——— ФОТОХИМИЯ ——

УДК 541.14+544.18

РОЛЬ КОМПЛЕКСООБРАЗОВАНИЯ МЕЖДУ МОЛЕКУЛАМИ МОНОМЕТИЛАМИНА И ТРИПЛЕТНОГО НИТРОМЕТАНА В РЕАКЦИИ ПЕРЕНОСА ВОДОРОДА

© 2019 г. Д. В. Овсянников^{а, *}, С. В. Зеленцов^а

^аФедеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского" Россия 603950, Н. Новгород, пр. Гагарина, д. 23, корп. 2

> **E-mail: ovsyannikov@chem.unn.ru* Поступила в редакцию 05.10.2018 г. После доработки 24.10.2018 г. Принята к публикации 26.10.2018 г.

Исследован механизм фотохимического переноса атома водорода от амина к триплетному нитросоединению на примере монометиламина и триплетного нитрометана. Рассматриваются два варианта протекания реакции: перенос водорода от аминогруппы и от метильной группы. Моделирование проводится методами квантовой химии с использованием функционала B2PLYP/cc-pVDZ. С помощью теории атомов в молекулах показано комплексообразование в пред- и постреакционных комплексах. Восстановлены профили поверхностей потенциальной энергии реакций. Сделан вывод, что реакция переноса водорода от метильной группы энергетически более выгодна. Установлено, что в ходе реакции образуется прочный комплекс с водородной связью.

Ключевые слова: нитросоединения, триплетное состояние, перенос водорода, теория атомов в молекулах, нитрометан, метиламин

DOI: 10.1134/S002311931902013X

Нитросоединения (**HC**) под действием У Φ -излучения способны к синглет-синглетным переходам с последующей интеркомбинационной конверсии (**ИКК**) с образованием триплетного HC. Далее возможны реакции триплетного HC с переносом атома водорода. К примеру, нитробензол в водном растворе пропанола-2 и хлороводорода способен к фотохимической реакции с выходом ацетона и 2,4-дихлоранилина [1]. При облучении У Φ -светом с длиной волны 313 нм, квантовый выход достигает 0.15.

При взаимодействии триплетного 1-нитронафталина с триэтиламином квантовый выход достигает 0.12 [2]. Эксперимент проводился в бензоле в насыщенной аргоном атмосфере. 2-Нитронафталин реагирует аналогично, причем, квантовый выход достигает 0.10. В насыщенной воздухом атмосфере квантовый выход реакции с 1-нитронафталином и 2-нитронафталином падает до 0.002. Это может говорить о том, что НС реагирует в триплетном состоянии. Таким образом, в присутствии триплетного кислорода происходит триплет-триплетная аннигиляция.

Нитрометан (**HM**) имеет [3] стационарную точку в основном триплетном состоянии T_1 с симметрией C_s . Для него возможны реакции разложения по связи углерод-азот с образованием радикалов CH₃ и NO₂ [4].

Фотохимический перенос атома водорода возможен при участии не только HC, но других классов соединений, например, кетонов, хинонов. Триплетный 1,4-нафтахинон способен реагировать с триэтиламином [5].

Для сравнения энергий, проведено теоретическое исследование отрыва атома водорода от аминов с помощью радикала HO_2 [6]. Отмечаются низкие энергии комплексообразования – 4.39 кДж моль⁻¹ – и сравнительно небольшие энергии активации переноса водорода: 62.72 кДж моль⁻¹ для отрыва атома водорода от аминогруппы, и 49.20 кДж моль⁻¹ для метильной группы. Переходный комплекс при переносе водорода от аминогруппы имеет частоту колебания 1442 см⁻¹*i*. При переносе водорода от метильной группы переходный комплекс имеет частоту 1529 см⁻¹*i*.

Текущая работа ставит своей целью сравнить реакции фотохимического переноса атома водорода от метильной группы и аминогруппы метиламина к триплетному нитрометану.

