УДК 551.21+552.11

ОСОБЕННОСТИ ГЕОЛОГИЧЕСКОГО СТРОЕНИЯ И СОСТАВА ПОРОД ВУЛКАНА КРОНОЦКОГО – КРУПНЕЙШЕГО СТРАТОВУЛКАНА ФРОНТАЛЬНОЙ ЗОНЫ ВОСТОЧНОГО ВУЛКАНИЧЕСКОГО ПОЯСА КАМЧАТКИ

© 2023 г. Н. В. Горбач^{а,} *, А. Н. Рогозин^а

^аИнститут вулканологии и сейсмологии ДВО РАН, бульвар Пийпа, 9, Петропавловск-Камчатский, 683006 Россия

**e-mail: n_gorbach@mail.ru* Поступила в редакцию 28.02.2023 г. После доработки 03.04.2023 г. Принята к публикации 27.06.2023 г.

На основе результатов маршрутных обследований 2020–2022 гг. в работе представлена характеристика особенностей геологического строения и валового состава пород вулкана Кроноцкого – одного из наименее изученных эруптивных центров Восточного вулканического пояса (ВВП) Камчатки. Объем постройки стратовулкана оценен в 350 км^3 , что существенно превышает объемы других стратовулканов фронтальной зоны ВВП. Породы вулкана представлены низко-К, высоко-Fe толеитовыми базальтами и андезибазальтами (SiO₂ = 47.04-53.15 мас. %; K₂O = 0.24-0.65 мас. %; FeO*/MgO = 1.2-2.89). Базальты отличаются крайне низкими содержаниями кремнезема, калия, титана и фосфора по сравнению с породами других фронтальных вулканов Камчатки. Выявленные петрохимические отличия были использованы для уточнения принадлежности объектов, расположенных на стыке сближенных построек вулканов Кроноцкого и Крашенинникова. Полученные данные послужат основой дальнейшей петролого-геохимической характеристики вулкана, а также могут быть использованы для реконструкции последовательности вулканических событий на исследуемой территории, в том числе и для уточнения истории формирования Кроноцкого озера.

Ключевые слова: вулкан Кроноцкий, объем постройки стратовулкана, низкокалиевые базальты, Восточный вулканический пояс Камчатки

DOI: 10.31857/S020303062370027X, EDN: FRUWFE

введение

Вулкан Кроноцкий – один из крупнейших активных стратовулканов Камчатки – до настоящего времени изучен очень слабо и остается "белым пятном" в истории развития и геохимической эволюции Восточного вулканического пояса (ВВП). Геологические и вулканологические исследования в районе вулкана проводились более пятидесяти лет назад, а их результаты представлены всего в нескольких публикациях. Так, первые общие сведения о строении вулкана были приведены в работах И.И. Гущенко [1957] и М.Л. Фроловой [1974]. Немногочисленные данные о составе пород были получены, в основном, благодаря работам экспедиций Ленгидропроекта. проводивших в 1968-1972 гг. изыскания для проектирования впоследствии отмененного строительства Кроноцких ГЭС. По результатам этих работ было опубликовано 16 валовых анализов лав и ксенолитов в них [Фролова, 1974]. Одновременно с экспедициями Ленгидропроекта в конце 1960ых-начале 1970-ых годов в районе вулкана проводились региональные геологосъемочные работы¹, а сотрудники Института вулканологии Ю.М. Дубик и И.И. Гущенко² выполняли оценку вулканической опасности для территории проектируемых Кроноцких ГЭС. Информация, полученная в ходе перечисленных работ, стала основой для краткой характеристики вулкана в атласе "Действующие вулканы Камчатки" [Гущенко, 1991]. Позднее, в работах [Tatsumi et al., 1995] и [Кереzhinskas et al., 1997] было опубликовано несколько анализов пород вулкана на ограниченный спектр редких элементов. Перечисленными выше публикациями исчерпываются сведения,

¹ Цикунов А.Г., Олейник В.И., Зименко С.И., Селиверстов В.А. Геологическое строение и полезные ископаемые листа N-57-XI. Окончательный отчет о геологической съемке м-ба 1: 200000, проведенный Кроноцкой партией в 1968–1970 гг.). 1971. 489 с.

² Дубик Ю.М., Гущенко И.И. Вулканическое районирование участка строительства Кроноцкой ГЭС // Отчет Института вулканологии АН СССР. Петропавловск-Камчатский, 1968. 111 с.

имеющиеся на сегодняшний день о геологическом строении и составе пород данного объекта.

Наша работа направлена на восполнение этого пробела и посвящена детальной петролого-геохимической характеристике серии пород Кроноцкого вулкана и сравнению полученных данных с аналогичными данными для других вулканических построек фронтальной зоны ВВП. Первоочередной задачей данной работы является характеристика геологического строения и анализ валового состава пород. В 2020-2022 гг. нам удалось провести маршруты и выполнить опробование лав и пирокластики Кроноцкого вулкана в юго-западном, западном и частично в северном секторах постройки, а также вдоль реки Кроноцкая и на островах Кроноцкого озера. Основываясь на результатах маршрутных обследований, мы показываем и анализируем особенности строения стратовулкана и приводим первые представительные данные о составе его лав. Полученные нами данные выявили ряд параметров, которые выделяют Кроноцкий вулкан в числе других фронтальных вулканов Камчатки. Помимо значительного объема, к этим параметрам относятся резкое преобладание базальтов в постройке вулкана и крайне низкие содержания ряда главных компонентов в породах - калия, титана и особенно фосфора. Кроме того, были установлены петрохимические отличия пород Кроноцкого вулкана от пород расположенного южнее вулкана Крашенинникова. Эти отличия позволили нам обосновать принадлежность лав ряда островов Кроноцкого озера к образованиям одноименного вулкана, а также уточнить принадлежность отдельных объектов на стыке вулканических построек Крашенинникова и Кроноцкого.

