_____ РАДИАЦИОННАЯ ____ ХИМИЯ

УДК 541.15:541.515:543.422.27

ВЛИЯНИЕ ГАММА-ОБЛУЧЕНИЯ НА ПОВЕРХНОСТНЫЕ ЭНЕРГЕТИЧЕСКИЕ ХАРАКТЕРИСТИКИ И СМАЧИВАНИЕ ПОЛИТЕТРАФТОРЭТИЛЕНА

© 2021 г. И. Ф. Шаймухаметова^{*a*, *b*}, С. А. Богданова^{*b*, *}, С. Р. Аллаяров^{*a*, **}, С. В. Демидов^{*a*}

^аИнститут проблем химической физики Российской академии наук, Черноголовка, 142432 Россия ^bКазанский национальный исследовательский технологический университет, К. Маркса, 68, г. Казань, 420015 Россия

> **E-mail: polyswet@mail.ru* ***E-mail: sadush@icp.ac.ru* Поступила в редакцию 05.02.2021 г. После доработки 29.04.2021 г. Принята к публикации 11.05.2021 г.

Исследовано влияние дозы γ -облучения на поверхностные энергетические характеристики пяти различных марок промышленного политетрафторэтилена (ПТФЭ). В ходе облучения ПТФЭ на воздухе радиационное окисление приводит к появлению функциональных групп и возрастанию кислотно-основной составляющей свободной поверхностной энергии и полярности поверхности, при этом с увеличением дозы уменьшается дисперсионная составляющая свободной поверхностной энергий, что связано с радиационным разрыхлением, аморфизацией и деструкцией полимера. Впервые изучено влияние γ -облучения ПТФЭ на смачивание его водными растворами анионного поверхностно активного вещества — додецилсульфата натрия. Установлено, что облучение увеличивает смачивание и работу адгезии раствора поверхностно активного вещества, что связано с по-явлением полярных групп в поверхностном слое.

Ключевые слова: политетрафторэтилен, γ-облучение, свободная поверхностная энергия и ее составляющие, поверхностно-активное вещество, додецилсульфат натрия, смачивание

DOI: 10.31857/S0023119321050090

Особенности строения политетрафторэтилена (ПТФЭ), обусловливающие высокую прочность связи атомов фтора и углерода в его макромолекулах, определяют сочетание ценных свойств, отличающих этот материал от всех других полимеров: ПТФЭ химически инертен к любым кислотам и их смесям, щелочам и растворителям, имеет широкий интервал рабочих температур, обладает высокой электроизоляционной и механической прочностью. Благодаря своим свойствам ПТФЭ широко применяется в химической промышленности, электротехнике, электронике, в быту и медицине [1, 2].

ПТФЭ, как и другие перфторированные полиолефины, характеризуется чрезвычайно низкой сободной поверхностной энергией (СПЭ), и поэтому обладает низким коэффициентом трения и антиадгезионными свойствами. В исследованиях, связанных с оценкой смачивания поверхности полимеров различными жидкими средами, ПТФЭ является эталоном неполярной поверхности [3, 4]. Плохая смачиваемость и низкая адгезия поверхности ПТФЭ сильно ограничивает его применение в различных областях. Вместе с тем, смачиваемость поверхности полимеров является одной из важнейших характеристик для определения возможности использования материала в конкретной области. Она является фундаментальным свойством твердых поверхностей, которое играет важную роль в фармацевтической, косметической, лакокрасочной, строительной промышленности, в адгезионных технологиях, при нанесении покрытий, в процессах переработки полимерных материалов и получения нанокомпозитов. В последние десятилетия измерение смачивания применяется как метод оценки структуры и свойств поверхностных слоев полимерных материалов [5, 6].

Для улучшения контактных свойств поверхности ПТФЭ и придание ей адгезионных свойств часто прибегают к модификации поверхности ПТФЭ радиационно прививочной полимеризацией различных мономеров на поверхность полимера [7]. Для модификации поверхности ПТФЭ могут быть также использованы потоки электронов [8], ионов [9], а также различные типы излучения (ү-лучи [10, 11], лазер [12]) и последовательное радиационно-лазерное облучение, стимулирующие протекание химических реакций в поверхностном слое ПТФЭ.

