_____ РАДИАЦИОННАЯ ____ ХИМИЯ ____

УДК 541.15:541.515:543.422.27

ОСОБЕННОСТИ ИК ЛАЗЕРНОЙ АБЛЯЦИИ ГАММА-ОБЛУЧЕННОГО ПОЛИАМИДА-6

© 2019 г. И. А. Фролов^{*a*}, С. Р. Аллаяров^{*a*}, *, Л. А. Калинин^{*b*}, Ю. Г. Богданова^{*c*}, ***, Е. М. Толстопятов^{*b*}, **, П. Н. Гракович^{*b*}, Л. Ф. Иванов^{*b*}, Н. Н. Дремова^{*a*}, О. Н. Голодков^{*a*}

^аИнститут проблем химической физики Российской академии наук, Черноголовка, 142432 Россия

^bИнститут механики металлополимерных систем им. В.А. Белого Национальной академии наук Беларуси, Гомель, 246050 Беларусь

^сМосковский государственный университет имени М.В. Ломоносова, Химический факультет, Москва, 119991 Россия

*E-mail: sadush@icp.ac.ru **E-mail: Tolstopyatov@mpri.org.by ***E-mail: yulibogd@yandex.ru Поступила в редакцию 04.04.2019 г. После доработки 30.04.2019 г. Принята к публикации 06.05.2019 г.

Обработка γ -излучением полиамида-6 (ПА) снижает его устойчивость к последующему воздействию ИК лазерного излучения. Средняя скорость лазерной абляции предварительно облученного γ -излучением в дозах выше ~300 кГр ПА практически не зависит от дозы и на 30% превышает таковую исходного необлученного полимера. Комбинированный характер имеет ход дозовой зависимости скорости лазерной абляции образцов, предварительно облученных дозой 3.24 МГр при мощности дозы 4.2 Гр/с, изменяясь от характерной для исходного полимера на начальном этапе до характерной для облученного максимальной дозой в стационарном режиме ЛА. Одним из продуктов лазерной абляции ПА является диспергированный полимер, состоящий из частиц от нано- до микроразмера, причем с увеличением дозы γ -излучения диапазон размеров этих частиц смещается в сторону меньших размеров, что объясняется снижением вязкости расплава.

Ключевые слова: полиамид-6, ү-облучение, ИК лазерная абляция, РЭМ **DOI:** 10.1134/S0023119319060068

Характер процесса лазерной абляции (ЛА) полимера, состав и свойства получаемых при этом продуктов существенно зависят от химического строения его макромолекул и их надмолекулярной организации [1, 2]. Обработка полимера ионизирующими излучениями изменяет как химическое строение и молекулярную массу, так и надмолекулярную структуру полимера, тем самым изменяя его лазерно-аблянионные характеристики. Так. перестройка молекулярной структуры политетрафторэтилена (ПТФЭ) под действием у-облучения приводит к сложной дозовой зависимости состава пролуктов последующей аблянии его лучом CO_2 лазера [2–5]. В частности, содержание одного из компонентов абляционного потока ПТФЭ-волокнистых продуктов – немонотонно в больших пределах изменяется при изменении дозы облучения. В дозовом интервале 5-10 кГр наблюдается резкий всплеск интенсивности волокнообразования, который сменяется таким же резким спадом до значений ниже тех, что регистрируются в исходном полимере. При дальнейшем повышении дозы предварительного γ-облучения идет монотонный рост интенсивности образования волокон ПТФЭ, при дозах 300...400 кГр достигающий 3...4-кратных значений по сравнению с необлученным полимером. В [3] предложена предполагаемая модель, объясняющая этот уникальный эффект.

С целью поиска общих закономерностей влияния ионизирующих излучений на процесс последующей лазерной абляции полимеров авторами запланирована программа исследований по ряду полимеров различной природы. Полученные результаты по ПТФЭ, поликетону, полиэтилену поливинилиденфториду и сополимеру этилена с пропиленом опубликованы ранее [3–9]. Работой [10] начато исследование влияния γ-облучения на процесс абляции ПА.

Целью настоящей работы являлось продолжение исследований ПА с расширением режимов предварительной γ-обработки и комплекса определяемых параметров процесса, а также характеристик получаемых продуктов.