ПОЗИЦИЯ ВУЛКАНА И СВЕДЕНИЯ О ЕГО АКТИВНОСТИ

Вулкан Кроноцкий (рис. 1а) расположен во фронтальной зоне ВВП на расстоянии около 190 км от глубоководного желоба (см. рис. 16). В региональном отношении стратовулкан находится в северной части центрального сегмента ВВП (см. рис. 1в). Южнее Кроноцкого вулкана сконцентрировано максимальное количество кальдер четвертичного возраста на Камчатке, а активные стратовулканы формируют относительно узкую цепь северо-восточного простирания, субпараллельную желобу. Севернее стратовулкана, на широте Кроноцкого полуострова, центры четвертичного вулканизма (вулкан Шмидта, Гамченский хребет, вулканы Кизимен и расположенный к западу вулкан Николка) можно объединить в область, ориентированную в северо-западном направлении, поперечном к желобу. Такая конфигурация вулканических центров может быть отражением сложного строения участка Тихоокеанской плиты, субдуцирующего под Камчатку на широте Кроноцкого полуострова. На данном участке океанической плиты расположено поднятие Обручева, к юго-западу и к северу, от которого находятся разломные зоны Крузенштерна и Натуралиста (см. рис. 1в). По мнению [Баранов и др., 2022], разломная зона Крузенштерна погружается вместе с океанической плитой в зону субдукции. Позиция Кроноцкого вулкана совпадает с проекцией данного разлома на дневную поверхность (см. рис. 1в), тогда как вулканы, расположенные севернее, сконцентрированы вблизи предполагаемой проекции разлома Натуралиста.

В.И. Влодавец [1949], а позднее и И.В. Мелекесцев [2006] определяли Кроноцкий как вулкан, который находится в стадии слабой активности и разрушения постройки. Первое и единственное историческое эксплозивное извержение было описано П.Т. Новограбленовым [1932] на основе свидетельств четырех охотников: "... в ноябре 1922 г. над вершиной вулкана наблюдался черный дым, а в феврале 1923 г. со стороны вершины был слышен гул и было видно пламя". Проявления фумарольной активности были зафиксированы в апреле 1941 г. сотрудником Кроноцкого заповедника В.Т. Гавриловым, который описал парогазовые столбы высотой до 600 м [Гаврилов, 1944]. В 1955 г. во время первого восхождения на Кроноцкий вулкан руководителем группы альпинистов А.И. Яцковским [1957] было отмечено отсутствие прогретых участков на вершинном гребне. По данным И.И. Гущенко [1991] слабые фумарольные проявления наблюдались лишь в 1956 г. на южном склоне вулкана на высоте 3150 м. С того времени (уже около 70 лет) сведения об активности Кроноцкого вулкана неизвестны.

РЕЗУЛЬТАТЫ

Особенности строения стратовулкана

Кроноцкий – стратовулкан правильной конической формы высотой 3528 м н.у.м, склоны которого сложены переслаиванием лав и пирокластики, секутся многочисленными дайками, а также вмещают множество побочных эруптивных центров (рис. 2). Западное подножие на высоте 372 м н.у.м. обрывается берегом Кроноцкого озера, восточное плавно переходит в приморскую равнину на высоте 120 м н.у.м., а северное граничит со склонами сильно разрушенного вулкана Шмидта (высота от 500 до 800 м н.у.м.). На юге подножие Кроноцкого вулкана смыкается со склонами докальдерной постройки вулкана Крашенинникова. По границе подножий этих вулканических построек протекает река Кроноцкая, образуя пороги на участке протяженностью около 10 км.

Рис. 1. Вулкан Кроноцкий и его региональная позиция.

а – вид на вулкан с запада со стороны Кроноцкого озера; б – позиция вулкана во фронтальной зоне центрального сегмента ВВП Камчатки; в – местоположение вулкана по отношению к другим объектам ВВП и прилегающему участку субдуцируемой Тихоокеанской плиты. Линиями показаны глубины до субдуцируемой плиты, по [Gorbatov et al., 1997] (б); оранжевые значки – активные вулканы, желтые – потухшие вулканы (в). Цифрами обозначены крупные кальдеры центрального сегмента ВВП: 1 – Крашенинникова, 2 – Узон-Гейзерная, 3 – Большого Семячика, 4 – Стена-Соболиная, 5 – Карымская, 6 – Однобокая и Карымского озера, 7 – Половинка. Конфигурация разломов Крузенштерна и Натуралиста на Тихоокеанской плите и их предполагаемая проекция в зону субдукции показаны, по [Баранов и др., 2022].

Постройку конуса можно разделить на три основных участка с различным углом наклона склонов: пологие (до 20°) склоны основания конуса, склоны средней крутизны и крутые (до 35°) склоны основной постройки и очень крутые склоны (до 60° и более) предвершинного сектора. На границе склонов основной постройки и предвершинного сектора на высоте около 2700 м н.у.м. начинаются барранкосы, в бортах которых вскрыто внутреннее строение лавово-пирокластических толщ.

В основании вулкана в южном и юго-западных секторах на абсолютных высотах от 200 до 700 м залегают мощные (до 10—12 м) потоки массивных плотных лав (рис. 3а). Пирокластические прослои практически отсутствуют, изредка между лавовыми потоками можно увидеть горизонты лавобрекчий. Наиболее четко лавовые потоки основания выражены на южном подножии вулкана (например, южнее г. Машук, см. рис. 2), где их фронтальные участки формируют уступы во врезах ручьев или бортах барранкосов, начиная от высот 200—300 м. На северном подножии лавы основания не выражены и, наиболее вероятно, погребены мощными толщами ледниковых и пролювиальных отложений.

На высотах от 700 и до 1500 м во врезах барранкосов вскрыто переслаивание лав, стратифицированных шлаков, а иногда и прослоев пролювиального материала (см. рис. 3б). В отличие от массивных лав основания в разрезах данных высот наблюдается чередование сильно пористых и бо-

Рис. 2. Схема вулканических образований Кроноцкого вулкана и смежных территорий.

1–3 – вулкан Кроноцкий: 1 – потоки лав и пирокластические отложения базальтов, реже андезибазальтов, 2 – шлаковые и лавовые конусы, 3 – лавовые конусы и кратеры (*a*), некки (*б*); 4 – вулкан Шмидта: потоки лав и туфы базальтов; 5–9 – вулкан Крашенинникова: 5 – докальдерные лавы и туфы базальтов, андезибазальтов, андезитов, дацитов, 6 – посткальдерные лавы и пирокластические отложения базальтов, андезибазальтов, андезитов, 7 – отложения маара Крокур, 8 – шлаковые конусы, 9 – эксплозивные воронки; 10–15 – отложения вулканических подножий: 10 – ледниковые, 11 – водно-ледниковые и пролювиальные, 12 – аллювиальные, 13 – озерные, 14 – ледники, 15 – точки опробования низко-К базальтов и андезибазальтов (*a*), умеренно-К андезибазальтов (*б*), умеренно-К андезитов (*в*). Названия островов Кроноцкого озера приведены по [Шмидт, 1916]; названия конусов на склонах Кроноцкого вулкана Незаметный, Красная сопка, Подкова, Машук приведены согласно работам [Гущенко, 1957; Фролова, 1974]; другие названия (Примыкающий, Уютный, Попутный, Медвежий, Тундровый, Овальный, Замытый и Крошкина) даны авторами.