Параметр	B2PLYP/cc- pVDZ ¹	B3LYP/cc- pVDZ ¹	TPSSh/cc- pVDZ ¹	MP4/cc-pVDZ ¹	CCSD(T)/cc- pVDZ ¹	Эксперимент ²
<i>r</i> (N-C)*	1.464	1.464	1.467	1.472	1.473	1.471
<i>r</i> (N-H)	1.021	1.023	1.025	1.025	1.026	1.018
<i>r</i> (C-H)	1.101	1.023	1.022	1.112	1.106	1.093
<i>a</i> (HNH)**	104.6	104.8	104.3	103.9	103.8	105.8
a(HNC)	108.9	109.3	108.7	107.9	107.9	111.0
a(HCH)	107.5	107.3	107.6	107.7	107.7	108.4

Таблица 1. Сравнение геометрических параметров метиламина в синглетном состоянии при использовании различных методов

* *r* – расстояние между атомами, Å.

** *а* – валентный угол между атомами, град.

¹ https://cccbdb.nist.gov/geom2x.aspю

² *Kuchitsu K.* Structure of Free Polyatomic Molecules: Basic Data. Berlin Heidelberg: Springer-Verlag, 1998.

Таблица 2. Сравнение геометрических параметров метиламина в синглетном состоянии при использовании различных базисных наборов

Параметр	B2PLYP/6-31+G**1	B2PLYP/aug-cc-pVDZ ¹	B2PLYP/TZVP ¹	B2PLYP/cc-pVDZ ¹	Эксперимент ²
<i>r</i> (N–C)*	1.464	1.468	1.462	1.464	1.471
<i>r</i> (N–H)	1.013	1.017	1.011	1.021	1.018
<i>r</i> (C–H)	1.098	1.014	1.097	1.101	1.093
<i>a</i> (HNH)**	107.4	106.3	107.1	104.6	105.8
a(HNC)	111.1	110.5	110.8	108.9	111.0
a(HCH)	108.0	108.1	107.9	107.5	108.4

* r – расстояние между атомами, Å.

** а – валентный угол между атомами, град.

¹ https://cccbdb.nist.gov/geom2x.asp

² *Kuchitsu K.* Structure of Free Polyatomic Molecules: Basic Data. Berlin Heidelberg: Springer-Verlag, 1998.

МЕТОДОЛОГИЧЕСКАЯ ЧАСТЬ

Все квантово-химические вычисления проводились в программе NWChem-6.6 [7]. Вычисление параметров электронной плотности выполнено в программе Multiwfn [8]. Для визуализации результатов вычислений использовалась программа Avogadro [9, 10].

В качестве рабочего метода был выбран B2PLYP/cc-pVDZ. Все триплетные состояния яв-ляются наинизшими.

В табл. 1 приведено сравнение вычисленных и экспериментальных геометрических параметров молекулы метиламина в основном синглетном состоянии.

Из табл. 1 следует, что метод B2PLYP/cc-pVDZ дает значения длин связей и углов максимально близкие к экспериментальным. Дважды гибридный функционал B2PLYP содержит поправку MP2 в корреляционной части, поэтому в качестве сравнения приведена теория возмущений более выского порядка — MP4. Она дает очень хорошее соответствие эксперименту по длинам связей, но уступает теории матриц плотности по соответствию валентных углов. Кроме того, теория Меллера-Плессета четвертого порядка требует значительно больше времени для вычислений по сравнению с теорией функционала плотности. В табл. 2 приведено сравнение вычисленных геометрических параметров метиламина одним функционалом, но при разных базисных наборах. Наилучшие результаты дает базис Даннинга augсс-pVDZ. Однако, он требует больших временных затрат при вычислениях, поэтому был выбран базис сс-pVDZ.

