——— НОВЫЕ ВЕЩЕСТВА, МАТЕРИАЛЫ И ПОКРЫТИЯ ———

УДК 620.18

СТРУКТУРНЫЕ ОСОБЕННОСТИ, МЕХАНИЧЕСКИЕ СВОЙСТВА, ИЗНОСО- И ЖАРОСТОЙКОСТЬ ПОКРЫТИЙ В СИСТЕМЕ Мо-Y-Zr-Si-B, ПОЛУЧЕННЫХ НА МОЛИБДЕНЕ МЕТОДОМ МАГНЕТРОННОГО НАПЫЛЕНИЯ В РЕЖИМАХ DCMS И HIPIMS

© 2023 г. Ф. В. Кирюханцев-Корнеев^{*a*, *, Ф. И. Чударин^{*a*}, Р. А. Вахрушев^{*a*}, А. Д. Сытченко^{*a*}, М. И. Карпов^{*b*}, Р. Feng^{*c*}, Е. А. Левашов^{*a*}}

^аУниверситет науки и технологий "МИСИС", Ленинский проспект, 4с1, Москва, 119049 Россия ^bИнститут физики твердого тела имени Ю.А. Осипьяна Российской академии наук, ул. Академика Осипьяна, 2, Черноголовка, 142432 Россия ^cChina University of Mining and Technology, Xuzhou , 221116 China *e-mail: kiruhancev-korneev@yandex.ru Поступила в редакцию 18.05.2023 г. После доработки 20.06.2023 г. Принята к публикации 22.06.2023 г.

Покрытия Мо-(Y, Zr)-Si-В были получены методами магнетронного напыления постоянного тока (DCMS, direct current magnetron sputtering) и высокомошного импульсного магнетронного напыления (HIPIMS, high power impulse magnetron sputtering) с использованием композиционных мишеней $MoSi_2 + 10\%$ MoB и ($MoSi_2 + 10\%$ MoB) + 20% ZrB₂, с расположенными в их зоне эрозии сег-ментами Y суммарной площадью 5 и 10 см². Структура и состав покрытий исследовались методами сканирующей и просвечивающей электронной микроскопии, оптической эмиссионной спектроскопии тлеющего разряда и рентгенофазового анализа. Были определены твердость, модуль упругости, упругое восстановление, адгезионная прочность, стойкость покрытий к ударным циклическим и абразивным воздействиям. Жаростойкость и термическая стабильность оценивалась при нагреве покрытий до максимальной температуры 1000°С в муфельной печи и в колонне просвечивающего электронного микроскопа, соответственно. Установлено, что основу покрытия Mo-Si-B составляет фаза h-MoSi₂ с текстурой в направлении [110] и размером кристаллитов 75 нм. Легирование покрытий Zr и Y, а также переход от DCMS к режиму HIPIMS, способствовали подавлению преимущественного роста кристаллитов, повышению их дисперсности и объемной доли аморфной фазы, что приводило к повышению трещиностойкости и адгезионной прочности покрытий. Применение метода HIPIMS при осаждении покрытий вызвало рост твердости и модуля упругости на 10%, стойкости к циклическим ударным воздейстивмя на 60%, абразивной стойкости на 20%, увеличению жаростойкости до 20%. Покрытия Мо-Y-Zr-Si-В оптимального состава обладали высокой термической стабильностью, — основная структурная составляющая, гексагональная фаза h-MoSi₂, сохранялась в температурном диапазоне 20-1000°C, а также обеспечивали повышение жаростойкости Мо подложки более, чем в 9 раз при 1000°С.

DOI: 10.31857/S0044185623700687, EDN: PPRIPC

1. ВВЕДЕНИЕ

Молибден является одним из основных материалов для высокотемпературных применений [1, 2]. Главным недостатком, ограничивающим использование молибдена, является его интенсивное окисление при нагреве на воздухе до температур 400–700°С с образованием газообразного оксида MoO₃, ведущим к ускоренному разрушению изделий [2]. Для защиты молибденовых сплавов широко используются жаростойкие покрытия на основе $MoSi_2$ [3–5]. Хорошо известно, что высокая стойкость $MoSi_2$ к окислению обусловлена образованием защитного слоя SiO_2 вследствие частичного окисления Si. В то же время при температуре 500°С все еще продолжается нежелательное окисление Mo [6]. Это в первую очередь вызвано растрескиванием силикатного слоя. Чтобы выровнять коэффициенты термического расширения и повысить способность покрытия к самозалечиванию в состав вводится бор [7, 8]. Покрытия MoSi₂, легированные бором, имеют повышенную рабочую температуру на уровне 1100-1400°С. Улучшить характеристики объемных материалов и покрытий Mo-Si-B можно путем введения в их состав тугоплавких металлов, таких как Hf, Zr, Ti и т.д. [8-10]. В работе [9] было показано, что легирование покрытий Mo-Si-В гафнием и цирконием приводит к снижению размера зерен основной фазы *h*-MoSi₂ с 20 до 10-15 нм, увеличению доли аморфной составляющей (а-МоВ), повышению стойкости к растрескиванию при нагреве, росту жаростойкости на 10-30% при температуре 1000°С и на 40-70% при 1500°С. Высокая жаростойкость покрытий Mo-Zr-Si-B связана с образованием многослойной поверхностной оксидной пленки соста- $Ba SiO_2 + ZrO_r [9].$

Перспективным является введение в состав покрытий Mo-Si-В редкоземельных металлов. Добавление 0.5% La в состав покрытия Mo-Si-B приводит к образованию по границам зерен оксида La₂O₃, тормозящего диффузию кислорода вглубь покрытия при высокотемпературном нагреве, а также способствует повышению трибологичеких характеристик материала [11]. Легирование покрытия Mo-Si-B иттрием позволило повысить стойкость покрытий на подложках из никелевых сплавов к циклическим ударным воздействиям на 50% [12]. Иттрий-содержащие композиционные покрытия на основе Mo-Si-В успешно зашишают материал подложки от окисления в среде ионизированного воздуха при 1800-2100°С в течение 100 с [13].