лее плотных лав. Мощности потоков в целом меньше, чем у потоков основания, и в среднем составляют два—три метра. Прослои шлаков слабо уплотнены и обычно имеют мощность не более полутора метров.

В интервале абсолютных высот от ~1500– 1800 м н.у.м. и до 2700–2900 м н.у.м. склоны стратовулкана сложены преимущественно потоками лав (см рис. 3в–3д). Объемы пирокластиче-

зд). Объемы пирокластиче- дения только в южно

ских отложений незначительны на этих высотных уровнях и представлены редкими маломощными прослоями шлаков и бомб, разделяющих лавовые потоки. Лавы разнообразны по морфологии (от глыбовых до канатных), мощности (от первых метров до 5–7 м) и текстурным особенностям (от сильно пористых до массивных).

Предвершинные склоны доступны для наблюдения только в южном секторе конуса, северные

Рис. 3. Потоки лав на различных гипсометрических горизонтах стратовулкана. а – мощный поток массивных лав в основании вулкана, абс. выс. около 500 м н.у.м.; б – переслаивание лавовых потоков и горизонтов грубого пирокластического материала в тальвеге барранкоса, абс. выс. 950 м н.у.м.; в – гребень, бронированный пачкой разрушающихся лавовых потоков (на врезке показано внутреннее строение одного из потоков, абс. выс. 2000 м н.у.м.); г – останец одного из потоков на высоте 2300 м н.у.м.; д – фрагмента потока лав с изометричной отдельностью, абс. выс. 2500 м н.у.м.

Рис. 4. Строение предвершинной части конуса в юго-западном секторе. а – крупная дайка с ортогональным апофизом; б – увеличенный фрагмент той же дайки; в – субпараллельные дайки в предвершинном секторе; г – увеличенный фрагмент субпаралелльных даек; д – останцы шлаков и агглютинатов; е – останец агглютинатов, пронизанный магматическими инъекциями.

же склоны на этих высотах покрыты ледником. Согласно нашим маршрутным наблюдениям в юго-западном секторе, а также по результатам дешифрирования доступных космических снимков, по сравнению с нижележащими склонами в предвершинной части конуса доля пирокластических отложений увеличивается. Здесь, на высотах более 3000 м н.у.м., преобладают ярко окрашенные слои агглютинированного пирокластического материала (бомб и шлаков), пронизанные инъекциями многочисленных даек (рис. 4). Вершинный гребень сложен субгоризонтально залегающими

ВУЛКАНОЛОГИЯ И СЕЙСМОЛОГИЯ № 5 2023

слоями шлака, которые перекрыты частично разрушенными лавовыми потоками (рис. 5). Кратер на открытых от ледника участках предвершинного сектора не выражен.

Дайки и некки

Отпрепарированные дайки вскрыты в бортах и врезах барранкосов, начиная с высот около 900 м н.у.м. В подавляющем большинстве случаев дайки располагаются группами — на ограниченном по площади участке находится от трех до пяти—

Рис. 5. Некки Кроноцкого вулкана.

а — некк, расположенный в борту барранкосса на высоте 1400 м (на врезке показана внешняя стенка некка, сложенная агглютинированными шлаками и крупными бомбами); б — предвершинный некк (выделен желтым пунктиром).

шести сближенных даек, ориентированных субпараллельно. Расстояние между сближенными дайками обычно не превышает первых метров. Для даек наиболее характерны северо-восточное и восток-северо-восточное простирания, однако во многих случаях от основных даек распространяются апофизы под углом около 80°–90°. Такая особенность была отмечена и ранее, в ходе геолого-съемочных работ¹. Наиболее вероятно, подобная конфигурация обусловлена закономерностями формирования трещин разрыва при внедрении даек. Протяженность вскрытых даек достигает нескольких километров, типичная мощность – от 1.5 до 3 м, апофизов – не более одного метра. Максимальная концентрация отпрепарированных даек отмечена в предвершинном секторе, где на доступных для наблюдения склонах можно наблюдать десятки субпараллельных даек или же отдельных более крупных даек с боковыми апофизами (см. рис. 4а–4г). В ряде случаев в блоках агглютинатов наблюдаются инъекции сложной конфигурации – ветвящие "прожилки", пронизывающие и цементирующие прослои шлаков и бомб (см. рис. 4д, 4е).

Некки максимально распространены на высотах от 800 до 1500 м н.у.м. Как правило, они расположены в осевых участках гребней, в плане округлы и имеют диаметр в первые десятки метров. Морфология некков разнообразна – монолитные штоки, заостренные останцы, или же образования сложной формы. На рис. 5а показан пример некка, расположенного в борту одного из барранкосов. Некк имеет округлую форму, его внешние стенки сложены спекшимися шлаками и крупными бомбами (см. рис. 5а, врезка), а внутренняя часть сложена лавами с веерной отдельностью. Наиболее крупным является предвершинный некк, расположенный на южных склонах, в ~200 м ниже вершины. Постройка предвершинного некка (см. рис. 5б) разбита глубокими вертикальными трещинами на несколько блоков, границы которых в летнее время служат источниками небольших, но очень частых обвалов.

Шлаковые и лавовые конусы

Расположение основных шлаковых и лавовых конусов показано на рис. 2. Около десяти конусов и кратеров сконцентрировано на южных склонах на высотах от 300 до 1300 м н.у.м. Большинство предшествующих работ отмечали морфологическую свежесть конусов южных склонов и на этом основании относили их к голоценовым образованиям [Гущенко, 1957, 1991; Фролова, 1974], однако прямых подтверждений этому предположению в настоящее время не имеется. На восточных, западных и северных подножиях вулкана расположены одиночные конусы Тундровый, Овальный, Замытый, Приледниковый и конус Крошкина. Эти конусы уверенно можно считать доледниковыми, сформированными ранее, чем 23-24 тыс. лет, до максимума последнего оледенения, поскольку их склоны облекаются, а иногда частично перекрываются ледниковыми отложениями.

Наиболее крупным среди конусов является Красная сопка (см. рис. 2) с хорошо выраженным кратером диаметром 300 м. Постройка этого конуса, а также конусов Попутный и Машук сложена лавовыми бомбами, шлаками и пластами агглютинатов. Ряд конусов и кратеров южного склона являются источниками лавовых потоков. Так, небольшой конус Подкова дает исток хорошо выраженному потоку, который прослеживается на 1.5 км и перекрывается пролювиальным конусом выноса. Наиболее протяженный поток лав связан с конусом Красная сопка. Исток данного потока морфологически не выражен, поскольку перекрыт мощным чехлом пролювиального материала, который выносится временными водотоками и лахарами. Фронтальная часть потока расположена в 6 км от южного подножия конуса и отчетливо выражена на местности. Здесь изпод фронта потока вытекает мощный ручей (см. рис. 2), который, согласно выводам работ экспедиций Ленгидропроекта, является частью подземного стока реки Кроноцкой [Фролова, 1974].

