Поверхность. Рентгеновские, синхротронные и нейтронные исследования, 2023, № 11, стр. 3-8

Формирование вискероподобной морфологии на поверхности углеродного волокна при магнетронном распылении

Н. Н. Андрианова ab, А. М. Борисов abc, А. С. Метель c, М. А. Овчинников a*, В. В. Слепцов b, Р. А. Цырков b

a Научно-исследовательский институт ядерной физики имени Д.В. Скобельцына МГУ имени М.В. Ломоносова
119997 Москва, Россия

b Московский авиационный институт (национальный исследовательский университет)
125993 Москва, Россия

c Московский государственный технологический университет “СТАНКИН”
127055 Москва, Россия

* E-mail: ov.mikhail@gmail.com

Поступила в редакцию 14.01.2023
После доработки 22.03.2023
Принята к публикации 22.03.2023

Аннотация

Экспериментально изучено воздействие облучения ионами водорода, гелия, азота и неона со средней энергией 0.8 кэВ на морфологию поверхности при магнетронном распылении высокомодульного углеродного волокна из полиакрилонитрила. Во всех случаях на поверхности формировался вискероподобный рельеф. Наибольшая высота вискеров получалась при облучении ионами азота и неона, наименьшая высота и пониженная плотность вискеров была при облучении ионами водорода. Сравнение с облучением углеродного волокна из полиакрилонитрила ионами инертных газов и азота с энергией 10–30 кэВ показывает, что вискероподобная морфология дополняет разнообразие ионно-индуцированных морфологий поверхности волокна. Полученные результаты обсуждены в рамках существующих моделей образования ионно-индуцированных морфологических элементов на поверхности графитоподобных материалов. Предполагается наличие порога по числу радиационных смещений, создаваемых в поверхностном слое, приводящего к наблюдаемому качественному различию ионно-индуцированной морфологии при низких и высоких энергиях ионов. Проведенные оценки профилей смещений для случая облучения ионами водорода показывают кратно меньшее число смещений, чем для других ионов, что коррелирует с наблюдаемыми в проведенном эксперименте различиями вискеризации выбранными ионами и факторами развития вискеров.

Ключевые слова: углеродное волокно, облучение ионами водорода, инертных газов, азота, магнетронное распыление, морфология поверхности, вискеры, гофры.

Список литературы

  1. Мелешко А.И., Половников С.П. Углерод, углеродные волокна, углеродные композиты. М.: САЙН-ПРЕСС, 2007. 192 с.

  2. Gibson R.F. // Compos. Struct. 2010. V. 92. Iss. 12. P. 2793. https://www.doi.org/10.1016/j.compstruct.2010.05.003

  3. Virgil’ev Yu.S., Kalyagina I.P. // Inorg. Mater. 2004. V. 40. Suppl. 1. P. S33. https://www.doi.org/10.1023/B:INMA.0000036327. 90241.5a

  4. Romanov V.S., Lomov S.V., Verpoest I., Gorbatikh L. // Carbon. 2015. V. 82. P. 184. https://www.doi.org/10.1016/j.carbon.2014.10.061

  5. Sager R.J., Klein P.J., Lagoudas D.C., Zhang Q., Liu J., Dai L. // Compos. Sci. Technol. 2009. V. 69. Iss. 7–8. P. 898. https://www.doi.org/10.1016/j.compscitech. 2008.12.021

  6. Galan U., Lin Y., Ehlert G.J., Sodano H.A. // Compos. Sci. Technol. 2011. V. 71. Iss. 7. P. 946. https://www.doi.org/10.1016/j.compscitech.2011.02.010

  7. Liu Y., Liu X., Ma Z., He Y., Zhang X. // Carbon. 2022. V. 196. P. 128. https://www.doi.org/10.1016/j.carbon.2022.04.069

  8. Floro J.A., Rossnagel S.M., Robinson R.S. // J. Vacuum Sci. Technol. A. 1983. V. 1. P. 1398. https://www.doi.org/10.1116/1.572029

  9. Van Vechten J.A., Solberg W., Batson P.E., Cuomo J.J., Rossnagel S.M. // J. Crystal Growth 1987. V. 82. Iss. 3. P. 289. https://www.doi.org/10.1016/0022-0248(87)90316-2

  10. Рогов А.В., Мартыненко Ю.В., Белова Н.Е., Шульга В.И. // Вопросы атомной науки и техники. Сер. термоядерный синтез. 2011. № 4. С. 65.

