ФИЗИКОХИМИЯ ПОВЕРХНОСТИ И ЗАЩИТА МАТЕРИАЛОВ, 2023, том 59, № 5, с. 559–568

МЕТОДЫ ИЗУЧЕНИЯ ФИЗИКО-ХИМИЧЕСКИХ СИСТЕМ

МОРФОЛОГИЯ НАНОСТРУКТУР ФТАЛОЦИАНИНА ЛОКАЛИЗОВАННЫХ В СТРУКТУРЕ ЛАТЕКСНОГО ПОЛИМЕРА

© 2023 г. Т. Р. Асламазова^{а, *}, В. А. Котенев^а, А. Ю. Цивадзе^а

^аФедеральное государственное бюджетное учреждение науки, Институт физической химии и электрохимии имени А.Н. Фрумкина РАН, Ленинский пр., 31, Москва, 119071 Россия

*e-mail: sovet 1@phyche.ac.ru Поступила в редакцию 12.04.2023 г. После доработки 22.06.2023 г. Принята к публикации 29.06.2023 г.

Проведен анализ морфологии наноструктуры ионного карбоксилсодержащего фталоцианина и тетранатриевой соли Cu(II)-фталоцианин-тетрасульфониевой кислоты в структуре латексных полимеров с привлечением оптических и квазиоптических методов: оптической микроскопии, атомно-силовой микроскопии (ACM), флюоресцентной и Раман-спектрокопии. Проанализировано многообразие форм и размеров наноструктур фталоцианинов, локализованных в межчастичном пространстве латексных полимеров, что обуславливает различие в их фотохимических свойствах.

Ключевые слова: морфология, агрегация, водорастворимые фталоцианины, латексный полимер, наноструктура, наночастица

DOI: 10.31857/S0044185623700699, EDN: PPQMOE

введение

Интерес к наноматериалам и особенно наночастицам обусловлен их улучшенными физическими и химическими свойствами по сравнению с традиционными материалами. Эти необычные свойства создали множество инновационных применений в областях медицины и фармацевтики, электроники, сельского хозяйства, химического катализа, пищевой промышленности и др. [1–6].

Новые механические, тепловые, магнитные, электронные, оптические и каталитические и др. свойства [1, 2] наноматериалов основаны на отличии их поведения от материалов больших размеров благодаря поверхностным и квантовым эффектам.

Поверхностные эффекты обусловлены главным образом очень большой площадью поверхности и большим количеством частиц на единицу массы; увеличению доли атомов на поверхности в наноматериалах; меньшим контактом атомов, расположенных на поверхности в наноматериалах. В результате каждого из этих различий химические и физические свойства наноматериалов меняются по сравнению с их аналогами большего размера.

Большие площади поверхности и большее отношение поверхности к объему обычно повышают реакционную способность наноматериалов из-за большей реакционной поверхности, а также приводят к значительному влиянию свойств поверхности на их структуру [1–4]. Дисперсность наноматериалов является ключевым фактором для поверхностных эффектов.

Наноматериалы проявляют различные свойства, зависящие от размера, в диапазоне 1–100 нм, где задействованы квантовые явления. Когда радиус материала приближается к асимптотическому экситонному радиусу Бора (расстояние между электроном и дыркой), влияние квантового ограничения становится очевидным [5].

Другими словами, при уменьшении размера материала квантовые эффекты становятся более выраженными, а наноматериалы - квантовыми. Эти квантовые структуры представляют собой физические структуры, в которых все носители заряда (электроны и дырки) ограничены физическими размерами.

Морфологические и топографические особенности наночастиц представляют особый интерес, поскольку они влияют на большинство свойств наночастиц, описанных выше. Эти характеристики включают размер, форму, дисперсность, локализацию, агломерацию/агрегацию, морфологию поверхности, площадь поверхности и пористость наночастиц [7].

Интерес к формированию наночастиц водорастворимых фталоцианинов, как в водной фазе, так и в полимерном объеме, вызван возможностью модификации латексных акриловых пленкообразующих полимеров уже на стадии приготовления композиционного полимера, а также преимуществами самих водоразбавляемых полимеров по сравнению органорастворимыми аналогами [8, 9].