Ледниковые и пролювиальные отложения

Ледниковые отложения занимают обширные площади на северо-восточных и северо-западных подножиях вулкана (см. рис. 2). Хорошо дешифрируются два поля моренного рельефа – северозападное распространяется до нижнего течения ручья Тундрового, северо-восточное широкой лопастью покрывает долину реки Станичной. Судя по конфигурации полей моренного рельефа, ледники спускались с северных склонов Кроноцкого и, соединяясь с ледниками вулкана Шмидта, растекались к востоку, вдоль долины реки Станичной, и к западу – в направлении Кроноцкого озера. Сохранившийся край морены по ручью Тундровому расположен на расстоянии меньше двух километров от современного берега озера. Присутствуют морены и на юго-восточных подножиях вулкана, однако здесь они значительно размыты и частично перекрыты выносами сухих рек (см. рис. 2). На юго-западных склонах ледниковые отложения не выражены.

Острова Кроноцкого озера

В Кроноцком озере находится одиннадцать островов, которые названы по именам участников экспедиции Ф.П. Рябушинского, обследовавших берега озера и прилегающие территории в 1908 г. [Шмидт, 1916]. Девять островов сосредоточено со стороны вулкана Кроноцкого у восточного берега озера, еще два острова расположено особняком – о. Бэра возвышается в центре озера, а о. Комарова (или Зеленый) распложен ближе к истоку реки Кроноцкой. Со стороны ареальной зоны вулкана Крашенинникова находится полуостров Скалистый, который, судя по его очертаниям (см. рис. 2), ранее был островом. Перемычку между п-овом Скалистым и берегом сформировали потоки лав от конуса Заметный, излившиеся около 3.3 тыс. лет назад [Пономарева, 1987].

По морфологии острова Кроноцкого озера можно разделить на уплощенные и конусовидные (рис. 6а, 6б). Уплощенные острова, как пра-

Рис. 6. Острова Кроноцкого озера.

а – наиболее крупный из островов – о. Рябушинского; б – о. Бианки – один из островов уплощенной морфологии; в – коренные выходы на о. Комарова (Зеленом); г – шлаки и лавы нижней части разреза; д – поток массивных лав верхней части разреза.

вило, возвышаются над урезом воды на 5–8 м и имеют небольшие размеры – протяженность островов Комарова, Линдера, Круга, Державина и Бианки варьирует в пределах 120–250 м. Конусовидные острова крупнее по протяженности, площади и абсолютной высоте. К примеру, высота над урезом воды наиболее крупного из островов – о. Рябушинского достигает 64 м, а его протяженность составляет около 800 м.

На большей части уплощенных островов (о-ва Комарова, Круга, Линдера), а также на п-ове Скалистом у уреза воды присутствуют выходы коренных пород в виде фрагментов лавовых потоков, для которых в отдельных случаях устанавливается субгоризонтальное залегание. Так, на острове Комарова сохранился фрагмент лавового разреза, который включает прослои шлаков и два потока лав (см. рис. 6в–6д). На островах Конради, Рябушинского, Шмидта и Бэра коренные выходы нами не обнаружены, однако береговая линия этих островов сложена крупными неокатанными блоками и плитами базальтов до 2 м в диаметре, которые, наиболее вероятно, представляют собой фрагменты разрушенных лавовых потоков.

Береговая линия островов Лебедева, Державина и Бианки сложена преимущественно умеренно окатанным материалом различной крупности от преобладающих небольших глыб, до крупных, достигающих в диаметре метра и более. На острове Алмазова наблюдаются как крупные неокатанные глыбы, так и окатанный материал. На всех островах материал глыб макроскопически сходен с базальтами, которые наблюдаются в коренных выходах на других островах, а также на склонах Кроноцкого вулкана. Исключением является остров Бианки, на котором были встречены единичные обломки глыб сильно раскристаллизованных пород, нетипичных ни для пород других островов, ни для лав Кроноцкого вулкана. Наиболее вероятно, такие глыбы связаны с ледниковым разносом материала, а их источником могли являться склоны вулкана Шмидта.

Объем постройки

Площадь распространения вулканических образований и объем постройки Кроноцкого вулкана оценивались при помощи программного обеспечения ArcGIS на основе цифровой модели рельефа ArcticDEM. При расчете учитывались ледниковые, водно-ледниковые и пролювиальные равнины подножий стратовулкана, распространение которых показано на рис. 2. Базисная поверхность для расчета объема в западном подножии ограничена берегом Кроноцкого озера, а в восточном и северном секторах определена по выделенным на космических снимках границам распространения ледниковых отложений. В южном секторе основание Кроноцкого вулкана было отделено от примыкающих к нему образований вулкана Крашенинникова и его ареальной зоны по результатам маршрутных обследований.

Площадь постройки Кроноцкого вулкана и окружающих его ледниковых и пролювиальных отложений мы оценили в 530 км², а объем вулканических образований — в 350 км³. Полученная оценка несколько превышает оценку И.В. Мелекесцева из работы [Пономарева и др., 2008], которая составляет 320 км². Однако даже с учетом более консервативной оценки рассчитанный объем превышает аналогичные параметры для других фронтальных вулканов ВВП [Действующие вулканы ..., 1991; Новейший вулканизм ..., 2005].