Смачивание поверхностей полимеров можно регулировать с помощью растворов поверхностно-активных веществ (ПАВ). Исходя из классических представлений коллоидной химии, смачивающая способность определяется как адсорбционным взаимодействием ПАВ с границей раздела фаз жидкость—твердое тело, так и снижением поверхностного натяжения на границе жидкость—газ. Установлена взаимосвязь между поверхностными энергетическими характеристиками полимеров и их смачиванием растворами ПАВ [13].

Главным фактором, ограничивающим (а в большинстве случаев исключающим) использование ПТФЭ как в чистом виде, так и в составе композиций в изделиях специальной техники, работающих в условиях воздействия радиации, является его чрезвычайно низкая радиационная стойкость [14]. Действие радиации на ПТФЭ приводит к значительному снижению его механической прочности при относительно низких с точки зрения радиационной химии поглощенных дозах. Нам представляется, что СПЭ и ее составляющие могут быть критерием и показателем изменений в структуре поверхностного слоя, а если учитывать проникающий характер у-излучения, и в объеме полимера. Особенно информативна кислотноосновная составляющая СПЭ, которая тесно связана с наличием функциональных групп в граничном слое, являющихся активными центрами, способствующими протеканию поверхностных явлений – смачивания, адгезии, адсорбции. СПЭ и ее компоненты являются высокочувствительными параметрами, измерение которых может способствовать выявлению закономерностей воздействия на поверхностный слой полимеров, получению информации о процессах, протекающих на границе раздела фаз при термическом и радиационном окислении, нанесении нанослоев амфифильных соединений, формировании поверхности из расплава и раствора, введении различных модифицирующих и функционализирующих добавок.

Так, действие ү-излучения вызывает изменение структуры и физико-механических характеристик полимерных материалов, вызванное процессами структурирования или деструкции. Эти процессы находят свое отражение в изменении поверхностных энергетических характеристик – СПЭ, ее дисперсионной и кислотно-основной составляющих, полярности поверхности, параметра кислотности.

Целью настоящей работы является оценка поверхностных энергетических характеристик и полярности поверхности образцов ПТФЭ различных торговых марок в зависимости от дозы облучения у-излучением в кислороде воздуха и вакууме, а также исследование влияния дозы γ-облучения на смачивание ПТФЭ водными растворами анионного ПАВ – додецилсульфата натрия.

МЕТОДИКА ЭКСПЕРИМЕНТА

Для исследования влияния γ -облучения на поверхностные свойства ПТФЭ использовались различные торговые марки промышленного полимера: ПТФЭ в виде пленки толщиной 0.936 мм (Teflon® virgin electrical grade film of Teflon® (ПТФЭ-1), Film made of Teflon® PTFE (ПТФЭ-2) и пластинок толщиной 1.56 мм и шириной 30 × 30 см (Sheets made of teflon® PTFE (ПТФЭ-3), Mechanical grade PTFE sheet (ПТФЭ-4). Они были куплены у компании "McMaster-Carr Supply Company" (Атланта, Штат Джорджия, США). В работе также использовали листовой ПТФЭ марки "Фторпласт Ф-4" производства ООО "Завод полимеров Кирово-Чепецкого химического комбината" (ПТФЭ-5).

В качестве ПАВ использовался додецилсульфат натрия, производитель AppliChem, Испания.

Краевой угол смачивания определяли методом сидящей капли в ячейке с гидравлическим затвором при помощи катетометра КМ-8, снабженного микрометрической насадкой. Капли жидкости наносились с помощью микрошприца. Для хорошей воспроизводимости опытов наносили не менее 5 капель одинаковых размеров так, чтобы их диаметр не превышал 2–3 мм. Все измерения проводились при $20 \pm 1^{\circ}$ С. Образцы полимеров, на которые наносили капли жидкостей тщательно обезжиривались ацетоном. Относительная погрешность измерений 1.7%.