В качестве объекта исследования выбрана реакция переноса атома водорода в системе монометиламин-триплетный нитрометан. Она имеет два возможных маршрута:

$${}^{3}CH_{3}NO_{2} + CH_{3}NH_{2} \rightarrow$$

$$\rightarrow {}^{3}\{CH_{3}NO_{2} + NH_{2}CH_{3}\} \rightarrow$$

$$\rightarrow CH_{3}NO_{2}H' + NH'CH_{3},$$
(1)

Рис. 1. Профили ППЭ реакций переноса атома водорода к триплетному нитрометану от метиламина. Путь PK1a—ПКа—РК2a—Па относится к переносу водорода от аминогруппы. Путь PK16—ПК6—РК26—Пб относится к переносу водорода от метильной группы.

$${}^{3}CH_{3}NO_{2} + CH_{3}NH_{2} \rightarrow$$

$$\rightarrow {}^{3}\{CH_{3}NO_{2} + CH_{3}NH_{2}\} \rightarrow$$

$$\rightarrow CH_{3}NO_{2}H' + CH'_{2}NH_{2}.$$
(2)

В случае реакции 1, атом водорода отрывается от NH₂-группы. В ходе реакции 2 происходит отрыв атома водорода от CH₃-группы.

Выбор данной системы обусловлен двумя факторами: а) метиламин как донор водорода позволяет сравнивать отрыв водорода от аминогруппы и от метильной группы; б) система не содержит большого числа электронов, что позволяет увеличивать точность, сохраняя разумное время вычислений.

Профили поверхностей потенциальной энергии (ППЭ) построены на основе вычисленных энергий с учетом поправок на нулевые колебания.

Применяемые методы авторы считают достаточными для достижения поставленных целей.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Рассмотрим профили ППЭ реакции (1) на рис. 1. На первой стадии молекулы триплетного НМ и синглетного метиламина соединяются в предреакционный комплекс РК1а. При этом выделяется энергия 25.74 кДж моль⁻¹. На второй стадии происходит перенос атома водорода через переходный комплекс ПКа. Энергия активации переноса водорода составляет всего 0.06 кДж моль⁻¹. Затем образуется пост-реакционный комплекс РК2а, энергия которого ниже ПКа на 59.65 кДж моль⁻¹. Энергия разрыва связей пост-реакционного комплекса для удаления продуктов Па на бесконечно большое расстояние составляет 27.20 кДж моль-1. Стадии РК1а и ПКа имеют близкую к нулю разницу в энергиях. Кроме того, абсолютная энергия ПКа ниже, чем сумма абсо-

Рис. 2. Строение предреакционного комплекса для реакции переноса атома водорода от аминогруппы метиламина к триплетному нитрометану.

лютных энергий исходных веществ. Профиль ППЭ имеет нестандартный для химии вид. Это может быть обусловлено комплексообразованием в ходе реакции.

На рис. 2 изображена структура предреакционного комплекса РК1а. Расстояние между азотом N1 и водородом H2 в предреакционном комплексе составляет 1.01 Å. Между кислородом ОЗ и водородом H2 расстояние составляет 1.99 Å. Расстояние между азотом N1 и кислородом О5 составляет 2.15 Å. Теперь обратимся к распределению электронной плотности в предреакционном комплексе реакции (1). По теории атомов в молекулах [11] можно определить локализацию критических точек и классифицировать их следующим образом: (-3, -3) – центр атома, (-3, -1) – точка связи, (-3,+1) – кольцевая точка. Точка 1 (типа (-3,-1) – связевая точка) указывает на образование связи между реагирующими молекулами, то есть, она обозначает образование предреакционного комплекса РК1а. Кроме точки 1, на пути переноса атома водорода между атомами азота и кислорода находится точка 3 (типа (-3, -1) - cвязевая точка). В соответствии с правилом Пуанкаре-Хопфа, должна образоваться кольцевая точка. Действительно, образуется точка 2 типа (-3, 1) – кольцевая точка. Подобная электронная структура предреакционного комплекса уже была отмечена раньше [12, 13]. Это говорит о сложном механизме взаимодействия между реагирующими молекулами. Обратимся к структуре переходного комплекса ПКа, изображенной на рис. 3.

Расстояние N1-H2 увеличивается очень мало: до 1.10 Å. Но резко сокращается расстояние O3-H2 до 1.45 Å. Увеличивается расстояние

Рис. 3. Строение предреакционного комплекса для реакции переноса атома водорода от метильной группы метиламина к триплетному нитрометану.