СОСТАВ ПОРОД

Петрография

Породы лавовых потоков, даек и некков, а также шлаки и бомбы в прослоях пирокластики Кроноцкого вулкана минералогически чрезвычайно однообразны и сложены оливин-плагиоклазовой ассоциацией вкрапленников. Образцы лав отли-

чаются между собой только текстурными особенностями (пористые и плотные, рис. 7а, 7б) и переменным соотношением минеральных фаз (оливин – от ~3–5 до 12–15 об. %, плагиоклаз – от ~10 до 25 об. %). Оливин образует идиоморфные или же скелетные вкрапленники (см. рис. 7а, 7б) и имеет состав Fo_{70-88.5} [Тобелко и др., 2023]. Вкрапленники плагиоклаза во многих случаях зональны, их центральные зоны (An₈₀₋₈₅) переполнены мельчайшими включениями вулканического стекла, а периферийные и краевые зоны (Ап₇₃₋₇₆ до An₆₃₋₅₈) часто вмещают округлые включения оливина Fo77-79. Пироксены в качестве вкрапленников малочисленны и обычно присутствуют лишь в виде микролитов (Mg#₆₀₋₇₄), однако в отдельных разностях пород крупные кристаллы клинопироксена (Mg#₈₀₋₈₁) присутствуют в составе сростков с плагиоклазом (An₈₀₋₈₅) и оливином (Fo₇₇₋₈₀) (см. рис. 7б). Количество пироксеноввкрапленников увеличивается в отдельных разностях хорошо раскристаллизованных пород даек. Породы, слагающие коренные выходы на островах Линдера и Круга, а также отобранные из глыб и блоков на других островах петрографически идентичны породам Кроноцкого вулкана. На о. Линдера в базальтах были найдены включения полнокристаллических оливин-пироксен-плагиоклазовых пород кумулятивного облика (см. рис. 7в).

Породы конуса Красная сопка и лавового потока, прослеживающегося от конуса вниз по левому борту р. Кроноцкой, представлены субафировыми андезибазальтами с редкими мельчайшими вкрапленниками оливина, пироксенов и плагиоклаза. Лавы, обнажающиеся у уреза воды на левобережье р. Кроноцкой также, как и лавы одного из потоков ее правого борта, практически полностью лишены вкрапленников. Изредка в этих лавах отмечаются сростки плагиоклаза и пироксенов, а также крупные выделения магнетита.

Петрохимия

Петрохимическая характеристика пород постройки вулкана, островов Кроноцкого озера, а также лав на стыке построек Кроноцкого и Крашенинникова приведена на основе результатов анализа 72 образцов. Содержания главных элементов были определены рентгенофлюоресцентным методом в Институте геохимии им. А.П. Виноградова СО РАН, г. Иркутск по методике [Amosova et al., 2016]. Для контроля качества анализов были использованы международные аттестованные стандартные образцы базальта ВНVО-2 и андезита AVG-2. Составы образцов пород вулкана Кроноцкого, побочных конусов на его склонах, островов Кроноцкого озера и лавовых потоков в долине р. Кроноцкой приведены в табл. 1 и показаны на рис. 8.

Рис. 7. Петрографические особенности лав Кроноцкого вулкана.

а – сильно пористый Ol-Pl базальт (обр. 7818-1, см. № 8 в табл. 1), поры подчеркнуты тонким пунктиром; б – плотный Ol-Cpx-Pl базальт (обр. 7885, см. № 20 в табл. 1); в – включение полнокристаллической Ol-Cpx-Pl породы кумулятивного облика в стекловатом базальте с о. Линдера (обр. 7845, см. № 52 в табл. 1). Составы минералов были определены при помощи сканирующего электронного микроскопа Vega 3 Tescan, оборудованного энергодисперсионным спектрометром Oxford X-max80mm², аналитик Т.М. Философова. Ol – оливин; Pl – плагиоклаз; Cpx – клинопироксен.

Лавы и дайки Кроноцкого вулкана, а также породы большинства островов Кроноцкого озера представлены низко-К высоко-Fe толеитовыми базальтами и андезибазальтами (SiO₂ = 47.04–53.15 мас. %; $K_2O = 0.24-0.65$ мас. %; FeO*/MgO = 1.2–2.89, см. рис. 8а, 8б). Породы конуса Красная сопка и лавового потока, распространяющегося вниз по долине реки Кроноцкой отвечают умеренно-К андезибазальтам (SiO₂ = 52.97–54.86 мас. %; $K_2O = 0.65-0.95$ мас. %; FeO*/MgO = 2.96–3.12), лавы у уреза воды реки по обоим бортам реки Кроноцкой – умеренно-К андезиты (SiO₂ = = 59.26-60.10 мас. %; K_2O = 1.19-1.22 мас. %; FeO*/MgO = 3.75-3.85).

Вариации главных компонентов в породах Кроноцкого вулкана по сравнению с расположенным южнее вулканом Крашенинникова и другими фронтальными вулканами ВВП показаны на рис. 86–83. Базальты Кроноцкого вулкана находятся в числе пород с наиболее низкими содержаниями кремнезема, калия, титана и фосфора среди всех пород фронтальной зоны ВВП (см. рис. 86, 8в, 8з). Отличительными характеристиками лав Кроноцкого вулкана являются также высокие содержания алюминия, железа и каль-