Известно о возможности получения наноматериалов для лакокрасочных материалов (ЛКМ) двумя способами: введением заранее полученных наночастиц [10, 11] или синтезом наночастиц непосредственно в ЛКМ. Это определяет при приготовлении наноЛКМ затруднения равномерного распределение наночастиц в объеме ЛКМ [7]: сложностью сохранения размеров наночастиц, поскольку из-за высокой поверхностной энергии они интенсивно агрегируются; высокой стоимостью, обусловленной энергозатратами на получение наночастиц. Несмотря на перечисленные недостатки, большую часть наноЛКМ ныне изготавливают именно так. Второй способ получения наноЛКМ - "золь-гель технология" - лишен описанных пороков. Эта технология заключается в синтезе наночастиц непосредственно в ЛКМ путем превращения молекул неких веществ, называемых прекурсорами и вводимых в ЛКМ, сначала в "золь", а затем в "гель". Наночастицы, образующиеся при использовании золь-гель технологии, дешевле тех, которые получают измельчением твердых тел.

В отличие от перечисленных выше способов формирование нано-ЛКМ посредством введения водорастворимых фталоцианиновых соединений в водно-полимерную дисперсию позволяет исключить какие-либо отрицательные эффекты. Как показано в работе, посвященной модификации латексных акриловых полимеров водорастворивыми фталоцианинами, при этом имеется возможность придания им уникальных оптических и фотохимических свойств, что создает предпосылки для их широкого практического применения [12, 13].

Следует отметить, что фталоцианины представляют собой макрогетероциклические ароматические соединения, структурно родственные порфиринам, которые способны образовывать прочные комплексы с большинством металлов Периодической системы [14–16].

Введение заместителей в бензольные кольца лигандов позволяет разнообразить свойства получаемых комплексов. Так, введение карбокси- или сульфо-заместителей в молекулы фталоцианинов позволяет получать водорастворимые соединения и применять их в качестве сенсибилизаторов для фотодинамической терапии онкологических заболеваний [15, 16]. Такие разработки возможны благодаря способности некоторых производных фталоцианинов избирательно накапливаться в раковых клетках, а также люминесцировать с высокими квантовыми выходами и большими временами жизни возбужденного состояния и способствовать генерации синглетного кислорода [15].

Известно [17-20], что сульфированные фталоцианиновые комплексы с металлами часто образуют димеры или более высокие агрегаты в растворах. Агрегацию в этих комплексах характеризовали с привлечением данных ЭСП-спектроскопии. Фталоцианины агрегируют благодаря электронному $\pi - \pi$ взаимодействию между макрокольцами двух или более молекул с образованием *H*- и *J*-агрегатов. Образование *H*-агрегатов приводит к снижению времени возбужденного состояния комплексов МФт, главным образом, благодаря диссипации необлученного возбужденного состояния [15] и поэтому более низкому квантовому выходу возбужденных состояний и образования синглетного кислорода. Степень сульфирования, изомерное состояние и природа центрального иона металла влияет на степень агрегации.

Известно, что фталоцианиновые соединения в растворе агрегируют благодаря электронному взаимодействию между кольцами двух и более молекул. Образуемые при этом *J*-агрегаты, для которых электронное возбуждение при поглощении фотона оказывается делокализованным на десятки упорядоченных мономерных звеньев, отвечают за люминесцентные свойства системы и описываются сдвинутой в красную область полосой около 750 нм, тогда как сдвинутая в голубую область полоса 630 нм приписывается *H*-агрегатам [20].

