— ФОТОНИКА —

УДК 535.37

СПЕКТРАЛЬНО-ЛЮМИНЕСЦЕНТНЫЕ СВОЙСТВА БИСАЗОМЕТИНА НА ОСНОВЕ 2-ГИДРОКСИ-1-НАФТАЛЬДЕГИДА И 2,3-ДИАМИНОПИРИДИНА

© 2021 г. И. Р. Мардалейшвили^{а, *}, Л. С. Кольцова^а, Н. Л. Зайченко^а, О. Н. Крутиус^а, А. И. Шиенок^а

^аФедеральное государственное бюджетное учреждение науки Федеральный исследовательский центр химической физики им. Н.Н. Семенова Российской академии наук, ул. Косыгина, 4, Москва, 119991 Россия

**E-mail: marli2007@yandex.ru* Поступила в редакцию 26.04.2021 г. После доработки 11.05.2021 г. Принята к публикации 11.05.2021 г.

Исследованы спектрально-люминесцентные свойства растворов бис гидроксинафтоазометина пиридинового ряда в сравнении с аналогом бензольного ряда. Наличие атома азота пиридина в ортоположении к азометиновой группе способствует образованию кето-формы азометинового фрагмента в основном состоянии молекулы. Положение максимумов люминесценции растворов слабо зависит от присутствия в гетероцикле атома азота, а в большей мере определяется полярностью растворителя. В полярных средах наблюдается более длинноволновая и более эффективная люминесценция.

Ключевые слова: люминесценция, азометины, пиридиновые производные **DOI:** 10.31857/S0023119321050077

Азометины - хорошо известный класс соединений, представляющий интерес благодаря многообразию их химических, физических и биологических свойств. Производные салицилиденанилина давно исследуются благодаря их фото- и термохромным свойствам. Азометины 2-гидрокси-1-нафтальдегида исследовались менее широко, чем производные салицилиденанилинов [1-4]. так как в растворах и в порошках уже присутствует смесь енольной и кето-формы [5, 6], что снижает интерес к этим соединениям как к фотохромной системе. Однако азометины нафталинового ряда менее чувствительны к структурным изменениям и более устойчивы к УФ облучению [4], а в растворах люминесцируют эффективнее салицилиденовых производных, квантовый выход люминесценции которых в растворах крайне низкий [7]. Люминесцентные свойства некоторых нафтопроизводных с бензольной аминной составляющей исследовались в аналитических целях для определения ионов металлов [8, 9]. Исследовали люминесцентные свойства комплексов нафтоазометинов с бензольной аминной частью с Al, Cu, Mn, Ni, Zn [8-11], лантаноидами [12], аминокислотами [13], их каталитическую активность [14] и стабильность.

В последние годы исследовали производные бензоазометинов [15–19] и меньшей мере нафтоазометинов [19–22] с пиридиновой аминной частью. Отмечены антибактериальные свойства нафтоазометинов с пиридиновой аминной частью и их комплексов с металлами [21] и их высокая гидролитическая стабильность.

Исследования люминесцентных свойств азометинов на основе о-гидроксиароматических альдегидов и аминопиридинов немногочислены и касаются салицилиденовых азометинов [18], в то же время исследования люминесценции нафтоазометинов в литературе отсутствуют.

В настоящей работе исследовали спектрально-люминесцентные свойства растворов бисазометина 2-гидрокси-1-нафтальдегида и 2,3диаминопиридина. Для выявления влияния атома азота гетероцикла на спектры поглощения и люминесценции пиридинового бисазометина (бис-II) привлекались спектральнолюминесцентные данные для моноазометина пиридинового ряда (II), а также производных бензольного ряда – (I) и (бис-I).

I (X = CH)II (X = N)

бис-I (X = CH) бис-II (X = N)

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исследуемые моно- и бис-соединения синтезированы по известным методикам [8, 21, 22]. Для приготовления растворов использовали растворители фирмы Acros без дополнительной очистки. Спектры поглощения растворов ($c = 2 \times 10^{-4}$ - 2×10^{-6} M) регистрировали на спектрофотометре MultiSpec1501, спектры люминесценции ($c = 10^{-5}$ — 2×10^{-6} M) на спектрофлуориметре Perkin Elmer LS 55. Квантовые выходы люминесценции растворов при возбуждении 420 нм и оптических плотностях 0.1 оценены с использованием в качестве стандарта раствора рубрена в гептане с известным квантовым выходом люминесценции $\phi = 1.0$ [24]. Спектры ЯМР ¹Н регистрировали на приборе Brucker Avance, 500 МГц в растворах ДМСО-d₆ и CDCl₃.