-	-				-	-						
№ п/п	1	2	3	4	5	6	7	8	9	10	11	12
№ обр.	7790-1	7791	7793	7802	7803	7806	7808	7818-1	7818-4	7820	7821	7822
Широта	54.7114	54.7111	54.7037	54.7245	54.7255	54.7572	54.7942	54.7179	54.7179	54.7152	54.7390	54.7367
Долгота	160.4350	160.4359	160.4345	160.4692	160.4695	160.4692	160.5341	160.4602	160.4602	160.4513	160.5122	160.5079
Высота, м н.у.м.	623	607	466	1225	1257	1494	1154	919	919	720	2314	2095
SiO ₂	52.95	52.88	48.27	52.86	52.78	51.97	52.60	47.80	47.83	50.83	51.54	52.09
TiO ₂	0.72	0.88	0.68	0.88	0.72	0.80	0.76	0.67	0.66	1.06	0.84	0.86
Al_2O_3	19.56	20.32	19.26	20.24	19.57	18.85	19.78	19.53	18.00	18.97	18.16	19.39
FeO*	8.77	8.58	10.07	8.88	8.95	9.53	8.81	9.92	9.53	9.76	9.72	9.27
MnO	0.17	0.16	0.19	0.16	0.17	0.18	0.16	0.18	0.17	0.17	0.18	0.17
MgO	4.43	3.84	7.10	3.69	4.60	5.64	4.23	6.58	8.86	4.81	5.51	4.64
CaO	9.67	9.55	12.15	9.48	9.62	10.37	10.28	12.37	12.35	9.46	9.91	10.20
Na ₂ O	3.32	3.36	2.10	3.25	3.08	2.45	2.75	1.57	1.46	2.80	2.31	2.55
K ₂ O	0.40	0.52	0.27	0.53	0.37	0.42	0.44	0.27	0.25	0.42	0.38	0.40
P_2O_5	0.08	0.12	0.05	0.12	0.08	0.08	0.09	0.06	0.05	0.13	0.11	0.12
П.п.п.	-0.35	-0.36	-0.31	-0.37	-0.31	-0.45	-0.29	-0.30	-0.29	-0.32	-0.32	-0.35
Сумма	99.72	99.86	99.82	99.70	99.62	99.86	99.60	98.65	98.86	98.08	98.33	99.33
№ п/п	13	14	15	16	17	18	19	20	21	22	23	24
№ обр.	7823	7824-1	7825	7829	7830	7839-3	7849	7885	7886	7888	7890	7891
Широта	54.7363	54.7348	54.7341	54.7220	54.7227	54.6644	54.7284	54.7430	54.7403	54.7430	54.7443	54.7295
Долгота	160.5076	160.5056	160.5031	160.4396	160.4982	160.4682	160.4381	160.5156	160.5132	160.5156	160.5174	160.4916
Высота, м н.у.м.	2053	1956	1920	1576	1598	140	721	2528	2348	2600	2670	1550
SiO ₂	51.95	51.40	51.07	50.77	52.56	48.20	49.01	51.13	50.90	52.20	50.93	49.09
TiO ₂	0.87	0.77	0.74	0.83	0.75	0.79	0.73	0.84	0.82	1.07	0.89	1.12
Al_2O_3	19.10	18.12	16.87	17.52	19.15	20.63	20.13	16.80	18.30	17.39	18.15	19.19
FeO*	9.31	10.19	9.62	9.58	8.40	10.11	9.49	9.76	9.42	10.71	9.60	11.34
MnO	0.17	0.18	0.18	0.18	0.16	0.17	0.17	0.19	0.17	0.19	0.17	0.20
MgO	4.62	6.04	6.59	6.95	4.93	5.43	5.87	7.31	5.98	5.02	5.64	5.04
CaO	10.12	10.44	10.64	10.69	10.76	11.51	11.49	10.32	10.85	9.36	10.58	10.06
Na ₂ O	2.53	2.08	1.96	2.20	2.34	1.97	2.17	2.31	2.33	2.78	2.43	2.70
K ₂ O	0.40	0.42	0.41	0.32	0.44	0.27	0.43	0.46	0.39	0.66	0.43	0.39
P_2O_5	0.12	0.08	0.08	0.11	0.10	0.07	0.08	0.11	0.09	0.14	0.10	0.10
П.п.п.	-0.41	-0.40	-0.28	0.68	-0.20	-0.14	-0.08	0.34	-0.01	0.15	-0.13	-0.42
Сумма	98.77	99.33	97.89	99.82	99.39	99.00	99.48	99.57	99.25	99.67	98.78	98.80

Таблица 1. Химический состав образцов пород вулкана Кроноцкого, побочных конусов на его склонах, островов Кроноцкого озера и лавовых потоков в долине реки Кроноцкой

Таблица 1. Продолжение

№ п/п	25	26	27	28	29	30	31	32	33	34	35	36
№ обр.	7892	7893	7906	7801	7804	7805	7807	7827	7828-1	7832	7833-1	7834
Широта	54.7307	54.7227	54.6769	54.7245	54.7244	54.7591	54.7600	54.7119	54.7263	54.7260	54.7247	54.7245
Долгота	160.4961	160.4982	160.4546	160.4732	160.4698	160.4754	160.4768	160.4559	160.3066	160.4811	160.4784	160.4769
Высота, м н.у.м.	1676	1566	497	1260	1210	1555	1553	902	1600	1398	1292	1250
SiO ₂	51.53	52.57	53.07	53.00	53.19	51.73	50.04	49.08	50.93	52.25	51.60	49.05
TiO ₂	0.77	0.75	1.11	0.82	0.73	0.76	0.84	1.12	0.75	0.93	1.12	0.68
Al ₂ O ₃	19.72	19.08	18.70	17.87	19.69	17.06	18.25	19.34	16.71	19.30	19.02	19.11
FeO*	8.57	8.32	10.20	9.15	8.64	9.68	10.00	11.40	9.89	10.09	10.50	9.09
MnO	0.16	0.16	0.19	0.17	0.17	0.19	0.18	0.19	0.18	0.18	0.19	0.17
MgO	4.73	4.80	4.16	5.63	4.20	7.09	6.87	4.70	7.13	4.58	4.36	6.86
CaO	11.11	10.74	8.40	9.87	9.73	10.54	10.91	9.68	10.84	9.50	9.37	11.93
Na ₂ O	2.59	2.55	3.63	2.70	3.04	2.55	2.35	2.50	1.97	2.66	2.94	1.76
K ₂ O	0.51	0.50	0.43	0.51	0.40	0.37	0.34	0.30	0.39	0.52	0.45	0.27
P_2O_5	0.10	0.10	0.11	0.09	0.09	0.08	0.09	0.04	0.08	0.10	0.13	0.06
П.п.п.	-0.16	-0.12	-0.33	-0.10	-0.08	-0.21	-0.20	0.43	-0.29	-0.47	-0.46	-0.36
Сумма	99.63	99.45	99.66	99.71	99.78	99.82	99.67	98.79	98.58	99.64	99.23	98.62
№ п/п	37	38	39	40	41	42	43	44	45	46	47	48
№ обр.	7847-1	7847-4	7848	7889	7890-1	7789	7809	7816-1	7817	7826	7836	7903
Широта	54.7295	54.7295	54.7304	54.7443	54.7443	54.7061	54.8053	54.72003	54.7149	54.7072	54.7268	54.7162
Долгота	160.4626	160.4626	160.4574	160.5174	160.5174	160.4286	160.5510	160.4772	160.4669	160.4743	160.3600	160.4226
Высота, м н.у.м.	1000	1000	942	2700	2630	640	900	1305	1128	953	426	644
SiO ₂	53.00	51.99	50.83	50.12	50.20	54.68	53.44	49.42	51.52	50.34	50.53	52.52
TiO ₂	0.79	1.07	1.19	0.90	0.90	1.24	0.93	0.88	0.78	0.80	0.93	0.86
Al ₂ O ₃	18.39	19.13	17.51	18.54	18.57	16.24	18.96	19.39	18.00	18.73	17.85	19.00
FeO*	9.29	9.86	12.07	10.31	10.24	10.81	9.80	9.65	10.23	10.37	12.05	9.53
MnO	0.18	0.17	0.22	0.18	0.18	0.20	0.19	0.17	0.19	0.18	0.21	0.18
MgO	4.60	4.80	4.63	6.01	5.92	3.86	3.97	6.25	5.76	5.91	5.35	4.98
CaO	9.31	9.49	8.99	10.46	10.46	8.06	8.90	10.64	10.09	10.00	9.95	9.66
Na ₂ O	2.47	3.06	2.88	2.35	2.47	3.16	3.12	2.25	1.96	1.99	2.45	2.60
K ₂ O	0.58	0.41	0.46	0.39	0.36	0.88	0.48	0.24	0.40	0.38	0.37	0.43
P_2O_5	0.09	0.13	0.12	0.10	0.10	0.16	0.12	0.08	0.08	0.10	0.08	0.11
П.п.п.	-0.02	-0.51	-0.35	-0.41	-0.28	-0.64	-0.35	-0.40	-0.49	0.10	-0.54	-0.03
Сумма	98.66	99.61	98.57	98.97	99.12	98.64	99.57	98.56	98.51	98.91	99.24	99.84

