировании программных траекторий движения // Научно-технический вестник информационных технологий, механики и оптики. 2021. Т. 21. № 5. С. 653–663.

  10. Зимовец А.А., Матвийчук А.Р., Ушаков А.В., Ушаков В.Н. Свойство стабильности в игровой задаче о сближении при наличии фазовых ограничений // Изв. РАН. ТиСУ. 2021. № 4. С. 27–45.

  11. Бортаковский А.С. Оптимальные по быстродействию траектории плоского движения с неограниченной кривизной // Изв. РАН. ТиСУ. 2022. № 4. С. 49–59.

  12. Bakolas E., Tsiotras P. Optimal Synthesis of the Asymmetric Sinistral / Dextral Markov-Dubins Problem // J. Optim. Theory Appl. 2011. V. 150. № 2. P. 233–250.

  13. Миеле А. Механика полета. М.: Наука, 1965.

  14. Pecsvaradi T. Optimal Horizontal Guidance Law for Aircraft in the Terminal Area // IEEE Trans. on Automatic Control. 1972. V. 17. № 6. P. 763–772.

  15. Пацко В.С., Пятко С.Г., Федотов А.А. Трехмерное множество достижимости нелинейной управляемой системы // Изв. РАН. ТиСУ. 2003. № 3. С. 8–16.

  16. Пацко В.С., Федотов А.А. Аналитическое описание множества достижимости для машины Дубинса // Тр. Ин-та математики и механики УрО РАН. 2020. Т. 26. № 1. С. 182–197.

  17. Понтрягин Л.С., Болтянский В.Г., Гамкрелидзе Р.В., Мищенко Е.Ф. Математическая теория оптимальных процессов. М.: Физматгиз, 1961.

  18. Ли Э.Б., Маркус Л. Основы теории оптимального управления. М.: Наука, 1972.

  19. Tolstonogov A.A. Differential Inclusions in a Banach Space. Dordrecht: Kluwer Acad. Publ. 2000 (Mathematics and Its Applications. V. 524).

  20. Пацко В.С., Федотов А.А. Множество достижимости в момент для машины Дубинса в случае одностороннего поворота // Тр. Ин-та математики и механики УрО РАН. 2018. Т. 24. № 1. С. 143–155.

  21. Пацко В.С., Федотов А.А. Структура множества достижимости для машины Дубинса со строго односторонним поворотом // Тр. Ин-та математики и механики УрО РАН. 2019. Т. 25. № 3. С. 171–187.

Дополнительные материалы отсутствуют.