В настоящей работе с учетом результатов ранее проведенных исследований анализируется морфология наноструктуры агрегатов ионного 2,3,9,10,16,17,23,24-окта[(3,5-бискарбокси)-фенокси]фталоцианина и тетранатриевой соли медь (II)-фталоцианин-тетрасульфониевой кислоты при локализации в латексных акриловых пленкообразующих полимерах. Исследование предпринято с целью выяснения и сопоставления особенностей образующихся наноструктур, которые могут проявляться в размере, форме, дисперсности, локализации, агрегации, морфологии поверхности, площади поверхности и пористости наночастиц, что определяет обнаруживаемое различие в оптической активности исследованных фталоцианинов и материалов с их участием.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе исследовали водорастворимые фталоцианины: карбоксилсодержащий 2,3,9,10,16,17,23,24окта[(3,5-бискарбокси)-фенокси]фталоцианин $C_{88}H_{42}N_8Na_8O_{24}$ (ВДФ) и тетранатриевая соль медь(II)-фталоцианин-тетрасульфониевой кислоты (тетранатриевая соль медь-фталоцианин-3,4',4'',4''/-тетрасульфониевой кислоты) (СиВДФ). ВДФ синтезировали по методике, описанной в работе [21]. СиВДФ является готовым продуктом, выпускаемым фирмой Sigma-Aldrich.

В качестве пленкообразующих латексных сополимеров, различающихся мономерным составом (метилметакрилат ММА, бутилакрилат БА, метакрилат МА, метакриловая кислота МАК/акриловая кислота АК и стирол), использовали: A_1 (Ст–БА–МАК), A_2 (ММА–БА–МАК), A_3 (микрогетерогенный латексный полимер Ст– ММА–МА–АК), характеризующиеся температурой стеклования 16, 5, 18°С и концентрацией полимера 45, 45, 42 мас. %, соответственно.

В качестве полимерной матрицы готовили пленки и покрытия на основе водно-полимерных дисперсий, характеризующихся температурой стеклования до 25°С, и водорастворимых фталоцианинов. Использовали также микрогетерогенный латекс, синтезированный по методике затравочной эмульсионной полимеризации Ст– MMA–MA–AK.

Модификацию латексных дисперсий и полимеров осуществляли фталоцианинами при концентрации ~10⁻³ моль/л дисперсионной фазы.

Для характеристики морфологических и топографических особенностей наночастиц использовали следующие методы.

Для характеристики оптических свойств использовали данные люминесцентной спектроскопии [22]. Люминесценцию изучали на люминесцентном спектрометре LS55 (Perkin–Elmer), а также спектрометре Fluorolog TCSPC Horiba Emission Mono в области полос возбуждения 300...350 нм.

УФ спектры поглощения фталоцианина в водном растворе изучали с использованием электронного спектрометра Lamb32 UV/VIS (Perkin-Elmer).

Микрофотографии агрегатов фталоцианинов, локализованных в полимерных латексных пленках получены на оптическом микроскопе на отражение Olympus SZX16 (коэффициент увеличения 300, кантеливер 35 × 100 µ).

С привлечением Раман спектроскопии изучены спектры ионного фталоцианина и модифицированных им полимерных пленок микрогетерогенного (затравочного) латекса A₃ (Ст–БА–ММА–АК).

Топографию полимерной поверхности исследовали с привлечением зондового микроскопа Enviroscope (3M) с контролером Nanoscope V.

Термическая устойчивость немодифицированного и модифицированного фталоцианином латексного полимера была исследована на воздухе при скорости 5°/мин в интервале температур от 20 до 150°С с привлечением термогравиметрического и калориметрического методов анализа фазовых переходов на приборе Q600 СДТ (совмещение ТГА и ДСК).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. 1 представлено схематическое изображение ионного ВДФ и натриевой соли медь-сульфатированного фталоцианинов, а также их спектры поглощения и флуоресценции.

На электронных спектрах поглощения фталоцианинов в видимой области проявляется характерная для них полоса поглощения при 616 нм, которая указывает на возможность образования *H*-агрегатов.

Видно также, что фталоцианины проявляют эксимерную флюоресценцию в области от 300 до 600 нм.

Сопоставление абсорбционных спектров ВД Φ со спектрами ионных сульфонированных металлосодержащих фталоцианинов, характеризующихся различными ионными группами (SO₃⁻ и COO⁻), представленное в работах [23, 24], указывает на то, что наиболее выраженные максимумы проявляются при 350 и 620 нм, как и в случае ВД Φ .