ВУЛКАНОЛОГИЯ И СЕЙСМОЛОГИЯ № 5 2023

38

Таблица 1. Он	кончание
---------------	----------

№ п/п	49	50	51	52	53	54	55	56	57	58	59	60
№ обр.	7905	7837-1	7837-2	7845	7846	7895	7896-1	7896-2	7897-1	7897-2	7898	7899
Широта	54.6908	54.7384	54.7384	54.7779	54.7650	54.7675	54.7711	54.7711	54.8044	54.8044	54.8139	54.8258
Долгота	160.4765	160.3446	160.3446	160.3143	160.3343	160.2500	160.3327	160.3327	160.3313	160.3313	160.3061	160.2825
Высота, м н.у.м.	576	373	375	374	374	374	373	373	373	373	373	373
SiO ₂	51.71	47.71	50.52	50.09	50.11	48.37	47.65	48.99	47.34	47.92	49.66	49.23
TiO ₂	0.81	0.82	0.83	1.07	0.92	0.74	0.61	0.86	0.67	0.78	0.70	0.83
Al_2O_3	18.73	18.47	22.13	18.70	19.89	21.10	20.33	19.11	18.22	18.85	20.47	19.75
FeO*	9.73	10.48	7.97	11.39	9.94	9.93	9.90	10.95	10.54	10.80	9.25	9.87
MnO	0.19	0.18	0.15	0.20	0.17	0.18	0.18	0.20	0.18	0.19	0.17	0.19
MgO	5.80	7.09	2.99	5.39	5.61	5.03	6.72	6.43	8.70	7.34	4.96	5.79
CaO	10.02	11.06	10.28	9.41	10.50	11.31	12.38	10.82	12.01	12.17	10.77	10.87
Na ₂ O	2.43	1.96	2.74	2.72	2.50	2.04	1.58	2.10	1.50	1.76	2.30	2.18
K ₂ O	0.33	0.67	0.68	0.32	0.31	0.33	0.39	0.33	0.30	0.32	0.44	0.41
P_2O_5	0.10	0.14	0.17	0.09	0.09	0.06	0.07	0.07	0.04	0.07	0.10	0.10
П.п.п.	-0.28	-0.24	-0.30	-0.53	-0.38	0.28	-0.38	-0.49	0.06	-0.40	-0.18	-0.31
Сумма	99.57	98.35	98.18	98.84	99.67	99.36	99.42	99.38	99.55	99.81	98.64	98.90
№ п/п	61	62	63	64	65	66	67	68	69	70	71	72
№ обр.	7900	7792	7793a	7794	7795	7796	7839-4	7842	7842-1	7844	7844-1	7844-2
Широта	54.8311	54.7072	54.6940	54.6925	54.6899	54.6901	54.6644	54.6879	54.6893	54.7411	54.74200	54.74553
Долгота	160.2968	160.4328	160.4083	160.4094	160.4180	160.4193	160.4682	160.4247	160.4226	160.3088	160.3074	160.3133
Высота, м н.у.м.	373	523	448	363	314	304	140	278	290	386	386	377
SiO ₂	49.69	55.38	54.81	53.64	54.97	53.24	54.77	59.38	60.37	55.36	48.38	50.61
TiO ₂	0.77	1.25	1.28	1.18	1.26	1.16	1.28	1.17	1.18	1.34	0.75	0.85
Al_2O_3	20.66	16.27	15.86	18.34	15.92	18.05	15.88	15.87	15.79	15.79	20.72	22.12
FeO*	9.50	10.82	10.90	9.88	10.83	9.99	11.09	8.73	8.42	11.13	9.27	8.11
MnO	0.17	0.20	0.20	0.18	0.20	0.18	0.20	0.20	0.20	0.20	0.17	0.16
MgO	5.58	4.06	3.87	3.75	3.76	3.57	3.93	2.58	2.43	4.01	5.67	2.96
CaO	11.23	7.97	7.93	9.06	7.92	9.05	7.92	5.88	5.69	7.88	12.54	10.31
Na ₂ O	2.25	3.37	3.03	3.23	3.01	2.40	2.83	4.00	3.96	2.98	1.95	2.73
K ₂ O	0.30	0.87	0.95	0.78	0.98	0.65	0.88	1.19	1.23	0.98	0.78	0.68
P_2O_5	0.07	0.17	0.17	0.15	0.17	0.16	0.17	0.23	0.26	0.20	0.12	0.17
П.п.п.	-0.38	-0.36	-0.16	-0.26	0.00	-0.07	-0.34	-0.37	-0.17	-0.33	-0.43	-0.30

Примечание. Образцы с 1 по 27 характеризуют лавовые потоки постройки вулкана; с 28 по 41 – дайки и некки в постройке вулкана; с 42 по 49 конусы и лавовые кратеры на склонах постройки (42 – Красная сопка, 43 – Крошкина, 44 – Уютный, 45 – Попутный, 46 – Медвежий, 47 – Незаметный, 48 – Подкова, 49 – Машук); с 50 по 61 – острова Кроноцкого озера (50, 51 – о. Зеленый (Комарова); 52 – о. Линдера; 53 – о. Круга; 54 – о. Бэра; 55, 56 – о. Конради; 57, 58 – о. Рябушинского; 59 – о. Алмазова; 60 – о. Шмидта; 61 – о. Державина); с 62 по 69 – лавы в долине реки Кроноцкой (62–67 – лавовый поток, связанный с конусом Красная сопка; 68 – лавы у уреза воды по левому борту р. Кроноцкой; 69 – лавы у уреза воды по правому борту р. Кроноцкой); 70–72 – лавовые потоки п-ова Скалистый. Отрицательные значения потерь при прокаливании связаны с процессом окисления железа в ходе подготовки пробы к анализу – оксид железа FeO переходит в Fe₂O₃, что сопровождается увеличением массы навески. ция (см. рис. 8г, 8д, 8ж). Содержания магния варьируют от 3.65 до 8.84 мас. % (см. рис. 8е), а магнезиальность ($100*Mg# = Mg/Mg + Fe^{2+}$) пород составляет 38–60 мол. %.