МЕТОДИКА ЭКСПЕРИМЕНТА

В качестве лазерных мишеней использовался промышленный монолитный ПА в форме цилиндров диаметром 14 и высотой 10 мм.

Гамма-облучение образцов в стеклянных ампулах в среде воздуха проводилось на установке УНУ "Гамматок-100" ИПХФ РАН источником ⁶⁰Со при температуре 300 и 341 К дозами до 25 МГр при мощности дозы 0.15 и 4.2 Гр/с соответственно.

Лазерная абляция проводилась на вакуумной установке, описанной ранее в [5, 11]. Мощность излучения CO_2 лазера ЛГН-703 с длиной волны 10.6 мкм составляла 40 Вт. Начальное давление остаточных газов в вакуумной камере было не выше 2 мПа, далее оно повышалось в процессе абляции за счет выделения неконденсируемых газов.

Конденсируемые продукты абляции и захваченные интенсивным газовым потоком микроразмерные частицы деструктированного полимера осаждались на поверхности алюминиевой фольги, установленной на расстоянии 50 мм от поверхности мишени.

ИК спектры образцов и продуктов абляции регистрировали прибором Perkin Elmer FT-IR с ATR-приставкой с кристаллом германия методом нарушенного полного внутреннего отражения.

Измерение надмолекулярной структуры образцов с осадком продуктов абляции выполнены с помощью автоэмиссионного растрового микроскопа фирмы "Carl Zeiss" (Германия) серии "SUPRA25".

Удельную свободную поверхностную энергию определяли двухжидкостным методом, используя тестовые жидкости (воду и метилен йодид). Краевые углы тестовых жидкостей определяли методом сидящей капли [12] с погрешностью не выше 1% на горизонтальном микроскопе марки "МГ" с гониометрической приставкой. Погрешность определения удельной свободной поверхностной энергии не превышала 1 мДж/м².

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЯ

Одной из характеристик процесса абляции является кинетика изменения массы мишени. На рис. 1 приведена зависимость скорости потери массы мишени (скорости абляции) ПА от времени лазерного облучения для двух доз предварительного γ -облучения. Началу выделения вещества из мишени предшествует скрытый (индукционный) период разогрева полимера до температуры разложения с испарением наиболее летучих продуктов. К числу таковых, по данным масс-спектрометрии [13], относятся H, H₂, C, CH, CH₂, N, NH, O, OH, H₂O, C₂H, C₂H₂, CN, C₂H₃, HCN, N₂, CO, C₂H₄, COH, C₂H₅, N₂H, NO, C₂H₆, H₂CO, N₂H₂, C₂, CH₂NH, O₂, C₃H₃, C₃H₄, C₃H₅, C₃H₆, CNO, HCNO и H₂CNO. Скорость абляции нарастает вплоть до

Рис. 1. Зависимость интенсивности абляции исходного (а) и γ-облученного ПА (б, в) от времени воздействия ИК лазера. Доза γ-облучения (кГр): 3240 (б) и 25000 (в) при мощности 4.2 Гр/с.

~20-й секунды, после чего процесс переходит в стационарный режим. Длительность этого периода практически не зависит от дозы γ -облучения, из чего следует, что в этот период происходит рост температуры и увеличение зоны полимера, в пределах которой достигнута температура деструкции. В дальнейшем скорость движения температурного фронта деструкции выравнивается со скоростью движения фронта абляции, и процесс становится стационарным.

В то же время из приведенных на рис. 1 графиков видно, что абсолютные значения скорости абляции зависят от дозы у-облучения, причем наибольшие различия в нестационарный период наблюдаются у мишени, обработанной максимальной дозой 25 МГр. Скорость абляции мишени, обработанной дозой 3.24 МГр, вплоть до 10-й секунды не отличается от таковой у исходного необработанного образца. Объяснить характер этих зависимостей можно их сходными теплофизическими характеристиками, а также тем, что состав компонентов абляционного потока из необлученного и облученного дозой 3.24 МГр образцов в начальный период одинаков. Иначе говоря, лазерное разложение у обоих образцов идет с диссоциацией одинаковых химических связей и выделением близких по температуре испарения атомных групп.