РЕЗУЛЬТАТЫ

Спектры поглощения мононафтоазометинов I, II

Все исследуемые соединения являются производными хорошо известного соединения I [5, 6], структура которого усложнена заменой бензольного кольца аминной части на пиридин и (или) введением в аминную часть второй азометиновой группировки.

В растворах мононафтоазометина бензольного ряда соединения I характерно наличие двух таутомерных форм — енольной (Е) и кетонной (К), соотношение между которыми зависит от растворителя, что проявляется в спектрах поглощения (рис. 1). В растворе I в толуоле наблюдаются основная полоса с максимумом 370—375 нм, относящаяся к Е-форме, и длинноволновые полосы с максимумами 440 и 462 нм от К-формы. В метаноле преобладает К-форма со значениями максимумов полос поглощения 439 и 458 нм. Наличие двух длинноволновых полос поглощения объясняли наличием по крайней мере двух изомеров К-формы [5].

В растворах нафтоазометина пиридинового ряда II, также, как и в растворах нафтоазометина бензольного ряда I, наблюдается зависимость спектра поглощения от растворителя, в основном связанная с влиянием на кето-енольное равновесие. В толуоле присутствуют обе изомерные формы, при этом соотношение изомеров в большей степени сдвинуто в сторону К-формы, чем в растворе I (рис. 1). При переходе к полярной спиртовой среде наблюдается усиление вклада длинноволновых полос, обусловленное преобладанием К-формы.

Замена бензольного цикла на пиридиновый с *орто*-положением амино-группы по отношению к атому азота гетероцикла способствует смещению равновесия в сторону К-формы в мононафтоазометине II. Подобное влияние атома азота гетероцикла отмечали авторы работы [20] базируясь на сравнительном анализе данных ЯМР в ДМСО для замещенных бензо- и *орто*-пиридин производных моно-нафтоазометинов.

Присутствие атома N пиридина в моно-соединении II в *орто*-положении приводит к росту поглощения и заметному батохромному сдвигу (409 нм) полосы поглощения в УФ-области спектра по сравнению с I. При этом положение полос в видимой области спектра, обусловленное наличием К-формы, практически не меняется (рис. 1, табл. 1). Рост поглощения обеих таутомерных форм II в сравнении с I и слабая зависимость положения максимумов спектра поглощения К-формы наблюдались для растворов II и в других растворителях [22].

Рис. 1. Спектры поглощения соединений I (1, 2) и (II) (3, 4) в толуоле (1, 3) и этаноле (2, 4), $c = 10^{-4}$ М.

Спектры поглощения биснафтоазометинов бис-I, бис-II

Введение второй азометиновой группировки при переходе от мононафтоазометина I к бис-I приводит к росту поглощения в толуоле и небольшому смещению длинноволновой границы спектра поглощения в красную область, обусловленному смещением полос от К-формы (рис. 2, табл. 1). Положение максимума полосы от Е-формы (374 нм) близко в наблюдаемому в растворе I. Как и в растворе I в спектре поглощения бис-I в толуоле преобладает поглощение Е-формы. В метиленхлориде и этаноле наблюдается увеличение содержания К-формы бис-I, при этом поглощение от Е-формы остается преобладающим. Положение максимумов полос от К-формы слабо зависит от полярности среды.

Наличие второй азометиновой группировки в бис-соединении пиридинового ряда бис-II приводит к небольшому батохромному сдвигу длинноволновых полос поглощения от К-формы (452 и 479 нм) относительно моносоединения II (рис. 2), при этом положение полосы, относимой к Е-форме (385 нм) близко к положению, характерному для соединений бензольного ряда I и бис-I. Таким образом, в присутствии второй группировки в бис-II нивелируется эффект батохромного смещения этой полосы, наблюдаемый при замене бензольного кольца в I на пиридиновое с *орто*-позицией атома азота в II. Присутствие пиридинового атома N в бис-II увеличивает относительное содержание К-таутомера в растворе толуола по сравнению с бис-I (рис. 2) аналогично наблюдаемому для монопроизводных нафтоазометинов I и II (рис. 1).