СПЭ (у,) полимерного материала, ее кислот-

но-основная (γ_s^{ab}) и дисперсионная (γ_s^d) составляющие определялись по значениям краевых углов смачивания поверхности материала тестовыми жидкостями. Поверхностное натяжение жидкостей (γ_t), используемых в данной работе, его кис-

лотно-основная (γ_l^{ab}) и дисперсионная (γ_l^d) составляющие приведены в наших работах. Обработка измеренных значений производилась на основании уравнений Оуэнса–Вэндта [15]:

$$0.5\gamma_{1}(1+\cos\theta) = (\gamma_{l}^{d})^{0.5} (\gamma_{s}^{d})^{0.5} + (\gamma_{l}^{ab})^{0.5} (\gamma_{s}^{ab})^{0.5}.$$

Зависимость может быть представлена в виде прямой в координатах Фоукса:

$$x = \left(\gamma_l^{ab} / \gamma_l^d\right)^{0.5}, \quad y = 0.5\gamma_1 (1 + \cos \theta) / \left(\gamma_l^d\right)^{0.5}.$$

Отрезок, отсекаемый на оси ординат равен величине $(\gamma_s^d)^{0.5}$, а тангенс угла наклона отвечает за кислотно-основную составляющую СПЭ и соответствует величине $(\gamma_s^{ab})^{0.5}$. Согласно концепции

Фоукса [16] величину свободной поверхностной энергии можно представить в виде суммы компонентов, обусловленных силами различной природы, и достаточно учитывать только два из них: дисперсионный и кислотно-основной

$$\gamma_s = \gamma_s^{ab} + \gamma_s^d.$$

Погрешность метода составляет не более 2%.

На смачивание твердых тел жидкостями большое влияние оказывает шероховатость поверхности. Шероховатость поверхности полимеров определяли с помощью профилометра. Действие профилометра данной модели основано на принципе ощупывания неровностей измеряемой поверхности щупом индуктивного датчика — алмазной иглой в процессе трассирования, (перемещения датчика вдоль измеряемой поверхности с постоянной скоростью), преобразования высоты щупа в цифровой сигнал с дальнейшей обработкой. Параметры шероховатости вычислялись согласно ГОСТ 2789-73 с базовой длиной 0.8 мм при длине трассы интегрирования 12.5 мм.

Поверхностное натяжение растворов ПАВ, необходимое для расчета работы адгезии, определялось на тензиометре K6 KRUSS по методу отрыва кольца Дю-Нуи в термостатируемой ячейке при температуре 25°С. Относительная погрешность измерений составляла не более 0.3%.

Облучение объектов исследования γ-лучами ⁶⁰Со проводилось при 23°С на УНУ "Гамматок-100" ИПХФ РАН с мощностью дозы, равной 4 Гр/с. Для облучения в вакууме образцы полимеров в начале были отвакуумированы до остаточного давления 0.13 Па, а затем были облучены γлучами в ампулах из молибденового стекла.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Результаты расчета СПЭ и ее составляющих по данным смачивания исходной и облученной поверхности исследуемых образцов ПТФЭ тестовыми жидкостями с использованием графических зависимостей Фоукса приведены в Табл. 1. В таблице также приведена полярность поверхности, которая по концепции, предложенной в работе

[17] определяется как отношение $x^p = \gamma_s^{ab} / \gamma_s$.

На рис. 1 на примере ПТФЭ-1 приведен пример графических зависимостей в координатах Фоукса для расчета полной СПЭ.

Анализ поверхностей исходных образцов ПТФЭ показывает, что они обладают низкими значениями СПЭ и кислотно-основной составляющей, что вполне ожидаемо и соответствует литературным данным [18]. Сравнительный анализ воздействия излучения на комплекс поверхностных характеристик удобнее провести, рассматривая их зависимости от дозы облучения,

Рис. 1. Графическая зависимость в координатах Фоукса для расчета полной СПЭ образца ПТФЭ-1 – по десяти тестовым жидкостям: 1 – не облученного γ -лучами, 2 – облученного γ -лучами в кислороде воздуха, 3 – облученного γ -лучами в вакууме. Доза облучения 60 кГр.

которые приведены в Табл. 1. При этом на отдельных колонках таблицы показаны параметры поверхностных характеристик, полученных при облучении полимера в присутствии кислороде воздуха и в вакууме.