N1–O5 до 2.25 Å. Малое удлинение связи N1–H2 подтверждает низкое значение энергии активации переноса водорода.

Рассмотрим изменение стандартных энтальпий реакций (1) и (2) при температуре 298.15 К. Для реакции (1) вычисленное изменение энтальпии равно —4.54 кДж моль⁻¹. Реакция (2) имеет меньший тепловой эффект —1.59 кДж моль⁻¹. Отрицательные значения говорят о выделении энергии — слабом экзотермическом характере реакции.

Обратим также внимание на изменение энергий Гиббса реакции (1). Изменение стандартной функции Гиббса при температуре 298.15 К реакции составляет —5.70 кДж моль⁻¹. Аналогично, для реакции (2) величина изменения энергии Гиббса составляет —2.14 кДж моль⁻¹. Отрицательные значения говорят о самопроизвольном характере протекания реакций. Иными словами, перенос атома водорода от метиламина к нитрометану разрешен термодинамически.

На рис. 1 также представлен профиль ППЭ реакции (2). На первой стадии образуется предреакционный комплекс РК16 ³{CH₃NO₂ + CH₃NH₂}. Энергия образования этого комплекса составляет 1.89 кДж моль⁻¹. Энергия активации переноса водорода в комплексе ПКб составляет 0.29 кДж моль⁻¹. После переноса атома водорода образуется постреакционный комплекс РК26. При этом выделяется энергия 73.81 кДж моль⁻¹. Удаление продуктов реакции Пб на бесконечно большое расстояние требует 10.51 кДж моль⁻¹. Подобный профиль ППЭ также имеет нестандартный вид. Постреакционный комплекс РК26 имеет очень низкое расположение уровня энергии по отношению к переходному состоянию ПКб, что может свидетельствовать о низкой вероятности обратной реакции.

Обратимся к структуре предреакционного комплекса РК1б реакции (2). Она изображена на рис. 3. Расстояние между водородом Н2 и углеродом C1 составляет 1.10 Å. Между водородом H2 и кислородом O2 – 2.64 Å. Взаимодействия между атомами азота метиламина и кислородом О5 нет из-за большого расстояния — 4.82 Å. Рассмотрим топологию комплекса реакции (2) на рис. 3. Можно отметить наличие точки 1 (типа (-3,-1) связевая точка) на пути переноса атома водорода Н2 к кислороду О5. Однако, есть и точка 3 (типа (-3,-1) - связевая точка) между атомом кислорода ОЗ и углеродом С1. Подобная картина электронной плотности была отмечена в реакции (1). Аналогично, образуется кольцевая точка 2 типа (-3,1).

В табл. 3 представлены длины связей в предреакционных комплексах РК1а и РК1б. Нумерация атомов аналогична изображенной на рис. 2 и 3. По этим данным можно проследить тенденцию к увеличению длины связи между водородом и отдающим его азотом или кислородом. Для реакции (1) длина N1-H2 увеличивается на 8.5%, а для реакции (2) – на 9.8%. Но увеличение связи между водородом и принимающим его азотом О3-Н2 для реакции (1) увеличивается на 38.0%, а для реакции (2) – на 90.3%. Это говорит о том, что расстояние между реагирующими молекулами в предреакционном комплексе достаточно большое. В переходном состоянии оно сокращается почти вдвое. Предреакционный комплекс РК1а реакции (1) связывается значительно сильнее, поэтому и изменение расстояния между реагирующими молекулами в переходном состоянии мало. Это подтверждается крайне низкой энергией активации 0.06 кДж моль-1.

Из табл. 3 можно заключить, что реакция (2) выгоднее по энергии. Это обусловлено выделением большей энергии при образовании постреакционного комплекса и гораздо меньшей энергии, необходимой для расхождения продуктов реакции на бесконечно большое расстояние.

Профили реакций (1) и (2) имеют общую особенность: энергии активаций имеют крайне низкие значения. Предреакционные комплексы реакций (1) и (2) обладают схожей структурой и топологией. Важным отличием является то, что реагирующие молекулы в РК1а расположены ближе друг к другу, чем в РК16. Это является причиной более высокой энергии активации реакции (2). Тем не менее, это может говорить о безактивационном характере протекания подобных реакций.