В отличие от бис-I, в растворах которого при переходе от толуола к более полярным растворителям наблюдается рост поглощения от К-формы, в растворах бис-II при переходе от толуола к МХ, этанолу (рис. 2, 3) в спектрах поглощения нет существенных изменений таутомерного равновесия. Это можно объяснить предпочтительностью процесса переноса протона только в одной азометиновой группировке и практически полным переходом этого фрагмента в К-изомер уже в слабо полярном толуоле.

В спектрах ЯМР ¹Н в полярном ДМСО– d_6 наблюдаются два разных сигнала – синглет от протона азометиновой группы –CH=N– при 9.62 м.д. и дублет от аминной группы –CH–NH– при 10.01 м.д., при этом анализ соотношения наблюдаемых полос указывает на существование в этом растворе молекул только одного типа. Из этих данных ЯМР следует, что в соединении бис-II в ДМСО один азометиновый фрагмент находится в E-, а другой – в К-форме (E_2K_3 или K_2E_3). В слабополярном хлороформе соединение бис-II на 90–95% присутствует в форме E_2K_3 или K_2E_3 .

В соединении бис-І азометиновые фрагменты некомпланарны и в структурном плане могут быть неравноценны в отношении процесса переноса протона в основном состоянии [23]. Замена бензольного кольца аминной части на пиридин в бис-ІІ добавляет неравноценность в отношении распределения электронной плотности в азометиновых фрагментах. Базируясь на эффекте смещения таутомерного равновесия в сторону кетоформы в соединении ІІ можно предположить преимущественную стабилизацию К-формы в *орто*-группировке по отношению к азоту пиридина, в то время как мета-азометиновая группировка находится в Е-форме.

Положение максимумов полос поглощения и значения коэффициентов экстинкции биспроиз-

водных бис-I и бис-II в растворах слабополярных растворителей — толуоле, метиленхлориде сохраняется во всем диапазоне исследуемых концентраций $5 \times 10^{-6} - 2 \times 10^{-4}$ М.

В то время как толуол являясь наиболее "пассивным" растворителем позволяет выявить структурные различия молекул бис-I и бис-II, связанные с заменой бензольного кольца на пиридин, в полярных растворителях возможны дополнительные эффекты, обусловленные взаимодействием растворителя с азометином. Так в растворах бис-I, бис-II в ДМФА при концентрациях $10^{-4}-10^{-5}$ М наблюдается спектр поглощения, аналогичный раствору в толуоле. При хранении раствора, а также при снижении концентрации раствора наблюдается изменение спектра погло-

Соединение	Растворитель	λ _{макс} (нм)	λ _{em} (нм)
Ι	Толуол Этанол	323, 334, 379, 440, 462 318, 335, 358, 439, 458	497, пл. 526 500, пл. 527
II	Толуол Этанол	326, 341, 402, 415, 440, 465 490-510 321, 342, 366, 415, 439, 463 485-490	
бис-І	Кр.порошок Толуол МХ Ацетонитрил Этанол ДМФА	483, 525 327, 375, пл. 453, пл. 477 323, 374, 454, 479 321, 370, 449, 475 321, 373, 392, 455, 478 324, 374, 455, 477 (<i>c</i> = 10 ⁻⁴ M) 326, 415, 474 (<i>c</i> < 10 ⁻⁵ M)	545-557 508, 526 517, 535 510, 527, 546 511, 535 519, 551
бис-II	Кр.порошок Толуол МХ Ацетонитрил Этанол ДМФА	483, 525 326, 385, 452, 479 317, 370-400, 446, 472 321, 379, 449, 475 319, 393, 452, 477 ($c = 10^{-4}$ M) 319, 426, 463 ($c = 2 \times 10^{-6}$ M) 380-400, 452, 478 ($c = 10^{-4}$ M) 338, 433, 472 ($c = 2 \times 10^{-6}$ M)	569–572 504, 525 503, 527 520, 547 524, 553 527, 557

Таблица 1. Максимумы полос спектров поглощения и флуоресценции исследуемых соединений в различных растворителях

Рис. 2. Спектры поглощения I (1), II (2), бис-II (4) в толуоле, бис-I (3) в толуоле, МХ (5) и этаноле (6), $c = 10^{-4}$ М.

щения. С разбавлением полоса поглощения, относимая к Е-форме, смещается в красную область спектра, при этом полосы от К-формы смещаются гипсохромно.