Значительно более высокая скорость абляции в начале процесса, демонстрируемая образцом, облученным дозой 25 МГр, является свидетельством присутствия в нем низкомолекулярных продуктов с низкой температурой испарения. Легколетучие продукты радиолиза ПА в значительных количествах удаляются из мишени еще до достижения ею температуры стационарной абляции и уносят зна-

Рис. 2. Зависимость средней за 30 с интенсивности абляции ПА, вызванной излучением лазера от дозы предварительного γ -облучения. Температура γ -облучения 340 К (а) и 300 К (б) при мощности излучения 4.2 Гр/с (а) и 0.15 Гр/с (б).

чительное количество энергии. Это обусловливает и пониженную по сравнению с необлученным образцом температуру в кратере в стационарном режиме. Подъем скорости абляции на начальном этапе происходит за счет расширения зоны полимера, в пределах которой достигается температура абляции. Более высокая скорость абляции ПА в стационарном режиме свидетельствует о том, что в полимере γ-радиолизом "заготовлены" низкомолекулярные продукты, имеющие низкую температуру испарения. В результате энергия лазерного луча в меньшей степени расходуется на деструкцию, но в большей степени идет на менее энергозатратное испарение продуктов радиолиза.

Промежуточное положение между исходным и облученным дозой 25 МГр полимером занимает мишень, подвергнутая у-облучению с дозой 3.24 МГр. В ней доля крупных фрагментов, способных к абляции, в начале лазерного облучения невелика, поэтому процесс абляции в первые ~10 с аналогичен кинетической кривой необлученного полимера. Однако на 14-20 секундах скорость абляции облученных образцов уже превосходит таковую у исходного образца. На этой стадии в абляционный поток переходят продукты радиационного разложения со средней молекулярной массой, которые также уносят значительную энергию, понижая температуру приповерхностного слоя в кратере. Переход к стационарному режиму абляции происходит у образцов этой группы на 28–30 секунде облучения. После этого основная мощность лазерного луча расходуется на дополнительную к радиационной деструкцию молекулярных цепей. Поэтому температура кратера при этом ниже, чем у необлученного полимера, а скорости абляции выше.

Зависимость от дозы предварительного ү-облучения средней скорости абляции за период 030 с приведена на рис. 2. Ход этой зависимости в целом отражают сделанные выше выводы.

Кроме низкомолекулярных молекул и их фрагментов в потоке абляции ПА присутствуют высокомолекулярные микроагрегаты – микрокапли расплава полимера. Эти микрокапли образуются в результате захвата расплава полимера горячим турбулентным потоком газообразных продуктов разложения, вырывающихся из подповерхностного слоя через микрократеры. Такой процесс характерен для всех термопластичных несшивающихся под действием ИК лазерного излучения полимеров [6]. После столкновения с поверхностью подложки и затвердевания, эти частицы образуют слой порошка (рис. 3а–г). Форма и размеры этих частиц зависят от дозы у-облучения (рис. 3д-и). При повышении дозы размер частиц снижается (рис. 33, и), что контролируется вязкостью расплава – при высоких дозах молекулярная масса макромолекул снижается, что ведет к повышению вязкости расплава. Кроме этого, форма и размер частиц зависят от удельного поверхностного натяжения расплава (удельной свободной поверхностной энергии) - чем оно выше, тем более округлую форму и меньший размер имеют частицы. На рис. 4 приведена зависимость удельной свободной поверхностной энергии ПА и ее составляющих от дозы у-облучения. Из этого графика видно, что с ростом дозы этот параметр возрастает. Таким образом, обе характеристики, зависящие от дозы ионизирующей радиации, действуют в одну сторону – при увеличении дозы снижается вязкость расплава и повышается его удельная свободная поверхностная энергия, что приводит к снижению размера микрокапель расплава в лазерно-абляционном потоке.

Одновременно размерный состав частиц становится более однородным, что следует из рис. 5. Распределение частиц по размерам облученного полимера значительно уже, чем распределение, полученное при абляции исходного необлученного полимера, и максимум лежит около 5 мкм.