Для нанесения покрытий на основе MoSi₂ применяются: детонационное напыление [14], плазменное или газопламенное сверхзвуковое напыление [15], шликерно-обжиговая технология [16], электролиз расплава солей [17] и электроискровое легирование [18]. Широко используется метод диффузионного насыщения [19, 20], а также способ, комбинирующий осаждение Мо с последующим диффузионным насыщением Si и В [21, 22]. Недостатками указанных методов являются повышенные шероховатость, дефектность и неравномерность покрытий, а также изменение геометрии подложки. В ряде случаев требуются дополнительный отжиг системы "покрытиеподложка" и механическая обработка изделий с точными допусками. Перспективным для получения покрытий из керамических материалов является метод магнетронного напыления, обеспечивающий простоту контроля структурно-фазового состояния, высокое качество и низкую шероховатость покрытий, отсутствие ограничений при выборе материала подложек. сохранение геометрии изделия и относительно высокие скорости осаждения [8, 23, 24]. Применение высокомошного импульсного магнетронного распыления (HIPIMS, high power impulse magnetron sput-

tering) дает дополнительные возможности для улучшения характеристик покрытий [25, 26]. Метод HIPIMS за счет более высокой мощности обеспечивает значительное увеличение плотности плазмы от ${\sim}10^{10}$ ион/см 3 для магнетронного распыления на постоянном токе (DCMS, direct current magnetron sputtering) до 10¹³-10¹⁴ ион/см³ для HIPIMS [27]. В случае HIPIMS распыленные атомы интенсивно ионизируются во время прохождения через плазму, и поток состоит преимущественно из ионов, а не атомов, как в случае DCMS. Увеличение соотношения ион/атом в потоке, присущее HIPIMS, приводит к значительному повышению адгезионной прочности осаждаемых покрытий за счет образования псевдодиффузионных слоев и эффектов ионной имплантации на этапе предварительного травления поверхности подложки [28, 29].

Целью работы является определение структуры, механических и трибологических характеристик, а также жаростойкости покрытий Мо–(Zr, Y)–Si–B, нанесенных на подложки из молибденовых сплавов методами DCMS и HIPIMS.

2. МЕТОДИКА ЭКСПЕРИМЕНТА

Покрытия Мо-(Y, Zr)-Si-В были получены методом магнетронного напыления с использованием мишеней MoSi₂ + 10% MoB и (MoSi₂ + + 10% MoB) + 20% ZrB₂ диаметром 120 мм и толщиной 10 мм, в зону эрозии (площадь 60 см²) которых помещались 2 или 4 сегмента Ү (99.99%) общей площадью 5 и 10 см², соответственно. Мишени изготавливались с применением методов самораспространяющегося высокотемпературного синтеза и горячего прессования. Осаждение покрытий проводилось на модернизированной установке типа УВН-2М, принципиальная схема которой представлена в работе [9], в среде Аг (99.9995%) при давлении 0.2 Па. Остаточное давление составляло 3×10^{-3} Па. Покрытия наносились на пластины молибдена марки МЧ-1 размером 15 × 15 × 5 мм, диски молибденового сплава TCM-7 (\emptyset 30 × 5 мм), фольгу Мо (20 × 10 × 0.1 мм) которые предварительно подвергались ультразвуковой очистке в изопропиловом спирте в течение 5 мин. Дополнительно проводилась ионная очистка (ионы Ar⁺, 2 кэВ, 40 мин) в вакуумной камере непосредственно перед нанесением покрытий. Время осаждения покрытий составляло 40 мин. При нанесении покрытий на Мо подложки со всех сторон в режиме вращения, для последующих отжигов на воздухе, время осаждения было увеличено до 2 ч. Для реализации режимов DCMS и HIPIMS применялись блоки питания Pinnacle+ (Advanced Energy, США) и TruPlasma 4002 (Trumpf, Германия), соответственно. Значения электрических параметров распыления приведены в табл. 1. Было установлено, что в режиме HIPIMS основная электрическая мощность pea-

№	Покрытие	Мишень	$N_{ m Y}$	Метод	<i>U</i> , B	<i>I</i> , A	<i>Р</i> , кВт	<i>I</i> _{пик} , А	<i>Р</i> _{пик} , кВт
1	Mo-Si-B DCMS		0	DCMS	500	2	1	-	
2	Mo-Si-B + 2Y DCMS		2	DCMS	500	2	1	_	_
3	Mo-Si-B+4Y DCMS	$MoSi_2 + 10\% MoB$	4	DCMS	500	2	1	_	_
4	Mo-Si-B HIPIMS		0	HIPIMS	970	3	1	40	40
5	Mo-Si-B + 4Y HIPIMS		4	HIPIMS	400	2.2	1.9	90	75
6	Mo–Zr–Si–B + 2Y HIPIMS	$(MoSi_2 + 10\% MoB) + 20\% ZrB_2$	2	HIPIMS	840	1.4	1.9	90	75

Таблица 1. Параметры нанесения покрытий

N_Y-количество сегментов иттрия; U-напряжение; I-ток; P-средняя мощность; I_{пик}-пиковый ток; P_{пик}-пиковая мощность.

лизуется на сегментах Y, что определяет повышение средней и пиковой мощности (покрытия 5 и 6).

Исследование химического состава покрытий проводилось методом оптической эмиссионной спектроскопии тлеющего разряда (ОЭСТР) на приборе Profiler 2 (Horiba Jobin Yvon, Франция) [30]. Структура исследовалась методами сканирующей и просвечивающей электронной микроскопии (СЭМ и ПЭМ) на приборах S-3400 (Hitachi, Япония) и JEM-2100 (JEOL, Япония), соответственно. Ламели для ПЭМ были получены с помощью механического утонения и последующего ионно-лучевого травления на установке PIPS II (Gatan, США). Размер кристаллитов и межплоскостные расстояния определялись с помощью программного обеспечения ImageJ и Olympus Radius 2.0. Рентгенофазовый анализ $(P\Phi A)$ проводился на приборе Phaser D2 (Bruker, США) с использованием излучения CuKa.