Похожие изменения наблюдали в спектрах поглощения бис-II в этаноле (рис. 3). Спектр поглощения при концентрациях $5.8 \times 10^{-5} - 1 \times 10^{-5}$ М в этаноле аналогичен наблюдаемому в слабополярных растворителях (рис. 2, 3). Дальнейшее разбавление спиртового раствора сопровождается изменением спектра поглощения (рис. 3). Изменения в спектре поглощения бис-II при разбавлении спиртового раствора наблюдаются при более низких концентрациях, чем в ДМФА. Наблюдаемое изменение спектра поглощения бис-II в сильно разбавленных растворах и при хранении может свидетельствовать об эффективном взаимодействии с полярным растворителем.

Люминесценция моно- и бис-нафтоазометинов

Люминесценция моноазометина II при 20°C похожа на люминесценцию I [25, табл. 1]. Замена бензольного кольца на пиридиновое в моносоединении II практически не сказывается на положении полосы эмиссии — для обоих мононафтоазометинов в растворах характерна слабая люминесценция с максимумом около 500 нм. Переход к бис-структурам как бензольного (бис-I), так и пиридинового ряда (бис-II) сопровождается более длинноволновой люминесценцией (Табл. 1). В отличие от моносоединений I, II спектры люминесценции растворов исследованных бис-соединений бис-I, бис-II при 20°С характеризуются двумя перекрывающимися полосами в области 508—560 нм, положение максимумов этих полос зависит от природы растворителя (Табл. 1).

Две перекрывающиеся полосы люминесценция наблюдали ранее в растворах I, но только при низких температурах. Так две полосы эмиссии (480 и 510 нм) отчетливо проявляются в спектрах люминесценции растворов нафтоазометина I [6] и его производных [25] при 77 К. В работе [6] расщепление полосы эмиссии объясняли образованием в возбужденном состоянии двух люминесцирующих форм кето-изомера, полученного в результате переноса протона при возбуждении енольной формы и при прямом возбуждении К-изомера.

В спектрах поглощения бис-І и бис-ІІ присутствуют перекрывающиеся полосы поглощения от азометиновых фрагментов в енольной (Е) и в кето-форме (К), в зависимости от длины волны

Рис. 3. Спектры поглощения бис-II в этаноле, $c = 5.8 \times 10^{-5}$ М (*I*), разбавление в 2, 3, 6, 12 и 24 раза (2–6). Кривая 6 ($c = 2.4 \times 10^{-6}$ М) приведена по дополнительной оси.

возбуждения можно ожидать преимущественного возбуждения одного из фрагментов.

В растворах, исследуемых нафтоазометинов бис-I, бис-II наблюдаются полосы люминесценции в области длиннее 500 нм (Табл. 1), а также коротковолновая люминесценция в области 430— 450 нм, наиболее заметная в растворе бис-I в толуоле при возбуждении 330—370 нм.

Наблюдаемая длинноволновая люминесценция в растворах исследуемых бис-азометинов может быть обусловлена образованием люминесцирующего изомера в результате процесса переноса протона при возбуждении фрагмента с енольной формой или прямым возбуждением фрагмента в кето-форме. То есть в растворах соединения бис-ІІ в полярных растворителях, существующем в полярных средах в виде К₂Е₃ длинноволновая люминесценция может исходить от возбуждения фрагмента К₂ или фрагмента Е₃ Коротковолновая люминесценция, по-видимому, обусловлена возбуждением енольного фрагмента в К₂Е₃ или в форме ЕЕ, присутствующей в небольшом количестве в растворе бис-II в толуоле и преобладающей в растворе бис-І в толуоле.

В растворах бис-II при возбуждении 420 нм наблюдается люминесценция с полосой эмиссия с максимумами 504 и 526 нм в толуоле и близкими максимумами эмиссии в метиленхлориде (табл. 1). В полярных растворителях — этаноле (рис. 4), ДМФА (рис. 5) характерна более длинноволновая люминесценция, причем эффективность люминесценции значительно выше, чем в толуоле (Табл. 1, 2). В полярных средах несмотря на наблюдаемые изменения спектра поглощения с разбавлением (рис. 3, Табл. 1) вид спектра люминесценции не зависит от концентрации растворов.