Геометрические параметры	PK1a	ПКа	ΡΚ1δ	ПКб
<i>r</i> (O3–H2)*	1.997	1.447	2.642	1.388
<i>r</i> (O3–N4)	1.258	1.300	1.392	1.373
<i>r</i> ({N,C}1–H2)	1.013	1.099	1.103	1.211
<i>r</i> (N4–C)	1.459	1.453	1.459	1.460
a(O3-N4-O5)**	120.4	119.4	114.0	115.7
d(O3-N4-O5-C)***	142.1	146.4	135.0	136.2

Таблица 3. Сравнение геометрических параметров реакционных комплексов в реакции переноса атома водорода между метиламином и триплетным нитрометаном

* *r* – расстояние между атомами, Å.

** а – валентный угол между атомами, град.

*** *d* – двугранный угол между атомами, град.

ЗАКЛЮЧЕНИЕ

При взаимодействии триплетного нитрометана с метиламином происходит перенос атома водорода. Методами квантовой химии были получены реакционные комплексы и восстановлены пути реакций. Показано, что передача атома водорода от метильной группы выгоднее по энергии, чем передача водорода от аминогруппы. Это обусловлено схожим электронным строением предреакционного комплекса и выигрышем по энергии при переносе водорода.

Реакция (1) отличается более сильным связыванием в предреакционный комплекс, чем в реакции (2). Об этом говорят как значения энергий, так и изменения длин связей.

Отрицательные значения изменений функции Гиббса говорят о том, что реакция должна протекать самопроизвольно при комнатной температуре.

Сделано предположение о безактивационном характере протекания реакций (1) и (2).

БЛАГОДАРНОСТИ

Результаты экспериментов получены с использованием узла кластера [14], содержащего два восьмиядерных процессора Intel Sandy Bridge E5-2660 2.2 GHz, 64GB RAM, работающего под управлением OC Linux CentOS 7.2.

СПИСОК ЛИТЕРАТУРЫ

- 1. Wubbels G.G., Jordan J.W., Mills N.S. // J. Am. Chem. Soc. 1973. T. 95. № 4. C. 1281
- Görner H. // J. Chem. Soc. Perkin Trans. 2. 2002. T. 0. № 10. C. 1778.
- 3. *Arenas J.F., Otero J.C., Peláez D., u Soto J.* // J. Chem. Phys. 2005. T. 122. № 8. C. 84324.
- 4. Butler L.J., Krajnovich D., Lee Y.T., Ondrey G.S., Bersohn R. // J. Chem. Phys. 1983. T. 79. № 4. C. 1708.
- Amada I., Yamaji M., Tsunoda S., Shizuka H. // J. Photochem. Photobiol. Chem. 1996. T. 95. № 1. C. 27.
- Shi J.C., Shang Y.L., Du S., Luo S.N. // Chem. Phys. Lett. 2018. T. 691. C. 307.
- Valiev M. et al. // Comput. Phys. Commun. 2010. T. 181. № 9. C. 1477.
- Lu T., Chen F. // J. Comput. Chem. 2012. T. 33. № 5. C. 580.
- 9. Avogadro: an open-source molecular builder and visualization tool. Version 1.2.0. http://avogadro.cc/.
- Hanwell M.D., Curtis D.E., Lonie D.C., Vandermeersch T., Zurek E., Hutchison G.R. // J. Cheminformatics. 2012. T. 4. C. 17.
- Bader R.F.W. // Atoms in Molecules: A Quantum Theory. // Oxford, New York: Oxford University Press, 1994. C. 458.
- 12. *de Lucas N.C. et al.* // J. Photochem. Photobiol. Chem. 2009. T. 201. № 1. C. 1.
- 13. Овсянников Д.В., Зеленцов С.В. // Химия Высоких Энергий. 2018. Т. 52. № 3. С. 199.
- Суперкомпьютер ННГУ "Лобачевский": http://hpceduc.unn.ru/ru/pecypcы.