Адгезионная прочность покрытий определялась методом измерительного царапания на приборе Revetest (CSM Instruments, Швейцария), оснащенном алмазным индентором Роквелла с радиусом закругления вершины 0.2 мм. Для оценки адгезионной прочности методом Rockwell С проводились испытания на твердомере ТР-5006-02 (Точприбор, Россия) при нагрузке на индентор 1471 Н. Для исследования механических свойств методом наноиндентирования использовался нанотвердомер Nano-Hardness Tester (CSM Instruments, Швейцария); нагрузка на индентор Берковича составляла 4 мН. Исследование трещиностойкости покрытий проводилось с использованием микротвердомера HVS-50, оснащенном индентором Виккерса, при нагрузке 10 и 50 Н. Ударные циклические испытания осуществлялись на приборе Impact Tester (СетеСоп, Германия). Образцы подвергались 10⁵ ударам твердосплавным шариком (Ø 5 мм) с частотой 50 Гц и нагрузкой 100 Н. Абразивная стойкость покрытий исследовалась на установке типа Calowear-tester (НИИ-ТАвтопром, Россия). В качестве контртела использовался шарик из стали ШХ15 (Ø 27 мм). Скорость вращения шарика составляла 13 об./мин, нагрузка – 1.8 Н, абразив - алмазная суспензия (1 мкм) (Struers, Дания). Время абразивного воздействия составляло 3, 5 и 7 мин. Анализ поверхности образцов в зоне трибоконтакта после испытаний проводился с использованием оптического профилометра NT1100 (WYKO, США), оптических микроскопов Neophot 21 и Axiovert 5 (Carl Zeiss, Германия).

С целью определения жаростойкости. покрытия отжигались в изотермическом режиме на воздухе при температуре 1000°С в течение 1 ч в муфельной печи SNOL-7.2/1200. Для оценки термической стабильности были проведены in-situ исследования структурно-фазовых превращений. происхоляших при нагреве ламелей покрытий в колонне ПЭМ. Нагрев до температур 400, 600, 800, 900 и 1000°С со скоростью 100°С/мин осуществлялся с использованием держателя Gatan 652. Выдержка при каждой температуре составляла 10-30 мин. Также проводились вакуумные отжиги покрытий в печи "Термоник Т1" при температурах 600. 800 и 1000°С и выдержке 10 мин, что близко к режимам нагрева в колонне ПЭМ. Скорости нагрева и охлаждения составляли 15°С/мин.

3. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

3.1. Состав и структура

Все полученные покрытия характеризовались равномерным распределением основных элементов по толщине. На рис. 1а представлен типичный элементный ОЭСТР-профиль покрытия Mo-Si-B + 4Y HIPIMS. Усредненный по толщине состав покрытий приведен в табл. 2. Покрытия, полученные с использованием 2 и 4 сегментов иттрия, содержали от 4 и 7 ат. % Ү, соответственно. Содержание остальных элементов закономерно уменьшалось. Покрытие 6, полученное при распылении мишени (90% MoSi₂ + + 10% MoB) + 20% ZrB₂ характеризовалось повышенной концентрацией бора (22 ат. %.), концентрация Zr составляла 9 ат. %. Данные особенности связаны с присутствием в составе мишени фазы ZrB₂. Было установлено, при использовании метода HIPIMS содержание примесей в покрытиях выше: суммарная концентрация углерода и кислорода для DCMS-покрытий не превышала 4 ат. %, в то время как для HIPIMS-образцов данный пока-

Рис. 1. Элементный профиль (а) и РЭМ-изображение излома (б) покрытия Mo–Si–B + 4Y HIPIMS.

затель находился в пределах 5–10 ат. %. Повышенный уровень примесей объясняется снижением скорости роста покрытий при импульсной подаче мощности [26, 29]. Важно отметить, что примеси могут негативно влиять на поведение покрытий при высокотемпературном нагреве и механические свойства [31, 32].

По данным СЭМ полученные покрытия обладали плотной малодефектной структурой с отсутствием выраженных столбчатых кристаллитов. В качестве примера на рис. 16 представлено типичное СЭМ-изображение поперечного излома покрытия Mo-Si-B + 4Y HIPIMS. Значения толшин и скоростей роста, оцененные на основе полученных микрофотографий изломов покрытий, представлены в табл. 2. Скорость роста покрытия Мо-Si-B DCMS составила 187 нм/мин. При использовании двух и четырех сегментов иттрия скорость роста покрытия Мо-Si-В увеличилась на 17 и 10% соответственно. В случае покрытия Mo-Si-B переход от режима DCMS к HIPIMS привел к снижению скорости роста на 30%, что может быть связано со снижением времени действия прямого импульса, в процессе которого происходит осаждение покрытий [29]. Покрытие Mo-Si-B + 4Y HIPIMS обладало минимальной скоростью роста 70 нм/мин. Скорость роста по-крытия Mo-Zr-Si-B + 2Y HIPIMS составила 168 нм/мин.

Рентгенограммы DCMS покрытий представлены на рисунке 2а. Для всех покрытий выявлялись пики в положениях $2\theta = 40.5$, 58.6, 73.6 и 87.6° , соответствующие подложке *fcc*-Mo (ICDD) 42-1120). На рентгенограмме покрытия Mo–Si–B наблюдались высокоинтенсивные пики от гексагональной фазы *h*-MoSi₂ (ICDD 80-4771) с текстурой в направлении [110]. Размер кристаллитов *h*-MoSi₂, определенный по формуле Шеррера по линии (110), составил 75 нм. Параметры решетки *h*-MoSi₂ для покрытия Mo-Si-B составляли *a* = = 0.460 и *c* = 0.657 нм. Для покрытий Мо–Si– В + 2Y и Mo-Si-B + 4Y, полученных методом DCMS, текстуры *h*-MoSi₂ выявлено не было. В положениях $2\theta = 22^{\circ} - 32^{\circ}$, $32^{\circ} - 50^{\circ}$ и $60^{\circ} - 70^{\circ}$ наблюдались уширенные пики, которые можно связать с образованием аморфной фазы. Таким образом, введение в состав 4 и 7 ат. % иттрия приводит к аморфизации покрытия Mo-Si-B. Рентгенограммы HIPIMS-покрытий показаны на рис. 26. Для покрытия Mo-Si-B выраженной

N⁰	Элементный состав, ат. %						Скорость роста,	
	Мо	Si	В	Y	Zr	толщина, мкм	нм/мин	
1	24	68	8	0	0	7.5	187	
2	22	66	8	4	0	8.7	218	
3	30	58	5	7	0	8.2	205	
4	22	70	8	0	0	5.3	133	
5	25	61	7	7	0	2.8	70	
6	14	51	22	4	9	6.7	168	

Таблица 2. Элементный состав, толщина и скорость роста покрытий

* Толщина рассчитана по результатам теста Calowear.