Анализ представленных в таблице данных показывает, что предыстория образцов ПТФЭ (различные технологические способы получения) могут оказать существенное влияние на характер приведенных зависимостей. Условия облучения (в присутствии кислорода воздуха или в вакууме), также играют значительную роль в изменении поверхностных свойств. Облучение ПТФЭ в присутствии кислорода воздуха почти для всех образцов приводит к увеличению полярности поверхности, преимущественно обусловленной возрастанием кислотно-основной составляющей СПЭ. Так, для ПТФЭ-1 при облучении дозой 60 кГр кислотноосновная составляющая СПЭ возрастает в 7 раз.

Наибольшая разница в величинах кислотноосновной составляющей СПЭ для пленочных образцов достигнута для образца ПТФЭ-3 — при облучении дозой 120 кГр она возрастает в 9.7 раза. Для листового фторпласта ПТФЭ-5 при относи-

тельно небольших величинах γ_s^{ab} полярность поверхности при облучении дозой 400 кГр возрастает в 18 раз. Образец ПТФЭ-4 проявляет умеренное возрастание полярности поверхности, а образец 2 практически не увеличил, а даже несколько уменьшил полярность после облучения, что может быть связано с возможным уменьшением кристалличности. Однако при высоких дозах облучения полярность поверхности может уменьшаться, как это наблюдается в образцах ПТФЭ-2,

ВЛИЯНИЕ ГАММА-ОБЛУЧЕНИЯ

	$^{1}x^{\mathrm{P}} \times 10^{2}$		$^{2}\gamma_{s}^{ab}$, MH/M		$^{3}\gamma_{s}^{d}$, MH/M		⁴ ү _s , мН/м		
Д. кГр	5	6	5	6	5	6	5	6	
ΠΤΦЭ-1									
0	3.07	3.07	0.61	0.61	19.28	19.28	19.89	19.89	
0.5	1.83	4.7	0.37	1.15	19.9	20.36	20.27	21.51	
2	2.82	6.82	0.67	1.69	23.05	23.08	23.72	24.77	
4	6.62	6.89	1.82	1.78	25.69	24.45	27.51	26.23	
6	15.31	7.32	4.26	1.96	23.56	25.92	27.82	27.88	
8	10.99	8.7	2.66	2.3	21.55	24.14	24.21	26.44	
ΠΤΦЭ-2									
0	3.00	3.00	0.62	0.62	20.07	20.07	20.69	20.69	
0.5	1.45	0.49	0.30	0.11	20.44	22.42	20.74	22.53	
1	1.18	2.30	0.28	0.53	23.39	22.36	23.67	22.89	
2	1.18	2.68	0.30	0.60	23.19	22.26	23.49	22.86	
4	1.90	2.08	0.41	0.47	21.21	22.11	21.62	22.58	
6	0.83	4.08	0.17	1.01	20.29	23.74	20.46	24.75	
ΠΤΦЭ-3									
0	3.31	3.31	0.87	0.87	25.39	25.39	26.26	26.26	
1	4.23	3.97	1.09	0.76	24.66	18.37	25.75	19.13	
2	2.08	5.3	0.54	1.04	25.47	18.67	26.01	19.71	
4	3.56	2.24	0.97	0.42	23.56	18.37	24.53	18.79	
6	6.78	0.54	1.72	0.11	23.64	20.39	25.36	20.50	
8	9.96	1.39	2.67	0.28	24.13	19.82	26.80	20.10	
ΠΤΦЭ-4									
0	3.97	3.97	0.82	0.82	19.82	19.82	20.64	20.64	
0.5	5.39	2.07	1.29	0.38	22.6	17.98	23.89	18.36	
1	7.11	2.07	1.8	0.36	23.5	17.04	25.30	17.40	
2	8.06	2.58	2.22	0.4	25.32	15.08	27.54	15.48	
4	8.73	2.31	2.47	0.4	25.82	16.93	28.29	17.33	
6	7.02	2.58	1.86	0.5	24.63	18.86	26.49	19.36	
8	6.38	0.84	1.68	0.17	24.63	20.09	26.31	20.26	
	ΠΤΦЭ-5								
0	0. 49		0.09		18.2		18.29		
1	0.94		0.19		19.97		20.16		
4	1.99		0.37		18.22		18.59		
8	9.83		1.62		14.86		16.48		
20	8.87		1.52		15.62		17.14		
40	10.15		1.84		16.28		18.12		

Таблица 1. Поверхностные энергетические характеристики образцов ПТФЭ, облученных ү-лучами

¹ – полярность поверхности; ² – кислотно-основная составляющая СПЭ; ³ – дисперсионная составляющая СПЭ; ⁴ – полная СПЭ; ⁵ – облучение полимера проводилось на воздухе; 6 – облучение полимера проводилось в вакууме.