При сопоставлении карбоксилсодержащих фталоцианинов ВДФ и Ме-Фт-СОО[–] обнаруживается более сложная химическая структура последнего, содержащего **шестнадцать** различных функциональных групп (натрий-карбоксилатные и гидроксильные группы, соотношение которых зависит от рН водной среды [24]). Обращает внимание отличное от ВДФ положение карбоксильных групп в бензольных кольцах Ме-Фт-СОО[–], что может явиться причиной различия в интенсивности характерного пика абсорбции при 687 нм. В случае Ме-Фт-СОО[–] пик хорошо выражен в отличие от ВДФ, для которого он проявляется как плечо на пике 627 нм.

Нельзя не упомянуть о влиянии рН среды на состояние карбоксилсодержащего фталоцианина Ме-Фт-СОО- в воде, которое анализируется в работе [24]. Ионные натрий-карбоксилатные группы ведут к увеличению внутрикольцевого расстояния между двумя соседними макроциклами и, тем самым, значительно снижают тенденцию к агрегации и увеличивают растворимость. На это указывает его УФ-спектры в воде при рН выше 7: на них хорошо видны разрешаемые пики, приписываемые фталоцианину в мономерном состоянии, которое сопровождается двумя переходами в состояние возмущенного колебания при 613 и 650 нм. Это подтверждает его ЯМР-спектр в дейтерированной воде при рН выше 7, на котором обнаружены пики всех макроциклических протонов. Поэтому фталоцианин проявляет линию флуоресцентной эмиссии при 685 нм (возбуждение при 350

Рис. 1. Схематическое изображение (а) ионного фталоцианина и (б) натриевой соли медь-сульфатированного фталоцианинов, а также их УФ-спектры поглощения (в, г) и эксимерной флуоресценции водных растворов (д, е): (а) при концентрации ВДФ 10^3 , μ М: 1 - 1.5; 2 - 1.2; 3 - 1.0; 4 - 0.8; 5 - 0.6; 6 - 0.5; 7 - 0.4; 8 - 0.3. (д) при длинах возбуждения: 1 - 300, 2 - 310, 3 - 320, 4 - 330 нм.

или 610 нм), хотя флуоресценция редко наблюдается для фталоцианинов в водной среде [25, 26].

Различие химического строения карбоксилсодержащих фталоцианинов ВДФ и Фт-Ме-Фт-СООвлияет на их люминесцентные свойства. Действительно, при полосе возбуждения 350 нм спектры существенно различаются. Эксимерная флуоресценция ВДФ проявляется в виде двух максимумов испускания при 416...420 и 434...446 нм, тогда как в случае фталоцианина Ме-Фт-СООбыл обнаружен четко выраженный максимум при 350 нм, а в области 600...800 нм — два максимума при 630 и 685 нм. Максимум 685 нм авторы [23] отмечают, как линию флуоресцентной эмиссии.

Перед тем, как перейти к анализу данных по морфологии наноструктур фталоцианинов, на рис. 2 представлены изображения и структуры

Рис. 2. Микроструктура и шероховатость поверхности латексных пленок, полученных с привлечением метода ACM: (a) A_1 ; (b) A_2 ; (b) A_3 .

исследованных латексных пленок полиакрилатов различного состава.

Видно, что для всех исследованных полимеров характерна упорядоченная гексоганальная упаковка латексных частиц в полимерной пленке. Равномерное распределение фталоцианина в уже готовом гидрофобном полимере можно связать с тем, что в процессе пленкообразования его молекулы, скорее всего, локализуется в межчастичном пространстве пленок на поверхности латексных частиц. Это основывается на данных Фурье-ИКспектроскопии о взаимодействии ионного ВДФ с поверхностью карбоксилсодержащего полимера [27]. Взаимодействие фталоцианин-полимер подтверждается также данными Раман-спектроскопии (спектросокпии комбинационного рассеяния) (КР), свидетельствующими об изменении спектра полимера в его присутствии [27].