Рис. 2. Рентгенограммы покрытий, полученных методами полученных методами DCMS (а) и HIPIMS (б).

текстуры выявлено не было: на рентгенограмме наблюдались основные высокоинтенсивные рефлексы h-MoSi₂, связанные с отражением от плоскостей (100), (110), и (200) фазы h-MoSi₂. Размер кристаллитов h-MoSi₂, определенный по линии (110), составил 70 нм, что близко к данным, полученным для DCMS покрытия Mo–Si–B. HIP-IMS-покрытия Mo–Si–B + 4Y и Mo–Zr–Si–B + 2Y имели аморфную структуру аналогичную DCMS-образцам.

На рис. За представлены светлопольное ПЭМ-изображение и электронограмма покрытия Mo-Si-B, полученного методом DCMS. Размер кристаллитов составлял 30-100 нм. На электронограмме покрытия обнаружены отражения. соответствующие межплоскостным расстояниям 0.189 и 0.348 нм, характерным для гексагональной фазы *h*-MoSi₂. Также обнаружены рефлексы от тетрагональной фазы *t*-MoB (0.212, 0.125 и 0.174 нм). Покрытие Mo-Si-B + 4Y DCMS содержало мелкие кристаллиты размером 2-4 нм, находящиеся в аморфной матрице (рис. 36). На электронограмме выявлялись: широкое кольцо, свидетельствующее о наличии аморфной фазы, рефлексы с межплоскостными расстояниями 0.305 нм (фаза t-MoB) и 0.222 нм (фаза h-MoSi₂). Сильное уширение рефлексов кристаллических фаз объясняется их высокой дисперсностью. Прочие покрытия не исследовались методом ПЭМ, поскольку имели структуру с высокой долей аморфной фазы, в целом близкую к Mo-Si-B + 4Y DCMS по данным РФА (рис. 2).

3.2. Адгезионная прочность

На рис. 4 приведены зависимости коэффициента трения и акустической эмиссии (АЭ) от нагрузки, двухмерные изображения царапин на поверхности покрытий после измерительного царапания, а также значения нагрузок Lc₂, при которых начиналось отслоение покрытий [33]. В случае покрытия Mo-Si-В DCMS величина Lc₂ была максимальной и составляла 13.0 Н. При этой нагрузке по данным профилометрии появлялись первые отслоения, а на кривой АЭ начинались колебания значений (рис. 4). Коэффициент трения равномерно возрастал с увеличением нагрузки. Отслоение покрытий Mo-Si-B + 2Y DCMS и Mo-Si-B + 4Y DCMS наступало при достижении более низких нагрузок 9.1 и 11.0 Н, соответственно, что связано с их большей толшиной, а также ростом объемной доли хрупкой аморфной фазы. Отслоению предшествовали всплески значений акустической эмиссии, вы-

Таблица 3. Механические свойства покрытий

N⁰	<i>Н</i> , ГПа	<i>Е</i> , ГПа	H/E	<i>H</i> ³ / <i>E</i> ² , ГПа	W, %
1	23	320	0.073	0.126	46
2	16	250	0.065	0.070	40
3	17	218	0.078	0.105	43
4	26	348	0.074	0.141	50
5	12	186	0.067	0.056	37
6	18	252	0.073	0.099	45

Рис. 3. Светлопольные ПЭМ-изображения и электронограммы покрытий Mo–Si–B DCMS (а) и Mo–Si–B + 4Y DCMS (б).

званные растрескиванием покрытий. В случае Mo-Si-B HIPIMS и Mo-Zr-Si-B + 2Y HIPIMS величина Lc₂ составляла 8.0-8.5 Н. Скачки на кривых АЭ при 25-30 Н свидетельствует о достижении подложки контртелом. Для покрытия Mo-Si-B + 2Y HIPIMS нагрузка Lc_2 составила 5.8 Н. Более интенсивное отслоение иттрий-содержащих покрытий можно связать с ростом внутренних напряжений при введении в состав Ү [34]. Ранее было показано, что У в покрытиях Мо-Si-В внедряется в решетку основной фазы *h*-MoSi₂, изменяя ее период [12]. В то же время дополнительное введение циркония в состав иттрий-содержащего покрытия приводит увеличению величины Lc_2 на 40%. Важно отметить, что значения *Lc*₂ как правило достаточно низки при использовании пластичных подложек [35-37] и составляют 5-20 Н.

Микрофотографии поверхности покрытий после индентирования конусом Роквелла представлены на рис. 5. В случае Mo-Si-B DCMS вблизи отпечатка произошло значительное отслоение и последующее вспучивание покрытия. На поверхности покрытия Mo-Si-B + 2Y DCMS наблюдалось слабо выраженные трещины (длиной не более 400 мкм) и отслоения. Для образца Mo-Si-B + 4Y DCMS вспучивания и отслоения по границам отсутствовали, длина радиальных трещин не превышала 300 мкм. Покрытие Мо-Si-B HIPIMS отслоилось от подложки в радиусе ~500 мкм от границы отпечатка. На поверхности покрытия Mo-Si-B + 4Y HIPIMS по границам отпечатка наблюдалось интенсивное формирование радиальных трещины (<300 мкм) без отслоений. Для покрытия Mo-Zr-Si-B + 2Y HIPIMS дефектов по границам отпечатка выявлено не было.