В ацетонитриле для обоих соединений бис-I и бис-II в спектре возбуждения люминесценции наблюдается дополнительная полоса с максимумом на 530 нм, и соответствующая этому возбуждению более длинноволновая полоса эмиссии 550 нм. Наблюдаемую в спектре возбуждения полосу 530 нм можно отнести к образующимся в этом растворителе структурированным образованиям. При разбавлении растворов до концентрации 10^{-6} М полоса 530 нм в спектре возбуждения ослабевает (рис. 6), но не исчезает, что свидетельствует об устойчивости подобных агрегатных образований в ацетонитриле.

Следует отметить, что полосы 490 и 530 нм являются основными в спектрах возбуждения люминесценции кристаллических порошков бис-I и бис-II. В кристаллическом порошке бис-II при любом возбуждении наблюдается одна полоса эмиссии с максимумом на 570 нм. В растворе ацетонитрила вид спектра зависит от длины волны возбуждения (рис. 6).

Ацетонитрил способствует образованию агрегатов бис-I и бис-II, что подтверждается ростом интенсивности полосы 530 нм в спектре возбуждения при переходе от раствора в толуоле к раствору в смеси растворителей толуола (70%) и аце-

Рис. 4. Спектры эмиссии люминесценции (1, 2, 4, 5) и возбуждения люминесценции (3, 6) растворов (бис-II) в толуоле (1–3, вспомогательная ось) и этаноле (4–6), Em: $\lambda_{BO36} = 420$ (1, 4) и 485 нм (2, 5), Ex: $\lambda_{per} = 550$ нм (3, 6).

Рис. 5. Спектры люминесценции бис-I (1, 3) и бис-II (2, 4) в ДМФА Ет: $\lambda_{B036} = 420$ нм (1, 3), Ex: $\lambda_{per} = 560$ нм (2, 4).

тонитрила (30%) (рис. 7). Заметное проявление свойств, характерных для люминесценции бис-II в полярных растворителях наблюдается уже при 10% содержании ацетонитрила в смеси растворителей.

Квантовый выходы люминесценции бис-I и бис-II в толуоле низкие, слабо различаются и близки к значению для моносоединения I. В полярных средах — этаноле и ДМФА значения квантовых выходов обоих соединений (Табл. 2) значительно выше, при этом эффективность люминесценции нафтопроизводного пиридинового ряда бис-II выше, чем у нафтопроизводного бензольного ряда бис-I.

Аналогичная тенденция к росту квантового выхода люминесценции при переходе от бензоль-

Puc. 6. Спектры люминесценции (*1*-6) бис-II в ацетонитриле, $c = 6.4 \times 10^{-6}$ M (*1*-5); Em: $\lambda_{BO36} = 330, 420, 490, 525$ нм (*1*-4), Ex: $\lambda_{per} = 550$ нм (5); $c = 1.6 \times 10^{-6}$ M (6), Ex: $\lambda_{per} = 550$ нм (6).

Рис. 7. Спектры люминесценции бис-II в толуоле (*1*-4) и в смеси толуола и ACN (30%) (5-8) при $c = 10^{-5}$ М и спектры поглощения в толуоле (9) и смеси растворителей (*10*), Em: $\lambda_{BO36} = 420$ (*1*, 5), 485 (*2*, 6) и 525 нм (*3*, 7), Ex: $\lambda_{per} = 560$ нм (*4*, 8).

Соединение	толуол	этанол	ДМФА
бис-І	0.0014	0.08	0.12
бис-II	0.0011	0.13	0.28

Таблица 2. Квантовые выходы люминесценции бис-I и бис-II в растворах, $\lambda_{возб} = 420$ нм

ного к пиридиновому производному наблюдалась в спиртовых растворах бис-производных на основе салицилиденанилина в работе [18].

Таким образом, для азометинов на основе нафталидена как с бензольной, так и пиридиновой аминной частью характерно наличие Е- и К-таутомерных форм даже в слабо полярных растворителях. Относительное содержание К-формы увеличивается в полярных средах. В слабополярном растворителе — толуоле для соединений пиридинового ряда наблюдается смещение таутомерного равновесия в основном состоянии в сторону К-формы по сравнению с бензольными аналогами. причем наличие атома азота пиридина в орто-положении способствует образованию К-формы как в моно-, так и в бис-производном. Замена бензольного цикла на пиридиновый в бис-соединении слабо влияет на положение максимумов полос люминесценции. В большей степени в бис-производных бис-I и бис-II проявляется зависимость люминесценции от растворителя — наблюдается батохромный сдвиг полос люминесценции и усиление эффективности люминесценции в полярных средах, причем более существенное для бис-II.