Кроме округлых частиц осевшего на поверхность подложки порошка, на РЭМ микроснимках в отдельных местах подложки обнаруживаются частицы правильной вытянутой формы с высоким аспектным отношением (рис. 3а, б, ж). Имеется два предположения относительно их происхождения. Первое — частицы представляют собой перенесенные из мишени супрамолекулярные образования, не успевшие расплавиться и захваченные интенсивным потоком газа. Второе — частицы являются продуктами структурообразования осажденных на поверхности молекул деструктированного полимера.

В спектре, как исходного ПА, так и порошкового слоя, получаемого при его лазерной абляции, сохраняются свойственные для ПА полосы

Рис. 3. Микрофотографии порошкового слоя, сформированного из факела продуктов лазерной абляции ПА. Порошковый слой, полученный при лазерной абляции исходного ПА (а, б, в, г) и ПА, предварительно γ-облученного при мощности 0.15 Гр/с дозой (кГр): 60 (д), 500 (е, ж, з) и 2000 (и).

поглощения в ИК области (табл. 1). Следовательно, воздействие ИК лазера в процессе образования порошкового слоя не приводит к полному разрушению молекулярной цепи полимера. Тем не менее, в спектре порошкового слоя в области "отпечатков пальцев" (1150–800 см⁻¹) уменьшается интенсивность характеристических полос, отвечающих за колебания цепи С-С-С-С и С–С–С, и появляются полосы 999 и 995 см⁻¹, отвечающие за деформационные колебания связей СН и СН₂ в винилкетонном фрагменте ~CO–CH=CH₂. Последний может образоваться в результате диспропорционирования макрорадикалов, получающихся при разрыве CH₂–CH₂ связи ПА:

$$\sim \mathrm{NH}-\mathrm{CH}_{2}-(\mathrm{CH}_{2})_{4}-\mathrm{CO}\sim \rightarrow \sim \mathrm{NH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}+$$

+ C'H₂-CH₂-CO~ $\rightarrow \sim \mathrm{NH}-\mathrm{CH}_{2}-\mathrm{CH}_{3}+\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CO}\sim$.

Рис. 4. Удельная свободная поверхностная энергия γ -облученного полимера $\gamma_{\rm SV}$ (*a*), ее дисперсионная

 γ_{SV}^{d} (б) и полярная γ_{SV}^{p} (в) составляющие. Мощность дозы γ -облучения 0.15 Гр/с.

В порошковом слое также имеются продукты, с характеристической полосой поглощения в области 2247 см⁻¹, приписываемой к нитрильной связи C=N [15]. Возможно, разрыв NH–CH₂ свя-

Рис. 5. Кривые распределения частиц (капли) по размерам на поверхности порошкового слоя, образующегося после абляции исходного ПА (а) и полимера, γ-облученного дозой 500 кГр (б) при мощности 0.15 Гр/с.

зи ПА и последующие за ним процессы диспропорционирования и дегитратация полученных интермедиатов может приводить к образованию нитрильной группы:

$$\begin{array}{l} \sim \mathrm{CO-NH-CH_2-(CH_2)_4-CO-NH-CH_2-(CH_2)_4-CO-NH^{\sim} \rightarrow} \\ \rightarrow \sim \mathrm{NH-CH_2-(CH_2)_4-CO-NH+CH_2-(CH_2)_4-CO^{\sim} \rightarrow} \\ \rightarrow \sim \mathrm{NH-CH_2-(CH_2)_4-CO-NH_2+CH_2=CH-(CH_2)_3-CO^{\sim}} \\ \qquad \sim \mathrm{NH-CH_2-(CH_2)_4-CO-NH_2} \rightarrow \\ \rightarrow \sim \mathrm{NH-CH_2-(CH_2)_4-CO-NH_2} \rightarrow \\ \rightarrow \sim \mathrm{NH-CH_2-(CH_2)_4-CN+H_2O}. \end{array}$$

В спектре γ -облученного ПА (табл. 1), кроме полос, характерных для исходного ПА, появляются новые при 980, 996 и 927 см⁻¹, характерные для винилкетонной группы, а также усиливается интенсивность полосы 1745 см⁻¹, характерной для С=О фрагмента полимера. При этом интенсивность поглощения полосы С=О растет с дозой предварительного γ -облучения полимера. Вследствие увеличения содержания карбонильных групп в составе полимера с дозой γ -облучения, видимо, повышается поверхностная энергия полимера (рис. 4).