Таким образом, согласно данным теста Rockwell C введение иттрия в состав покрытий, а также переход от DCMS к режиму HIPIMS в случае легированных покрытий способствует повышению адгезионной прочности. Плохая корреляция между тестом Rockwell C и скратч-тестированием может быть связана с тем, что во втором случае величина Lc_2 , которую обычно используют для характеризации адгезионной прочности, напрямую зависит от толщины покрытий [38, 39].

3.3. Твердость, упруго-пластические свойства, трещиностойкость

Твердость (*H*), модуль упругости (*E*), упругое восстановление (*W*), индекс пластичности (*H*/*E*) и сопротивление пластической деформации разрушения (H^3/E^2) покрытий представлены в табл. 2. Покрытие Mo–Si–B DCMS продемонстрировало значения H = 24 ГПа, E = 320 ГПа, W = 46% и $H^3/E^2 = 0.126$ ГПа. Увеличение концентрации иттрия с 0 до 7 ат. % привело к снижению твердости на 26%, модуля упругости, упругого восстановления на 32% и сопротивления пластической деформации на 16%. Тем не менее для покрытия Mo–Si–B + 4Y DCMS параметр *H*/*E*, определяющий трещиностойкость материала [40], был максимальным и составлял 0.078.

Наиболее высокие механические свойства имело покрытие Mo–Si–B HIPIMS, которое характеризовалось H = 26 ГПа, E = 348 ГПа, W = 50%, $H^3/E^2 = 0.141$ ГПа. HIPIMS-покрытия Mo–Si–B + 4Y и Mo–Zr–Y–Si–B HIPIMS продемонстрировали более низкие характеристики, снижение составляло 10–30% (табл. 2). Таким образом, введение иттрия в состав DCMS и HIPIMS покрытий Mo–Si–B приводит к снижению механических характеристик, что может быть связано с ростом объемной доли аморфной фазы. Важно отметить, что переход от режима DCMS к HIP-IMS способствует повышению твердости покрытия Mo–Si–B на 13% и модуля упругости на 9%.

Для предсказания поведения покрытий в условиях трибологического контакта и абразивного воздействия важно исследовать их трещиностойкость [40–42]. На рис. 6 представлены микрофотографии отпечатков после индентирования при нагрузках 10 и 50 Н. При нагрузке 10 Н на поверх-

551

Рис. 4. Кривые зависимости коэффициента трения и акустической эмиссии от нагрузки и двухмерные изображения царапин после скратч-тестирования.

Рис. 5. Микрофотографии поверхности покрытий после индентирования конусом Роквелла.

ности DCMS- и HIPIMS-покрытий наблюдались радиальные и кольцевые трещины по границам отпечатка. При этом интенсивность растрескивания покрытий снизилась при переходе от режима DCMS к HIPIMS.

При нагрузке 50 Н на поверхности DCMS покрытий Mo–Si–B, Mo–Si–B + 2Y и HIPIMS покрытия Mo–Si–B вблизи отпечатка наблюдалось образование радиальных и кольцевых трещин. Причем преобладающим видом разрушения являлись кольцевые трещины, которые могут привести к отслоению покрытий [43]. Для покрытия Mo–Si–B + 4Y DCMS в зоне отпечатка преобладали радиальные трещины. На поверхности по-

СТРУКТУРНЫЕ ОСОБЕННОСТИ

Рис. 6. Микрофотографии поверхности покрытий после индентирования пирамидой Виккерса при нагрузках: (a) 10 H, (6) 50 H.

крытия Mo–Si–B + 4Y HIPIMS наблюдалось образование радиальных трещин и отслоение покрытия по границам отпечатка. Для покрытия Mo–Zr–Si–B + 2Y HIPIMS разрушений обнаружено не было. Рост трещиностойкости при введении иттрия в состав покрытий Mo–Si–B можно связать со снижением размера кристаллитов фазы h-MoSi₂, образованием нанокомпозионной структуры, состоящей из нанокристаллитов и аморфных областей. Похожее влияние легирующих добавок Hf и Zr на свойства покрытий Mo– Si–B наблюдалось ранее в работе [9, 44]. Наиболее эффективно трещиностойкость повышается при одновременном легировании покрытий Mo– Si–B иттрием и цирконием (рис. 6).

3.4. Стойкость к ударному циклическому воздействию

Трехмерные профили поверхности покрытий Мо–(Zr, Y)–Si–В после ударных циклических испытаний при нагрузке 100 Н представлены на рис. 7. Значения диаметров (*d*), глубин (*h*) и объемов (*V*) кратеров, сформировавшихся на поверхности покрытий после тестирования представлены на рис. 8. Для покрытия Мо–Si–В DCMS величины *d*, *h* и *V* составили 450 мкм, 7.29 мкм и 4.0×10^5 мкм³, соотвественно. Введение 4 и 7 ат. % иттрия приводило к росту *d* в 1.7 раза. Значения *h* и *V* были близки для DCMS покрытий Мо–Si–В и Мо–Si–B + 2Y, в то время как для образца Мо–Si–B + 4Y наблюдалось повышение *h* и *V* в 3 и 7 раза, соотвественно.

Покрытие Mo–Si–В HIPIMS характеризовалось значениями диаметра d = 462 мкм, глубины h = 7.3 мкм и объема $V = 4.2 \times 10^5$ мкм³, что близко к DCMS покрытию аналогичного состава. Введение Y при использовании HIPIMS режима привело к увеличению *d* до 685 мкм, *h* до 8.0 мкм и *V* до 5.0×10^5 мкм³. Покрытие Mo–Zr–Si–B + 2Y HIPIMS по свойствам почти не отличалось от базового образца Mo–Si–B HIPIMS и характеризовалось значениями *d* = 460 мкм, *h* = 7.8 мкм и *V* = 4.7 × $\times 10^5$ мкм³. Таким образом, введение иттрия в состав как DCMS-, так и HIPIMS-покрытий Mo– Si–B снижает стойкость к ударным воздействиям, в то время как переход от режима DCMS к HIPIMS в случае образца Mo–Si–B + 4Y позволяет снизить объем кратера на 60%.