Кроме данных КР- и Фурье-ИК-спектроскопии о химическом взаимодействии фталоцианина с полимером, методом эмиссионной спектроскопии в работе [28] была показана возможность фотохимического взаимодействия эксимеробразующих центров при их внешнем возбуждении.

В работе [29] с помощью малоуглового рентгеновского рассеяния проведена оценка характера распределения ионного фталоцианина на поверхности полимерных частиц и также показано, что он локализуется в виде дискообразных образований толщиной 13–14 нм.

На рис. 2 приведены также данные по поверхностной шероховатости немодифицированных пленок, которая свидетельствует о высокой гладкости поверхности. Шероховатость пленок составляет 1-5 нм, что обусловлено высокоэластичностью латексных полимеров. Большая шероховатость поверхности микрогетерогенного полимера, помимо более высокой температуры стеклования (20° C), можно связать с особенностями его получения, процесс которого является достаточно сложным и осуществляется на уже сформированных латексных частицах затравочного полимера.

Модификация полимерных частиц фталоцианином, который локализован в межчастичном пространстве полимерной пленки, может сопровождаться тем, что его молекулы создают барьер для плотного контакта между поверхностями наночастиц. Снижение интенсивности люминесценции модифицированного полимера было обнаружено в работе [27] и связано с эффектом фталоцианина на хромофорные группы сополимера, с одной стороны, а с другой, возможностью начала агрегации молекул фталоцианина в межчастичном пространстве в пленке и ее дальнейшее развитие [26–29].

Далее была исследована морфология наноструктур фталоцианинов ВДФ, локализованных в латексных пленках, с привлечением ACM [30]. Удалось получить микрофотографии агрегатов, которые сформированы в межчастичном пространстве трех исследованных пленок при их высыхании на воздухе (рис. 3). Видно, что их геометрические размеры, форма и строение в значительной степени определяется природой полимера.

Для сравнения с данными рис. 26 на рис. 4 представлены данные о шероховатости поверхности латексной пленки полимера A_2 после его мо-

Рис. 3. Морфология наноструктуруры ионного фталоцианина, локализованного в латексных полимерах: (a, б) A_1 (Ст-БА-МАК); (b) A_2 (БА-ММА-МАК) (по данным АСМ).

Рис. 4. Шероховатость поверхности пленок полимера *A*₂ (БА-ММА-МАК) после его модификации фталоцианином ВДФ (по данным ACM).

дификации фталоцианином ВДФ. Видно, что ее величина возрастает от (-...+2 нм) до более, чем (-500...+500 нм).

С целью выяснения влияния фталоцианина на протекание фазовых переходов в латексных полимерах были сняты термографические кривые изотермического превращения в их образцах A_1 при различном содержании фталоцианина СиВДФ с привлечением метода термографического анализа, позволяющего определить температурный интервал, в котором фазовые превращения протекают наиболее интенсивно и сопровождаются тепловым эффектом. При этом фиксируется изменение массы образца в начальном состоянии, на промежуточных стадиях нагрева и ее остаточное состояние. В случае исследованных латексных пленок (рис. 2), характеризующихся наличием межчастичных областей, термограмма изотермического превращения при нагреве анализируется с позиции изменения мас-

Рис. 5. Микрофотография, шероховатость и топография пленки A_1 после термообработки при 60°С.

сы образцов с ростом температуры в результате коалесценции частиц и потери "закупоренной" в этих областях воды.

На рис. 5 представлен микрофотография и топографическая картина, а также шероховатость поверхности латексного полимера A_1 после термообработки при 60°С в течение 30 мин. При сопоставлении с данными рис. 2а видно, что термообработка полимера вызывает полную колесценцию частиц, при которой шероховатость поверхности снижается до -1...+1 нм.