Основное различие между спектрами γ -облученного полимера и порошкового слоя, полученного при его абляции — появление в порошковом слое полосы при 826 см⁻¹ (табл. 1) и увеличение интенсивности полос 1260, 1206 и 1110 см⁻¹, обусловленное наличием эфирной связи в структуре порошкового слоя. При сравнении ИК спектра кратера абляции γ -облученного ПА со спектром γ -облученного ПА отмечено отсутствие в спектре кратера полосы свободной С=О связи (1745 см⁻¹)

и полос, ответственных за винилкетонные концевые фрагменты.

выводы

Полученные результаты позволяют сделать следующие выводы:

• при воздействии на ПА излучения ИК лазера в вакууме происходит дробление макромолекул на фрагменты — диссоциация внутримолекулярных связей, а в газовую среду вместе с газовым потоком абляции уносятся продукты, которые оседая на поверхности, установленной перед абляционным факелом, образуют порошковый слой;

• основные изменения, внесенные в исходный материал радиолизом и лазерным облучением, отражаются в ИК спектрах в диапазоне 800— 1150 см⁻¹ в виде очень слабых полос поглощения. Они свидетельствуют об укорочении молекулярных цепей и изменении концентраций отдельных атомных групп макромолекул. Тем не менее, химическое строение продуктов лазерной абляции

ОСОБЕННОСТИ ИК ЛАЗЕРНОЙ АБЛЯЦИИ

Экспериментальные данные					Литературные данные [14]	
Γ	IA	П	A ^a	ПАб		
Доза γ-облучения, кГр						
0	2000	0	2000	2000	Волновые числа, см ⁻¹	
	Время :	пазерной абл	яции, с	-	Отнесение ^в	
0	0	40	40	40		
		Волн	иовые числа,			
3300	3282	3299	3300	3295	3370-3270	v(N-H)
3082	3095.3	3082	3101,306	3082	3100-3070	овертон амида II
2929	2927	2930	2930	2928	2940-2915	v_{as} (CH ₂)
2855	2856	2856	2855	2861	2870-2840	$v_a (CH_2)$
1742	1746	1739	1740	_	1745-1715	v(C=O)
1639	1640	1639	1639	_	1680-1630	амид I
1543	1542	1545	1545	_	1570-1515	амид II
1463	1464	1463	1463	1463	1480-1440	$\gamma_{sc}(-CH_2-)$
1260	1258	1260	1261	1260	~1260	амид III
1108	1120	1110	—	—	1120-1090	$v_{s}(C-C-C-C)$
1063	1083	1078	_	_	1100-1040	v(C-C-C)
729	720	730	-	_	740-720	$\delta(-(CH_2)_x-)$
1169	1084	1169	_	_	1175-1120	дублет (С-С-С)
871	886	871	-	-	910-855	дублет (С-С-С-С)
_	980, 996	999, 995	1000, 996	—	1010-940, 965-955	γ(CH ₂)
_	927	—	931	—	~930	γ(CH ₂)
	_	2247	2243	2243	~2250	v(C≡N)
	—	—	1111	1111	1160-1050	$v_{as}(C-O-C)$
	-	-	1206	1207	1225-1200~1207	$v_{as}(=C-O)$
			826	826	850-810	$v_s(=C-O)$

Таблица 1.	Соотнесение полос ИК спектра ПА до и после ради	олиза γ-лучами ⁶⁰ Со и пр	одуктов их ИК лазерной
абляции		• • • •	

^а Порошковый слой, полученный при абляции; ^б Кратер, образующийся при абляции. ^в v — валентное колебание (v_s — симметричное, v_{as} — антисимметричное), δ — деформационное колебание, γ — внеплоскостное деформационное колебание, γ_{sc} — ножничное деформационное колебание.