3.5. Стойкость к абразивному воздействию

Микрофотографии зон абразивного износа покрытий приведены на рис. 9. Значения объемов удаленного материала V_a представлены на рис. 10. Покрытие Mo–Si–B DCMS при абразивном воздействии в течение 3 минут характеризовалось минимальным $V_a = 240 \times 10^4$ мкм³. Максимальным $V_a = 412 \times 10^4$ мкм³ характеризовалось покрытие Mo–Si–B + 2Y DCMS, причем покрытие износилось на всю толщину Покрытие Mo–Si–B + 4Y показало значение $V_a = 290 \times 10^4$ мкм³, близкое к образцу Mo–Si–B DCMS.

В случае покрытия Mo–Si–В HIPIMS V_a составил 165 × 10⁴ мкм³, что на 30% ниже данных, полученных для Mo–Si–В DCMS. Введение иттрия в состав HIPIMS-покрытий привело к росту значений V_a на 30%. Наилучшие результаты были получены при одновременном легировании ит-

Рис. 7. 3D изображения поверхности покрытий после ударных циклических испытаний.

Рис. 8. Диаметры (а), глубины (б), и объемы кратеров (в), сформировавшихся на поверхности покрытий после ударных циклических испытаний.

трием и цирконием: покрытие Mo-Zr-Si-B + 2Y HIPIMS характеризовалось минимальным объемом удаленного материала 85×10^4 мкм³.

С ростом времени абразивного воздействия увеличивались значения V_a покрытий, при этом все ранее описанные закономерности сохранялись. Таким образом, введение иттрия в состав покрытий Mo–Si–B негативно влияет на абразивную стойкость, тогда как легирование Y и Zr способствует повышению абразивной стойкости покрытий в 2.5 раза при максимальном времени воздействия. Переход от режима DCMS к HIP-IMS способствовал росту абразивной стойкости покрытий на 20–30%.

Стоит отметить, что стойкость покрытий к истирающему воздействию во многом определяется их упруго-пластическими характеристиками [45, 46]. Для покрытий Mo–Si–B, легированных Y, наблюдалась прямая зависимость стойкости к абразивному износу от сопротивления пластической деформации разрушения и упругого восстановления. Примечательно, что максимальная абразивная стойкость наблюдалась для покрытия Mo–Zr–Si–B + 2Y HIPIMS, характеризующегося средними механическими свойствами. Данный эффект может быть связан с повышенной вязкостью и трещиностойкостью данного покрытия [42].

3.6. Жаростойкость и термическая стабильность

Для оценки жаростойкости были проведены изотермические отжиги в течение 1 ч при температуре 1000° С непокрытой молибденовой подложки и подложки с покрытиями Mo–Si–B DCMS, Mo–Zr–Si–B + 2Y HIPIMS и Mo–Zr–Si–B + 2Y DCMS, нанесенными со всех сторон. Удельная потеря массы и внешний вид образцов до и после отжигов, элементный профиль подложки и покрытия Mo–Zr–Si–B + 2Y DCMS после отжига при температуре 1000° С приведены на рис. 11. В случае непокрытой подложки Мо на-блюдалось интенсивное окисление, сопровожда-

СТРУКТУРНЫЕ ОСОБЕННОСТИ

Рис. 9. Микрофотографии зон износа покрытий при длительности абразивного воздействия 3 мин (а) и 7 мин (б).

Рис. 10. Объем удаленного материала покрытий при абразивном воздействии в течение 3, 5 и 7 мин.

ющееся формированием и осыпанием рыхлого оксидного слоя МоО_х [2]. Удельная потеря массы $\Delta m/S$ подложки составила 0.66 г/см². Для покрытия Mo-Si-B DCMS эта величина была в 3 раза ниже и составила $\Delta m/S = 0.21$ г/см². На основной поверхности образца присутствовала плотная пленка, также наблюдались локальные участки разрушения, возникшие в результате диффузии кислорода в месте крепления образца (рис. 11). Покрытия Mo-Zr-Si-B + 2Y, полученные методами DCMS и HIPIMS, сохраняют свою целостность в процессе отжигов и успешно зашишают подложку от окисления. Значения $\Delta m/S$ для DCMS- и HIPIMS-покрытий Mo-Zr-Si-B + 2Y составили 0.09 и 0.07 г/см², соответственно. Таким образом, комбинированное легирование У и Zr, позволяет повысить жаростойкость покрытий Мо-Si-В в 2-3 раза и обеспечить рост этого показателя относительно непокрытой молибденовой подложки в 7-9 раз,

Элементные профили отожженных подложки и образца с покрытием Мо-Zr-Si-B + 2Y HIP-IMS представлены на рис. 116. Перед съемкой элементных профилей с поверхности образцов механически удалялся рыхлый оксид. Согласно данным ОЭСТР для непокрытой подложки Мо глубина окисления превысила 12 мкм. В действительности это значение составило ~1 мм, учитывая разницу в размерах образца до и после отжига (рис. 11а). В случае покрытия Mo-Zr-Si-B + 2Y HIPIMS (рис. 11б), на поверхности после отжига образовался оксидный слой 6 мкм. На глубине 6-10 мкм сохранилось равномерное распределение компонентов покрытия. Диффузия материала подложки в покрытие не наблюдалась. В случае непокрытой подложки атомы кислорода диффундируют вглубь материала на значительную глубину (рис. 11б). При нанесении защитного покрытия глубина проникновения кислорода ограничена толщиной оксидной поверхностной пленки.

Рис. 11. Удельная потеря массы для непокрытой Мо-подложки и покрытий, внешний вид образцов до и после отжигов (верхний и нижний ряд, соответственно) (а), элементные профили непокрытой Мо-подложки и покрытия Мо–Zr– Si–B + 2Y HIPIMS после отжига при 1000°С (пунктирные и сплошные линии, соответственно) (б).

Рис. 12. Светлопольные изображения структуры и электронограммы покрытия Mo–Si–B + 4Y DCMS при температурах 20–1000°С.

Для иттрий-содержащего покрытия Mo–Si– В + 4Y DCMS было проведено исследование структурно-фазовых превращений, происходящих при нагреве ламели покрытия в колонне ПЭМ до 1000°С. На рис. 12 приведены светлопольные изображения структуры и электронограммы покрытия при температурах 20-1000°С. Нагрев до 600°С не приводил к изменениям: на-

Рис. 13. РЭМ изображения поверхности покрытий Mo-Si-B DCMS и Mo-Si-B + 4Y DCMS после отжигов при температуре 800° C.