В табл. 1 представлены данные термогравиметрии и калориметрии акрилового полимера A_1 , не модифицированного и модифицированного фталоцианином CuBДФ, свидетельствующие о том, что все три образца выделяют воду в результате термического воздействия

Видно, что локализованный в межчастичных областях латексной пленки фталоцианин влияет на процесс фазового перехода, имеющего место при температурах в интервале 30°, выше температуры стеклования полимера, при которых протекает процесс коалесценции полимерных частиц. При этом обнаруживается, что чем выше концентрация модификатора, тем больше возрастает тепловой эффект этого процесса, в результате чего общая потеря массы полимерной пленки оказывает наименьшей.

Далее изучено влияние отрицательных температур на морфологию наноструктур агрегатов исследованных фталоцианинов на примере СиВДФ с привлечением метода АСМ, для чего модифицированные полимерные пленки выдерживали при температуре -30°C в течение 60 мин. На рис. 6 представлены морфология наноструктур, их топография и шероховатость поверхности модифицированных полимерных пленок А₁, наблюдаемых на различных участках и увеличением. Вилно, что в отличие от рис. 3 и 4 морфология наноструктур фталоцианина, локализованного в полимерной пленке, после воздействия отрицательных температур изменяется и сопровождается агрегацией его ноначастиц. Обнаруживаемая низкая шероховатость образцов позволяет думать о размещении агрегатов в одной плоскости.

На рис. 7 представлены полученные с привлечением Раман-спектроскопии микрофотографии агрегатов ВДФ разнообразных игольчатых и звездообразных форм, образованных в латексной пленке микрогетерогенного сополимера A_3 (Ст–БА–ММА–АК).

С учетом полученных и литературных данных представляется возможным соотнести максимумы, обнаруживаемые на спектрах поглощения и эксимерной флуоресценции, с различными структурными формами ВДФ и его агрегатов, сформи-

Таблица 1. Термография латексного полимера A₁ (Ст-БА-МАК) до и после модификации фталоцианином СиВДФ

Концентрация $CuBД\Phi \times 10^3$, моль/л	Тепловой эффект, Дж/г	Δ <i>T</i> (°C) реализации теплового эффекта	$T_{ m max}$ (°С) в ΔT	Общая потеря массы, %
0	2.171	31.56	38.74	0.68
0.05	2.662	34.03	41.03	0.60
0.10	4.217	31.38	40.24	0.45

Рис. 6. Морфология наноструктур фталоцианина, локализованного в полимере *A*₁, после воздействия отрицательных температур.

Рис. 7. Морфология наноструктуры сульфатированного фталоцианина, локализованного в микрогетерогенном сополимере A_3 (Ст-БА-ММА-АК); по данным Раман спектроскопии (1 деление = 1 μ м; пленки на предметном стекле).

рованных еще в водной фазе, ответственными за его электронную и эмиссионную активность.

На рис. 8 представлены данные о влиянии фталоцианина на эксимерную флуоресценцию модифицированного латексного сополимера *A*₁ (Ст–БА–МАК).

Как отмечается в работе [26, 31] в отсутствии фталоцианина флуоресценция определяется наличием флуоресцентно-образующих центров с участием полистирола, а также гексоганальной упаковкой монодисперсных полимерных частиц. Как следует из рис. 8, с введением в систему ВДФ интенсивность флуоресценции карбоксилсодержащего полимера снижается более чем в 6 раз, что, по-видимому, обусловлено его взаимодействием с ВДФ. Снижение интенсивности можно связать с нарушением сопряжения полимерных стирол-содержащих частиц или частиц в гексоганальной упаковке в присутствии активного фталоцианина, с одной стороны, и с другой, со следами воды, возможно полностью не удаляющейся при высыхании пленки и вызывающей агрегацию его молекул. При этом наблюдается воз-

Рис. 8. Эксимерная флуоресценция на модифицированном и немодифицированном латексном полимере A_1 (Ст–БА–МАК). Полоса возбуждения, нм: 1 - 260, 2 - 280 (без); 3 - 260, 4 - 280, 5 - 320 (с ВДФ).

можность повышения интенсивности эксимерной флуоресценции посредством увеличения интенсивности полосы возбуждения.