ПА, как необлученного, так и обработанного предварительно γ-излучением, близко к строению макромолекул исходного полимера, о чем свидетельствует сходство их ИК спектров, т.е. наличие в них характерных полос поглощения для ПА;

• радиационная и лазерная деструкция приводит к образованию незначительного количества концевых винилкетонных и нитрильных фрагментов макромолекул ПА, повышающих полярную составляющую в удельной свободной поверхностной энергии облученного полимера;

• в порошковом слое, сформированного из потока продуктов абляционного факела поли-

амида, размер агрегатов уменьшается с увеличением дозы ү-облучения полимерной мишени и при дозе предварительного ү-облучения 500 кГр их средний размер составляет коло 5 мкм, в сравнении с 30 мкм в порошковом слое из не радиолизованного полимера.

Работа выполнена по теме № 0089-2019-0008 Государственного задания с использованием оборудования Аналитического центра коллективного пользования ИПХФ РАН и при частичной финансовой поддержке Государственной программы научных исследований Беларуси "Полимерные материалы и технологии", задания 6.04, 6.67.

СПИСОК ЛИТЕРАТУРЫ

- Urech L., Lippert T. // Photoablation of Polymer Materials / In: Photochemistry and Photophysics of Polymer Materials, Ed. Allen N. S. New York: John Wiley & Son Inc, 2010. Chapter 14. P. 541.
- 2. Толстопятов Е.М. // Полимерные материалы и технологии. 2016. Т. 2. № 1. С. 6.
- Tolstopyatov E.M. // J. Phys. D: Appl. Phys. 2005. V. 38. P. 1993.
- Grakovich P.N., Ivanov L.F., Kalinin L.A., Ryabchenko I.L., Tolstopyatov E.M., Krasovskii A.M. // Russian J. General Chemistry. 2009. V. 79. № 3. P. 626.
- 5. Ольхов Ю.А., Аллаяров С.Р., Толстопятов Е.М., Гракович П.Н., Калинин Л.А., Добровольский Ю.А., Диксон Д.А. // Химия высоких энергий. 2010. Т. 44. № 1. С. 65.
- 6. Tolstopyatov E.M., Grakovich P.N., Rakhmanov S.K., Vasil'kov A.Yu., Nikitin L.N. // Inorganic Materials: Applied Research. 2012. V. 3. № 5. P. 425.
- Голодков О.Н., Ольхов Ю.А., Аллаяров С.Р., Гракович П.Н., Белов Г.П., Иванов Л.Ф., Калинин Л.А., Диксон Д.А. // Химия высоких энергий. 2013. Т. 47. С. 171.

- Allayarov S.R., Kalinin L.A., Tolstopyatov E.M., Grakovich P.N., Ivanov L.F., Dixon D.A. // J. Russian Laser Research. 2017. V. 38. № 4. P. 364.
- Allayarov S.R., Tolstopyatov E.M., Dixon D.A., Kalinin L.A., Grakovich P.N., Ivanov L.F., Belov G.P., Golodkov O.N. // J. Russian Laser Research. 2017. V. 38. № 4. P. 369.
- Frolov I.A., Allayarov S.R., Kalinin L.A., Dixon D.A., Tolstopyatov E.M., Grakovich P.N., Ivanov L.F. // J. Russian Laser Research. 2018. V. 39. № 1. P. 98.
- Tolstopyatov E.M., Ivanov L.F., Grakovich P.N., Krasovsky A.M. // In: High-Power Laser Ablation. Proc. of SPIE. 1998. V. 3343. № 2. P. 1010.
- Богданова Ю.Г., Должикова В.Д., Мажуга А.Г., Шапагин А.В., Чалых А.Е. // Изв. Акад. наук. Сер. хим. 2010. № 7. С. 1313.
- Cefalas A.C., Vassilopoulos N., Sarantopoulou E., Kollia Z., Skordouli C. // Applied. Physics. 2000. V. 70(A). № 1. P. 21.
- Socrates G. // Infrared and Raman characteristic group frequencies: tables and charts. 3rd ed. Chichester, New York, Weinheim, Toronto, Brisbane, Singapore: John Wiley & Sons Ltd., 2001 (reprint 2004). 347 p.
- Тарасевич Б.Н. ИК спектры основных классов органических соединений. Справочные материалы. М.: МГУ, 2012. 54 с.