ПТФЭ-3 и ПТФЭ-4. Возможно, это связано с деструкцией и аморфизацией поверхности ПТФЭ. Возможность аморфизации при радиолизе матрицы ПТФЭ неоднократно отмечалась в случае облучения полимера ускоренными МэВ частицами [13, 19] и γ-лучами ⁶⁰Со. На аморфизацию поверхности γ-облученного ПТФЭ указывает и уменьшение дисперсионной составляющей СПЭ (Табл. 1), очевидно, структура поверхности γ-облученного полимера становится частично или полностью аморфной. Окислительная пострадиационная функционализация поверхности ПТФЭ происходит в результате реакции стабилизированных радикалов, образующихся на поверхности облученного ПТФЭ с кислородом. В конечном счете, это может привести к образованию макромолекул с гидроксильными, карбонильными и карбоксильными связями.

Действительно, согласно данным [9], после γ-облучения порошка промышленного ПТФЭ марки "Фторопласт Ф-4" заметно изменяется химический состав поверхности полимера. В составе радиолизованного ПТФЭ уменьшается концентрация фтора, и повышаются концентрации углерода и кислорода в результате деструкции основной цепи полимера с образованием низкомолекулярных соединений, а также из-за реакции окисления свободных радикалов, стабилизирующихся на поверхности облученного полимера.

По полученным данным наибольшей устойчивостью к воздействию γ-радиолиза обладает поверхность образца ПТФЭ-2. Изменения параметров СПЭ в ходе γ-облучения ПТФЭ-2 имеют место, но в количественном отношении они не столь велики. Это указывает, что существует возможность модификации и функционализации некоторых марок ПТФЭ без существенной деструкции, что и будет изучаться нами в дальнейшем, поскольку при практическом использовании различных конструкций требуется улучшение смачиваемости и контактных свойств поверхности ПТФЭ и придание ей адгезионных свойств.

При облучении ПТФЭ в вакууме наблюдается уменьшение значений кислотно-основной составляющей СПЭ. Это видно из табличных данных для ПТФЭ-1, ПТФЭ-3 и ПТФЭ-4. Дисперсионная составляющая для образца 1 меняется незначительно, для образца 3 она уменьшается по сравнению с облучением на воздухе. Для образца ПТФЭ-1 сохраняется тенденция роста γ_s^{ab} с увеличением дозы облучения, но в целом, значения в области 60–80 кГр ниже, чем при облучении в кислороде воздуха, а также отсутствует максимум на кривой. Но для ПТФЭ-3 и ПТФЭ-4 кислотноосновная составляющая СПЭ при облучении в вакууме практически не меняется.

Необычен рост γ_s^{ab} с увеличением дозы облучения для ПТФЭ-2, но сами величины незначительны – увеличение составляет всего 0.4 МН/м, для ПТФЭ-1 оно составляет 1.7 мН/м. Сравнение данных, полученных после облучения полимера в вакууме и в присутствии воздуха показывает, что в целом в вакууме существенно уменьшается радиационное окисление поверхности. Полярность поверхности преимущественно обусловлена из-

менением γ_s^{ab} .

Дисперсионная составляющая СПЭ в вакууме для образцов ПТФЭ-3 и ПТФЭ-4 меньше, чем в условиях облучения на воздухе. Для ПТФЭ-1 и ПТФЭ-2 изменение ее незначительно. Все эти данные указывают на специфику получения и структуры пленок ПТФЭ, для выявления механизма радиолиза необходимы дополнительные исследования. Возможно, на результаты оказывает влияние различная плотность образцов.

Данные, представленные на рис. 2 для листового "Фторпласта-4" (ПТФЭ-5) в широком интервале доз облучения на воздухе показывают достаточно предсказуемый характер изменения поверхностных энергетических характеристикрадиационное окисление приводит к появлению функциональных групп и возрастанию кислотно-основной составляющей СПЭ и полярности поверхности, при этом с увеличением дозы уменьшается дисперсионная составляющая СПЭ, по-видимому, связано с разрыхлением, аморфизацией и деструкцией полимера.