Неоднозначное влияние агрегатообразования на фотохимические свойства диеновых соединений, в том числе фталоцианинов, рассматривалось в работах [31], в которых сообщается о том, что оно может обуславливаться возможностью образования наноразмерных агрегатов, способных выступать в качестве центров свечения. Для выяснения этого вопроса с привлечением метода АСМ исследована морфология наноагрегатов фталоцианина ВДФ, их форма и геометрические размеры в зависимости от места, где они формируются. Проведен анализ морфологии наноструктуры агрегатов ВДФ, высаженных на поверхности слюды из свежеприготовленного водного раствора и после выдержки раствора в течение 6 месяцев.

АСМ-микроснимки наноструктур агрегатов приведены на рис. 9. Агрегация молекул фталоцианина в свежеприготовленном водном растворе (рис. 9а, 9б) имеет место и приводит к разнообразным причудливым формам и размерам, удерживаемых друг с другом, по-видимому, за счет водородных связей. При расчете размера частиц по одной и двум точка привел к размеру наночастиц от 1 до 7 нм. Вытянутые нитеобразные обра-

Рис. 9. Разнообразие форм наноструктуры агрегатов ВДФ после высушивания нанесенного на стекло свежеприготовленного водного раствора (а, б) и раствора длительного выдерживания (в) (по данным ACM).

зования состоят из отдельных агрегатов, выстроенных с достаточной упорядоченностью и характеризующихся наноразмерностью. Полагаем, что именно эти агрегаты ответственны за проявление его фотохимических свойств.

Как следует из рис. 9в, длительное выдерживание фталоцианина в воде (в течение 6 мес.) сопровождается настолько сильным взаимодействием его молекул, что имеет место значительная агрегация его частиц. Конгломераты могут достигать значительных размеров (около 1 μ M, рис. 1г), по периметру которых хорошо идентифицируются мелкие частицы фталоцианина. Расчет по двум близко расположенным частицам не самых крупных конгломератов показывает размер составляет 25 нм.

Таким образом, морфология и геометрические размеры наноструктур водорастворимых фталоцианинов разнообразны и зависят от условий и продолжительности формирования их агрегатов: в водном растворе или на подложках различной природы. Морфология наноструктур, форма и размер наноагрегатов фталоцианинов определяет их электронные и эмиссионные свойства и фотохимические свойства полимерных композиций с их участием.

СПИСОК ЛИТЕРАТУРЫ

- 1. Третьяков Ю.Д., Гудилин Е.А. // Альтернативная энергетика и экология. 2009. № 6. С. 39-67.
- 2. Суздалев И.П., Максимов Ю.В., Имшенник В.К., Новичихин С.В., Матвеев В.В., Гудилин Е.А., Петрова О.В., Третьяков Ю.Д., Чуев М.А. // Российские нанотехнологии. 2009. Т. 4. № 7-8. С. 102-108.
- 3. Бондаренко С.А., Бондаренко Е.А., Каргин Н.И., Михнев Л.В., Климонский С.О., Третьяков Ю.Д. // Известия ВУЗов. Сев.-Кав. Регион. Серия: Естеств. Науки. 2009. № 1. С. 38–41.
- 4. Третьяков Ю.Д., Гудилин Е.А. // Вестник РАН. 2009. Т. 79. № 1. С. 3–10.
- Борисенко В. Наноэлектроника: Учеб. пособие / В.Е. Борисенко, А.И. Воробьёва, А.Л. Данилюк, Е.А. Уткина. 2-е изд. М.: БИНОМ. Лаборатория знаний, 2013. 366 с.
- Бабаев А.А., Саадуева А.О., Теруков Е.И., Ткачев А.Г. // Физикохимия поверхности и защита материалов. 2021. Т. 57. № 3. С. 262–276.
- 7. Козлов Г.В., Долбин И.В. // Физикохимия поверхности и защита материалов. 2022. Т. 58. № 5. С. 521–525.
- 8. *Елисеева В.И*. Полимерные дисперсии. М.: Химия. 1980.
- 9. *Асламазова Т.Р.* // Физикохимия поверхности и защита материалов. 2021. Т. 57. № 6. С. 640–649.
- Асламазова Т.Р., Котенев В.А., Ломовская Н.Ю., Ломовской В.А., Цивадзе А.Ю. // Физикохимия по-

верхности и защита материалов. 2021. Т. 57. № 3. С. 284–294.