ИСТОЧНИК ФИНАНСИРОВАНИЯ

Работа выполнена по теме Госзадания № 0082-2019-0003.

СПИСОК ЛИТЕРАТУРЫ

- Rawat M.S.M., Mal S., Singh P. // Open Chemistry Journal 2015. V. 2. P. 7.
- 2. Mei J., Leung, N. L.C., Kwok R.T.K., Lam J.W.Y., Tang B.Z. // Chem. Rev. 2015. V. 115. P. 11718.
- 3. Hadjoudis E. // Mol. Eng. 1995. V. 5. P. 301.
- 4. *Красовицкий Б.М., Болотин Б.М. //* Органические люминофоры М. Химия 1984. С. 336.

- Fabian W.M.F., Antonov L., Nedeltcheva D., Kamounah F.S., Taylor P.J. // J. Phys. Chem. 2004. V. 108. P. 7603.
- 6. *Richey W.F., Becker R.S.* // J. Chem. Physics. 1968. V. 49. 2092.
- 7. Vargas V. C. // J. Phys. Chem. A 2004. V. 108. P. 281.
- 8. Zhou D., Sun C., Chen C., Cui X., Li W. // J. Mol. Structure 2015. V. 1079. P. 315.
- 9. Samanta S., Nath B., Baruah J.B. // Inorgan Chem. Communication. 2012. V. 2. P. 98.
- 10. Abd-Elzaher // J. Chinese Ch. Sos. 2001. V. 48. P.153.
- 11. *Abd-Elzaher* // Synth. React.Inorg.Met.-Org.Chem 2000. V. 30. № 9. P.1805.
- 12. Taha Z.A., Ajloun, A.M., Momani W.A., Al-Ghzawi A.A. // Spectrochem. Acta Part A 2011. V. 81. P. 570.
- 13. *Shang X., Li C., Li J., Chen Y., Chen H., Wang T.* // Heterpaton Chemistry. 2018. V. 29. P. 21489.
- Sarkar N., Bhaumik P.K., Chattopadhyay S. // Polyhedron. 2016. V. 115. P. 37.
- Sliwa M., Mouton N., Ruckebusch C., Aloise S., Poisat O., Buntinx G., Metivier R., Nakatani K., Masuhara H., Asahi T. // J. Phys. Chem. C 2009. V. 113. P. 11959.
- Asadi M., Asadi Z., Torabi S., Lotfi N. // Spectrochimica Acta Part, A 2012. V. 94. P.72.
- 17. *Dueke-Eze C.U., Fasina T.M., Idika N. //* Afr. J. Pure App. Chem. 2011. V. 5. P. 13.
- Barboza C.A., Germino J.C., Santana A.M., Quites F.J., Vazguez P.A.M., Atvars T.D.Z. // J. Phys. Chem. C. 2015. V. 119. P. 6152.
- Jeewoth T., Kam Wah H.L., Browon M.G., Ghoorohoo D., Babooran K. // Synth. React. Inorg. Met.-Org. Chem. 2000. V. 30. Is. 6. P.1023.
- Venkatachalam T.K., Pierens G.K., Campitelli M.R., Reutens D.C. // Magn. Reson. Chem. 2010. V. 48. P. 585
- Abdel- Rahman L.H., Ismail N.M., Ismael M., Abu-Dief A.V.E., Ahmed A.H. // J. Mol. Struct. 2017. V. 1134. P. 851.
- 22. Nazir H., Yildiz M., Yilmaz H., Tahir M.N., Ulku D. // J. Mol. Struct. 2000. V. 534. Is. 1–3. P. 24.
- 23. Popovic Z., Roje V., Pavlovic G., Matkovic-Calogovic D., Giester P. // J. Mol. Struct. 2001. V. 597. P. 39.
- 24. Паркер С. Фотолюминесценция растворов / Под ред. Р.Ф. М. Мир. 1972. С. 253.
- Мардалейшвили И.Р., Кольцова Л.С., Зайченко Н.Л., Шиенок А.И., Левин П.П., Татиколов А.С. // Химия высоких энергий. 2011. Т. 45. № 6. С. 548.