  11. Andrianova N.N., Borisov A.M., Mashkova E.S., Parilis E.S., Virgiliev Yu.S. // Horizons in World Physics. 2013. V. 280. P. 171.

  12. Andrianova N.N., Borisov A.M., Virgil`ev Yu.S. Mashkova E.S., Nemov A.S., Pitirimova E.A., Timofeev M.A. // J. Surf. Invest. X-ray, Synchrotron Neutron Tech. 2008. V. 2. № 3. P. 376. https://www.doi.org/10.1134/S1027451008030099

  13. Andrianova N.N., Borisov A.M., Kazakov V.A., Makunin V.A., Mashkova E.S., Ovchinnikov M.A. // Bull. RAS: Physics. 2020. V. 84. № 6. P. 707. https://www.doi.org/10.3103/S1062873820060039

  14. Andrianova N.N., Borisov A.M., Mashkova E.S., Ovchinnikov M.A., Timofyev M.A., Vysotina E.A. // Vacuum. 2021. V. 188. P. 110177. https://www.doi.org/10.1016/j.vacuum.2021.110177

  15. Andrianova N.N., Borisov A.M., Makunin A.V., Mashkova E.S., Ovchinnikov M.A. // J. Phys.: Conf. Ser. 2019. V. 1396. P. 012003. https://www.doi.org/10.1088/1742-6596/1396/1/012003

  16. Andrianova N.N., Anikin V.A., Borisov A.M., Gorina V.A., Makunin A.V., Mashkova E.S., Ovchinnikov M.A., Cheblakova E.G., Sleptsov V.V. // J. Phys.: Conf. Ser. 2019. V. 1313. P. 012001. https://www.doi.org/10.1088/1742-6596/1313/1/012001

  17. Барченко В.Т., Колгин Е.А. Ионно-плазменные технологии в электронном производстве / Под ред. Ю.А. Быстрова. СПб.: Энергоатомиздат. Санкт-Петербургское отд-ние, 2001. 332 с.

  18. Ehrhart P., Schilling W., Ullmaier H. // Encyclopedia Appl. Phys. 1996. V. 15. P. 429. https://www.doi.org/10.1002/3527600434.eap373

  19. Avilkina V.S., Andrianova N.N., Borisov A.M., Mashkova E.S. // Bull. RAS. Phys. 2012. V. 76. P. 520. https://www.doi.org/10.3103/S106287381205005X

  20. Сошников И.П., Лунев А.В., Гаевский М.Э., Нестеров С.И., Кулагина М.М., Роткина Л.Г., Барченко В.Т., Калмыкова И.П., Ефимов А.А., Горбенко О.М. // ЖТФ. 2001 № 7. С. 106.

  21. Bacon D.J., Rao A.S. // J. Nucl. Mater. 1980. V. 91 P. 178. https://www.doi.org/10.1016/0022-3115 (80)90045-8

  22. Liu D., Cherns D., Johns S., Zhou Y., Liu J., Chen W.-Y., Griffiths I., Karthik C., Li M., Kuball M., Kane J., Windes W. // Carbon. 2021. V. 173 P. 215. https://www.doi.org/10.1016/j.carbon.2020.10.086

  23. Niwase K., Tanabe T. // J. Nucl. Mater. 1991. V. 179–181. P. 218. https://www.doi.org/10.1016/0022-3115(91)90065-F

Дополнительные материалы отсутствуют.

Инструменты

Поверхность. Рентгеновские, синхротронные и нейтронные исследования