Основными химическими процессами, приводящими к изменению полярности поверхности радиолизованного ПТФЭ, могут быть реакции окисления свободных радикалов, образующихся при облучении. При облучении ПТФЭ при 77К в спектре ЭПР регистрируются наложение сигналов нескольких парамагнитных центров. В нем могут регистрироваться компоненты сигналов "срединных" ~F₂CFC CF₂~ [20] и аллильных ~F2CFC'CF=CFCF2~ макрорадикалов, а также спектры захваченных различного рода ловушками положительных и отрицательных зарядов [21]. О наличии сигнала "концевых" макрорадикалов ~ F_2CF_2C' в спектре ЭПР облученного ПТФЭ в литературе имеются противоречивые данные. По данным [20] при разрыве С-С-связи в ходе радиолиза ПТФЭ образуются концевые макрорадикалы, как при 77 К, так и при 300 К, и их концентрация в интервале доз облучения 10-100 Мрад в вакууме приблизительно в 10 раз меньше, чем концентрация серединных макрорадикалов [22]. С другой стороны, как утверждают авторы работ [23] в спектре ЭПР облученного при 77 К ПТФЭ концевые макрорадикалы не регистрируются.

Исследования, проведенные с линейными перфторалканами (н-ПФА) и ПТФЭ с целью выяснения влияния длины цепи и агрегатного состояния на механизм радиолиза н-ПФА показали [14], что в ходе радиолиза как при 77К, так и при 300К концевые радикалы, образующиеся при разрыве С-С связи, не стабилизируются в матрицах н-ПФА и ПТФЭ. При этом в спектрах ЭПР облученных н-ПФА и ПТФЭ регистрируются только радикалы ~F₂CF₂C', образующиеся при отрыве атома F от концевых F₃C-групп. В результате, доля стабилизирующихся концевых радикалов в высокомолекулярном н-ПФА, каким является ПТФЭ с молекулярной массой $\sim 10^6$, почти в тысячу раз меньше, чем доля серединных радикалов. Поэтому в спектре ЭПР облученного ПТФЭ

Рис. 2. Зависимость полярности поверхности (а), кислотно-основной составляющей СПЭ (б), дисперсионной составляющей СПЭ (в) и полной поверхностной энергий от дозы γ-облучения ПТФЭ-5 в кислороде воздуха.

спектр радикалов $\sim F_2 C F_2 C^*$ практически отсутствует.

Таким образом, основным радикальным продуктом у-радиолиза ПТФЭ в вакууме являются серединные макрорадикалы, образующиеся в результате отрыва атомов фтора. Следует отметить, что механизм радиолиза ПТФЭ существенно изменяется в ходе радиолиза при высоких температурах (вблизи или выше температуры плавления кристаллитов ПТФЭ) [24]) или в присутствии кислорода [25, 26]. При радиационном модифицировании ПТФЭ в присутствии молекулярного кислорода доминирующим процессом является образование пероксидных концевых (-CF2-CFOO') и серединных (-CF₂-CFOO[•]-CF₂-) [20]. Перфторалкильные и пероксидные радикалы в цепи ПТФЭ при комнатной температуре имеют очень большие времена жизни. Их присутствие отражается в изменении поверхностных энергетических характеристик полимера.

Было изучено влияние дозы γ-облучения ПТФЭ-5 на смачивание его водными растворами анионного ПАВ (додецилсульфат натрия).

Поверхностные энергетические характеристики ПТФЭ-5, такие как СПЭ, ее компоненты, полярность поверхности в зависимости от дозы облучения были приведены в Табл. 1. Как видно, ПТФЭ-5 обладает низкими значениями γ_s^{ab} , что свидетельствует о практически полном отсутствии полярных групп в поверхностном слое. Изучение смачивания таких полимеров полезно как для практических целей, так и для расширения представлений о совокупном влиянии ПАВ, природы полимера и интенсивности облучения на характер смачивания.