нокомпозитная структура покрытия сохранялась, межплоскостные расстояния для фаз t-MoB (d/n = 0.305 нм) и *h*-MoSi₂ (d/n = 0.222 нм) были аналогичны исходному состоянию. Средний размер кристаллитов гексагональной фазы *h*-MoSi₂, определенный по светлопольным изображениям структуры, возрастал с 2.8 до 3.3 нм при увеличении температуры с 20 до 800°С. При 800°С на электронограммах помимо фаз t-MoB и h-MoSi₂ c теми же межплоскостные расстояниями, обнаруживался новый рефлекс, соответствующий тетрагональной фазе *t*-MoSi₂ (d/n = 0.196 нм). Увеличение температуры до 1000°С привело к сужению рефлексов h-MoSi2 и t-MoSi2 и появлению новых отражений: от фаз t-Mo₅Si₃ (d/n = 0.342 нм) и t-МоВ (d/n = 0.305 нм). Размер кристаллитов не превышал 20 нм. Таким образом, при нагреве покрытия Mo-Si-B + 4Y DCMS до 800°С наблюдается фазовый переход h-MoSi₂ \rightarrow t-MoSi₂, при 1000°С дополнительно формируется фаза *t*-Mo₅Si₃. Важно отметить, что присутствующие в исходном состоянии гексагональная h-MoSi₂ и тетрагональная *t*-MoB фазы сохраняются при нагреве до 1000°C.

Микрофотографии поверхности покрытий Mo-Si-B DCMS и Mo-Si-B + 4Y DCMS после отжигов при температуре 800°С представлены на рис. 13. Покрытие Mo-Si-B DCMS растрескивается при данной температуре: на поверхности наблюдается сетка трещин, ширина которых составляет около 100 нм. В случае легированного Y покрытия Mo-Si-B + 4Y DCMS трещин и других поверхностных дефектов не обнаружено. При 1000°С выявленная структура покрытий сохранялась. Таким образом, добавка иттрия подавляет образование и распространение трещин при термическом воздействии в результате модификации структуры покрытия Mo-Si-B DCMS по аналогии с [9].

выводы

Покрытия в системе Mo–Y–Zr–Si–B были получены методом магнетронного напыления в режимах DCMS и HIPIMS с использованием мишеней MoSi₂ + 10% MoB и (MoSi₂ + 10% MoB) + + 20% ZrB₂, в зоне эрозии которых располагались сегменты металлического иттрия. Покрытия характеризовались низкой концентрацией дефектов и равномерным распределением элементов по толщине. Основной структурной составляющей покрытий являлась фаза *h*-MoSi₂. Легирование иттрием и переход от DCMS к режиму HIP-IMS способствовали снижению размера кристаллитов основной фазы *h*-MoSi₂ с 30–100 до 2–4 нм, а также повышению доли аморфной составляющей.

Покрытие Mo–Si–В DCMS обладало твердостью 23 ГПа, модулем упругости 320 ГПа и упругим восстановлением 46%. Легирование иттрием приводит к снижению механических характеристик покрытий Mo–Si–В. В то же время, переход от режима DCMS к HIPIMS способствует росту твердости и модуля упругости на ~10%. Введение иттрия в состав покрытий Mo–Si–В и переход к режиму HIPIMS способствовали повышению адгезионной прочности и трещиностойкости покрытий.

Введение Y в состав покрытий Mo–Si–В приводит к снижению износостойкости в условиях абразивных и циклических ударных воздействий. Однако для иттрий-содержащих образцов переход от режима DCMS к HIPIMS позволил повысить этот показатель на 20 и 60%, соответственно. Наиболее эффективном явилось комбинированное легирование покрытий Zr и Y, обеспечившее двухкратное повышение абразивной стойкости покрытий Mo–Si–B.

Нанесение покрытий Mo–Si–B и Mo–Y–Zr– Si–B позволило повысить жаростойкость молибденового сплава при температуре 1000°С в 3 и 9 раз, соответственно. Отжиги в вакуумной печи, а также нагрев ламелей образцов в колонне просвечивающего электронного микроскопа показали, что введение Y в состав покрытий Mo–Si–B подавляет образование трещин при высокотемпературном нагреве и способствует повышению термической стабильности покрытий до 1000°C.

БЛАГОДАРНОСТИ

Работа выполнена при финансовой поддержке Российского научного фонда (проект № 23-49-00141). Р. Feng выражает благодарность за финансовую поддержку фонду NSFC (проект № 5221101774).