- Асламазова Т.Р., Котенев В.А., Ломовская Н.Ю., Ломовской В.А., Цивадзе А.Ю. // Физикохимия поверхности и защита материалов. 2021. Т. 57. № 4. С. 417-424.
- 12. *Лобковский*. *В.П.* //Лакокрасочные материалы и их применение. 2011. №5. С. 44.
- 13. *Крылов А.В., Толмачев И.А., Васильев В.К.* // Лакокрасочные материалы и их применение. 2011. № 11. С. 14.
- 14. *Leznoff C.C., Lever A.B.P.* Phthalocyanines, Properties and Applications. VCH: New York, 1989–1996. V. 1–4.
- 15. *Kadish K.M., Smith K.M., Guilard R.* The Porphyrin Handbook; Eds. Kadish K.M., Smith K.M., Guilard R. Academic Press, San Diego. 2000. V. 1–20.
- Успехи химии порфиринов // Под ред. Голубчикова О.А. НИИ Химии СпбГУ. 1997. 1999. 2001. Т. 1–3.
- Nyokong T. // Coordination Chemistry Reviews. 2007. V. 251. P. 1707–1722.
- 18. *Kobayashi N*. (Ed.). J-Aggregates. World Scientific. Singapore. 1996.
- Darwent J.R., Douglas P., Harriman A. et al. // Coord. Chem. Rev. 1982. V. 44. P. 83.
- Ogunside A., Chen J.-Y., Nyokong T. // New J. Chem. 2004. V. 28. P. 822.
- 21. Rozenthal I. // Photochemistry and Photobiology. 1991. V. 53. № 6. P. 859.
- 22. Leznoff C.C., Lever A.B.P. Phthalocyanines, Properties and Applications; VCH: New York, 1989–1996. V. 1–4.
- Howe L., Zhang J.Z. // J. Phys. Chem. A. 1997. V. 101. № 8. P. 3207.
- 24. Liu W., Jensen T.J., Fronczek F.R. // J. Med. Chem. 2005. V. 48. P. 1033.
- 25. *Kobayashi N*. Synthesis and spectroscopic properties of phthalocyanine analogues. In Phthalocyanines: Properties and Applications; Leznoff C.C., Lever A.B.P., Eds. VCH: Weinheim. 1993. V. 2. P. 97.
- 26. *Ferraudi G.* Photochemical properties of metallophthalocyanines in homogeneous solution. In Phthalocyanines-properties and Applications; Leznoff C.C., Lever A.B.P. Eds. VCH: New York. 1989. V. 1. P. 291.
- Асламазова Т.Р., Котенев В.А., Соколова Н.П., Цивадзе А.Ю. // Физикохимия поверхности и защита материалов. 2010. Т.46. № 4. С. 398.
- 28. Асламазова Т.Р., Котенев В.А., Плачев Ю.А., Цивадзе А.Ю. // Физикохимия поверхности и защита материалов. 2012. Т. 48. № 6. С. 535.
- 29. Асламазова Т.Р., Котенев В.А., Ширяев А.А., Цивадзе А.Ю. // Физикохимия поверхности и защита материалов. 2013. Т. 49. № 3. С. 264.
- Асламазова Т.Р., Золотаревский В.И., Котенев В.А., Цивадзе А.Ю. // Физикохимия поверхности и защита материалов. 2011. Т. 47. № 5. С. 468.
- Prokhorov V.V., Pozin S.I., Lypenko D.A., Perelygina O.M., Maltsev E.I., Vannikov A.V. // Macroheterocycles. 2012. V. 5. № 4–5. P. 371.