Изотермы смачивания поверхностей ПТФЭ-5 водными растворами ДДС приведены на рис. 3. Они показывают, что поверхность ПТФЭ-5 является гидрофобной – величина $\cos\theta < 0$. Облучение γ -лучами ⁶⁰Со дозой до 400 кГр, хотя и несколько увеличивает полярность поверхности, не приводит к появлению гидрофильности – для об-

Рис. 3. Изотермы смачивания поверхности ПТФЭ-5 водными растворами додецилсульфата натрия: *1* – необлученный ПТФЭ-5, *2* – ПТФЭ-5, *γ*-облученный 40 кГр, *3* – ПТФЭ-5, *γ*-облученный 400 кГр.

лученных поверхностей величина соѕв также ниже нуля. При нанесении раствора ПАВ на поверхность ПТФЭ-5 наблюдается инверсия смачивания при определенных концентрациях ПАВ, что говорит о гидрофилизации поверхности, обусловленной тем, что в насыщенном адсорбционном монослое молекулы ПАВ ориентируются углеводородным фрагментом в сторону поверхности полимера. С увеличением концентрации ПАВ наблюдается возрастание соs₀ до определенного значения. Дальнейшее повышение содержания ПАВ на поверхности ПТФЭ-5 не приводит к изменению величины cos θ . Сравнительный анализ кривых 1-3 показывает, что облучение увеличивает смачивание, что, по-видимому, связано с появлением полярных групп в поверхностном слое. Увеличение дозы облучения в 10 раз (40 и 400 кГр) повышает величину cos θ в 2 раза при концентрации раствора ПАВ 0.25%.

По результатам оценки смачивания и данным о поверхностном натяжении растворов ПАВ нами была рассчитана работа адгезии растворов до-

Таблица 2. Работа адгезии растворов ПАВ к поверхности необлученного и γ-облученного ПТФЭ-5

	<i>W_{ad}</i> , мН/м						
C, %	Доза облучения, кГр						
	0	40	400				
0.125	61.32	61.80	64.80				
0.25	59.05	63.92	67.26				
0.50	51.24	59.24	60.96				
1.00	51.24	55.55	58.19				

децилсульфата натрия к поверхности ПТФЭ-5 по уравнению Юнга–Дюпре

$$W_{ad} = \gamma_l (1 + \cos \theta).$$

Результаты расчета работы адгезии представлены в Табл. 2. Данные Табл. 2 показывают, что, в целом, адгезия ПАВ к поверхности облученных образцов ПТФЭ-5 несколько выше, чем к исходному. Так, W_{ad} возрастает в среднем в 1.2 раза. Следует отметить, что листовой фторпласт Ф4 проявляет достаточно высокую стойкость к облучению и данные анализа взаимодействия ПАВ с поверхностью исходного и облученных образцов это подтверждают.

выводы

• Проведен анализ СПЭ и ее составляющих для поверхности пяти торговых марок промышленного ПТФЭ, облученных γ - лучами ⁶⁰Со в интервале доз от 5 до 80 кГр (для ПТФЭ-5 до 400 кГр) в вакууме или в присутствии кислорода.

• Облучение ПТФЭ в присутствии кислорода воздуха приводит к увеличению полярности поверхности, преимущественно обусловленной возрастанием кислотно-основной составляющей СПЭ. Результаты могут быть связаны с окислительными процессами в поверхностном слое.

• Облучение ПТФЭ в вакууме не приводит к существенному возрастанию СПЭ, ее кислотно-основной компоненты и полярности поверхности.

• При высоких дозах облучения полярность поверхности ПТФЭ и дисперсионная составляющая СПЭ уменьшаются, что может быть связано с деструкцией и аморфизацией полимера.

• Изотермы смачивания поверхности ПТФЭ водными растворами ПАВ (додецилсульфат натрия) показывают, что облучение приводит к увеличению смачивания.

• Работа адгезии растворов додецилсульфата натрия к поверхности ПТФЭ возрастает с увеличением дозы облучения.

ИСТОЧНИК ФИНАНСИРОВАНИЯ

Работа выполнена при финансовой поддержке Госзадания АААА-А19-119041090087-4 с использованием УНУ "Гамматок-100" ИПХФ РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Améduri B., Boutevin B.* Well-architectured fluoropolymers: synthesis, properties and applications. Amsterdam: Elsevier, 2004.
- Schiers J. Ed. "Modern Fluoropolymers: High Performance Polymers for Diverse Applications. New York: Wiley Series in Polymer Science, John-Wiley & Sons, 1997.