СПИСОК ЛИТЕРАТУРЫ

- 1. Perepezko J.H. // Science. 2009. V. 326. P. 1068-1069.
- Su Ranran, Liu Longfei, Perepezko John H. // International J. Refractory Metals and Hard Materials. 2023. V. 113. P. 106199.
- Zhu L., Zhu Y., Ren X., Zhang P., Qiao J., Feng P. // Surface and Coatings Technology. 2019. V. 375. P. 773–781.
- 4. Fu T., Zhang Y., Shen F., Cui K., Chen L. // Materials Characterization. 2022. V. 192. P. 112192.
- Wei Li, Jinglian Fan, Yan Fan, Lairong Xiao, Huichao Cheng // J. Alloys and Compounds. 2018. V. 740. P. 711–718.
- Yanagihara K., Przybylski K., Maruyama T. // Oxidation of Metals. 1997. V. 47. P. 277–293.
- Kiryukhantsev-Korneev P.V. et al. // Russian J. Non-Ferrous Metals. V. 55 № 6. P. 645–651. https://doi.org/10.3103/S106782121406011X
- Kiryukhantsev-Korneev Ph.V., Iatsyuk I.V., Shvindina N.V., Levashov E.A., Shtansky D.V. // Corrosion Science. 2017. V. 123. P. 319–327.
- 9. Kiryukhantsev-Korneev Ph.V., Sytchenko A.D., Sviridova T.A., Sidorenko D.A., Andreev N.V., Klechkovskaya V.V., Polčak J., Levashov E.A. // Surface and Coatings Technology. 2022. V. 442. P. 128141.
- 10. *Won June Choi et al.* // International J. Refractory Metals and Hard Materials. 2019. V. 80. P. 238–242,
- Zilong Wu, Kanglu Feng, Jiangbo Sha, Chungen Zhou // Progress in Natural Science: Materials International. 2022. V. 32. № 6. P. 752–757.
- Kiryukhantsev-Korneev F.V., Sytchenko A.D., Vakhrushev R.A. et al. // Phys. Atom. Nuclei. 2022. V. 85. P. 2088–2091.
- 13. Zhestkova B.E., Terent'eva V.S. // Russian Metallurgy (Metally). 2010. V. 1. P. 33–40.
- 14. Pang J., Blackwood D.J. // Corr. Sci. 2016. V. 105. P. 17–24.
- 15. *Totemeier T.C., Wright R.N., Swank W.D.* // Intermetallics. 2004. V. 12. № 12. P. 1335–1344.
- Zhang Y., Li H., Ren J., Li K. // Corr. Sci. 2013. V. 72. P. 150–155.
- Kuznetsov S.A., Rebrov E.V., Mies M.J.M., de Croon M.H.J.M., Schouten J.C. // Surf. Coat. Technol. 2006. V. 201. P. 971–978.
- Kudryashov A.E et al. // Surf. Coat. Technol. 2018. V. 335. P. 104–117.
- Zhu L., Chen P., Cai Z., Feng P., Kang X., Akhtar F., Wang X. // Transactions of Nonferrous Metals Society of China. 2022. V. 32. № 3. P. 935–946.
- Lange A., Heilmaier M., Sossamann T.A., Perepezko J.H. // Surface and Coatings Technology. 2015. V. 266. P. 57–63.

- 21. Perepezko J.H., Sossaman T.A., Taylor M. // J. Them. Spray Tech. 2017. V. 26. P. 929–940.
- Ritt P., Sakidja R., Perepezko J.H. // Surf. Coat. Technol. 2012. V. 206. P. 4166–4172.
- Shtansky D.V. et al. // Surface and Coatings Technology. 2012. V. 208. P. 14–23.
- 24. *Kukla R.* // Surf. Coat. Technol. 1997. V. 93. № 1. P. 1–6.
- 25. Kiryukhantsev-Korneev Ph.V., Horwat D., Pierson J.F., Levashov E.A. // Tech. Phys. Lett. 2014. V. 40. P. 614–617.
- Kiryukhantsev-Korneev Ph.V., Sheveyko A.N., Vorotilo S.A., Levashov E.A. // Ceramics International. 2020. V. 46. № 2. P. 1775–1783.
- Helmersson U., Lattemann M., Bohlmark J., Ehiasarian A.P., Gudmundsson J.T. // Thin Solid Films. 2006. V. 513. P. 1–24.
- Xie Dong, Wei L.J., Liu H.Y., Zhang K., Leng Y.X., Matthews D.T.A., Ganesan R., Su Y.Y. // Surf. Coat. Technol. 2022. V. 442. 128192.
- Lattemann M., Ehiasarian A.P., Bohlmark J., Persson P.Å.O., Helmersson U. // Surf. Coat. Technol. 2006. V. 200. P. 6495–6499.
- Kiryukhantsev-Korneev F.V. // Russ. J. Non-ferrous Metals. 2014. V. 55. P. 494–504. https://doi.org/10.3103/S1067821214050137
- 31. Veprek S. et al. // Thin Solid Films. 2005. V. 476. P. 1–29.
- 32. *Fischer-Cripps A.C. et al.* // Surface and Coatings Technology. 2006. V. 200. P. 5645–5654.
- Zawischa M., Azri M.M., Supian B.M., Makowski S., Schaller F., Weihnacht V. // Surf. Coat. Technol. 2021. V. 415. P. 127118.
- 34. Musil J. // Research signpost. 2008. P. 1-35.
- Shtansky D.V. et al. // Phys. Solid State. 2006. V. 48. P. 1301–1308.
- Tayebi N., Polycarpou A.A., Conry T.F. // J. Materials Research. 2004. V. 19. P. 1791–1802. https://doi.org/10.1557/JMR.2004.0233
- Li J., Beres W. // Canadian Metallurgical Quarterly. 2007. V. 46:2. P. 155–173. https://doi.org/10.1179/cmq.2007.46.2.155
- 38. *Kiryukhantsev-Korneev P.V., Sheveiko A.N., Petrzhik M.I. //* Prot Met Phys Chem Surf. 2019. V. 55. P. 502–510.
- Schwarzer N., Duong Q.-H., Bierwisch N., Favaro G., Fuchs M., Kempe P., Widrig B., Ramm J. // Surface and Coatings Technology. 2011. V. 206(6). P. 1327–1335. https://doi.org/10.1016/j.surfcoat.2011.08.051
- 40. Leyland A., Matthews A. // Wear. 2000. V. 246. P. 1.
- 41. Mustafa M.M.B., Umehara N., Tokoroyama T., Murashima M., Shibata A., Utsumi Y., Moriguchi H. // Tribology Online. 2019. V. 14. № 5. P. 388–397.
- 42. Kiryukhantsev-Korneev P.V., Pierson J.F., Bychkova M.Y. et al. // Tribol. Lett. 2016. V. 63. P. 44.
- 43. *Chen J., Bull S.* // J. Physics D: Applied Physics. 2011. V. 44(3). P. 34001.
- Kiryukhantsev-Korneev Ph.V., Sytchenko A.D., Potanin A.Yu., Vorotilo S.A., Levashov E.A. // Surf. Coat. Technol. 2020. V. 403. P. 126373.
- 45. *Beake B.D.* // Surface and Coatings Technology. 2022. V. 442. P. 128272.
 - https://doi.org/10.1016/j.surfcoat.2022.128272
- 46. McMaster S.J., Kosarieh S., Liskiewicz T.W., Neville A., Beake B.D. // Tribology International. 2023. V. 185. P. 108524. https://doi.org/10.1016/j.triboint.2023.108524