ХИМИЯ ВЫСОКИХ ЭНЕРГИЙ том 55 № 5 2021

- Bogdanova S.A., Shashkina O.R., Barabanov V.P., Belov G.P., Zaikov G.E., Stoyanov O.V. // Polymers Research Journal. 2012. V. 7. P. 1.
- Bogdanova S.A., Barabanov V.P., Slobozhaninova M.V., Ebel A.O., Stoyanov O.V. // Polymer Science, Series D. Glues and Sealing Materials. 2008. V. 1. P. 226.
- 5. Старостина И.А., Стоянов О.В., Краус Э. Развитие методов смачивания для оценки состояния поверхности: монография. Казань: КНИТУ, 2019. 152 С.
- Богданова Ю.Г., Должикова В.Д., Цветкова Д.С., Карзов И.М., Алентьев А.Ю. // Журнал структурной химии. 2011. Т. 52. № 6. С. 1224.
- Chapiro A., Dera G., Jendrychowska-Bonamour A.M. // Eur. Polym. J. 1971. V. 7. P. 1595.
- 8. Lunkwitz K., Lappan U., Lehman D. // Rad. Phys. Chem. 2000. V. 57. P. 373.
- Zhang J., Yu X., Li H., Liu X. // Applied Surface Science. 2002. V. 185. P. 255.
- Mohammadian-Kohol M., Asgari M., Shakur H.R. // Radiation Physics and Chemistry. 2018. V. 145. P. 11.
- Хатипов С.А., Нурмухаметов Р.Н., Селиверстов Д.И., Сергеев А.М. // Высокомолек. соед. А. 2006. Т. 48. С. 263.
- Гракович П.Н., Иванов Л.Ф., Калинин Л.А., Рябченко И.Л, Толстопятов Е.М, Красовский А.М. // Рос. хим. журн. (Журн. Рос. хим. об-ва им. Д.И. Менделеева). 2008. Т. LII. С. 97.
- 13. Барабанов В.П., Богданова С.А. // Вестник КНИТУ. 2010. № 4. С. 7.

- Allayarov S.R., Konovalikhin S.V., Olkhov Yu.A., Jackson V.E., Kispert L.D., Dixon D.A., Ila D., Lappan U. // J. Fluor. Chem. 2007. V. 128. P. 575.
- Owens D.K., Wendt R.C. // J. Appl. Polymer Sci. 1969.
 V. 13. № 8. P. 1740.
- Fowkes F.M. In: Physicochemical Aspects of Polymer Surfaces // V. 2. Ed. K.L. Mittal. New York: Plenum. 1983. P. 583.
- 17. Vijayendran B.R. // J. Appl. Polym. Sci. 1979. № 3. C. 733.
- Саутина Н.В., Богданова С.А., Барабанов В.П. // Вестник КНИТУ. 2009. № 2. С. 77.
- Allayarov S.R., Olkhov Yu.A., Muntele C.I., Dixon D.A., Ila D. // High Energy Chemistry. 2014. V. 48. № 3. P. 162.
- 20. Милинчук В.К., Клиншпонт Э.Р., Пшежецкий С.Я. Макрорадикалы. М.: Химия, 1980. С. 43.
- 21. *Клиншпонт Э.Р., Милинчук В.К. //* Химия высоких энергий. 1967. Т. 1. С. 242.
- Matsugashita T., Shinohara K. // J. Chem. Phys. 1960.
 V. 32. P. 954.
- 23. Астахов Е.Ю., Клиншпонт Э.Р., Милинчук В.К. // Высокомолек. Соед. 1988. Т. 90. № 4(А). С. 702.
- 24. Lappan U., Geiβler U., Scheler U. // Macromolecular Materials and Engineering. 2007. V. 292. № 5. P. 641.
- 25. *Клиншпонт Э.Р., Милинчук В.К. //* Высокомолек. Соед. 1973. Т.15 (Б). С. 332.
- 26. Брук М.А, Спирин А.В., Хатипов С.А., Козлова Н.В. // Химия высоких энергий. 2004. Т. 38. № 4. С. 273.