Интересно, что на большинстве лиаграмм точки составов пород вулкана Крашенинникова и его ареальной зоны продолжают эволюционные тренды пород Кроноцкого вулкана. Однако, диаграмма $SiO_2 - K_2O$ (см. рис. 8б) демонстрирует существенное петрохимическое различие между породами двух объектов – породы вулкана Крашенинникова в большей степени обогащены калием и принадлежат умеренно-К серии. По данному критерию породы, связанные с рядом объектов на стыке построек Кроноцкого и Крашенинникова (Красная сопка, лавы вдоль р. Кроноцкой, полуостров Скалистый и остров Комарова), отличаются от пород Кроноцкого вулкана и близки к полю составов пород вулкана Крашенинникова и его ареальной зоны или же занимают промежуточное положение между полями составов двух сближенных вулканических построек (см. рис. 8б).

Вариации содержаний SiO₂ и MgO в породах стратовулкана в зависимости от их гипсометрической позиции на склонах постройки показаны на рис. 9. Для лавовых потоков такая позиция отвечает последовательности их излияний, поэтому вариации составов лав отражают эволюцию/степень дифференциации магм по мере роста постройки вулкана. Высотная позиция даек, некков и конусов не всегда отражает последовательность их формирования, поэтому составы пород данных образований выделены в отдельную категорию (см. рис. 9). Из полученных нами данных следует, что в постройке вулкана не прослеживаются направленные изменения состава лав в зависимости от их гипсометрической и/или стратиграфической позиции. По содержанию SiO₂ лавы нижних и средних горизонтов постройки (до абс. выс. 1550 м н.у.м.) демонстрируют разброс составов от 47.04 до 52.48 мас. % при вариациях MgO от 3.65 до 8.84 мас. %. Для верхних горизонтов конуса характерен более выдержанный состав лав (SiO₂ = = 50.67 - 52.29 мас. % и MgO = 2.78 - 7.29 мас. %). Отметим, что наиболее основные породы чаще всего встречаются в основании вулкана, а также слагают острова Кроноцкого озера (см. рис. 9). Наиболее дифференцированные лавы (SiO₂ > 53 мас. %) слагают единичные дайки и предвершинный некк, состав которого мы приводим по данным работы [Фролова и др., 1974].

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Отличительные характеристики Кроноцкого вулкана

Полученные нами сведения о составе пород, морфологии постройки и объеме вулканических образований выделяют Кроноцкий вулкан в ряду других стратовулканов Камчатки. Прежде всего, рассчитанная величина объема постройки Кроноцкого вулкана максимальна по сравнению с другими стратовулканами фронтальной зоны ВВП. Так, известные из работы [Действующие вулканы ..., 1991] данные по объему построек других стратовулканов, наиболее близко расположенных к глубоководному желобу – например, Камбального, Ильинского, Гамчена не превышают первых десятков км³. Имеющиеся оценки объема более крупных построек Авачинского (до катастрофического обрушения постройки) и Корякского вулканов также существенно уступают оценкам для Кроноцкого вулкана и составляют 160 и 110 км³ соответственно [Новейший ..., 2005].

Следует отметить, что более ранние оценки объема Кроноцкого вулкана² варьировали от 93 до 425 км³ [Гушенко, 1991; Grosse et al., 2014]. Минимальная оценка была получена в работе [Grosse et al., 2014] на основе допущения о том, что основание вулкана расположено на абсолютных высотах 564 м. Такое допущение не согласуется с нашими наблюлениями – наиболее нижние лавы постройки Кроноцкого вулкана были опробованы нами на высоте 140 м (см. табл. 1, обр. № 18). Максимальная оценка была получена с использованием формулы для расчета объема конуса и не учитывала расчлененность рельефа. Наша оценка основана на цифровой модели рельефа, учитывает распространение лав в основании вулкана по полевым наблюдениям и близка к оценкам И.В. Мелекесцева [Пономарева и др., 2008].

Полученные петрографические и петрохимические данные характеризуют Кроноцкий как стратовулкан, в строении которого резко преобладают базальты — из проанализированных нами 49 образцов постройки всего четверть имеют андезибазальтовый состав. Извержения Кроноцкого вулкана на всех этапах его развития были преимущественно эффузивными – потоки лав преобладают в основании и в основной постройке конуса, доля пирокластических отложений заметно увеличивается только в вершинном секторе. Излияния лав происходили на всех гипсометрических уровнях постройки - помимо выделенных на рис. 2 основных побочных центров и некков на гребнях присутствуют многочисленные бокки и эруптивные центры, захороненные под последующими порциями лав. Согласно полученным нами данным, по мере эволюции вулкана направленные изменения состава не прослеживаются (см. рис. 9). Такие особенности позволяют сделать предположение о высокой скорости поступления базальтовых магм, не способствующей их длительной остановке и дифференциации в коровых условиях. Например, именно так объясняется преобладание базальтов в постройке вулкана Фудзи – высочайшего вулкана Японии, характеристики которого по ряду параметров

ГОРБАЧ, РОГОЗИН

Рис. 8. Состав пород Кроноцкого вулкана в сравнении с породами вулкана Крашенинникова [Волынец и др., 1989] и других фронтальных вулканов ВВП (Ильинского, Ксудача, Мутновского, Вилючинского, Авачинского, Карымского, Малого и Большого Семячиков, Шмидта, Гамчена и Комарова), по [Straub, 2017].

На диаграмме (а) сплошная линия разделяет поля толеитовых и известково-щелочных серий, по [Miyashiro, 1974], пунктирные линии обозначают разделение пород по степени обогащения железом, по [Arculus, 2003]. На диаграмме (б) линии разделения островодужных пород по содержанию калия приведены согласно работе [Gill, 1981]; цифрами обозначены объекты на стыке вулканов Кроноцкого и Крашенинникова – о. Зеленого (Комарова) (1), конуса Красная сопка и связанного с ним лавового потока (2), лав вдоль реки Кроноцкая (3).

(объем постройки и состав изверженных продуктов) близки Кроноцкому вулкану. Для постройки вулкана Фудзи, объемом более 400 км³, известен возраст (80—100 тыс. лет), что позволило рассчитать его продуктивность, которая на порядок превышает аналогичные параметры для других фронтальных вулканов Японии, например [Aoki et al., 2019; Yamamoto et al., 2021]. Сходство в масштабах построек, характере извержений и составе изверженных продуктов двух объектов позволяют предполагать чрезвычайно высокую продуктивность и для Кроноцкого вулкана. Рассчитать этот параметр для сопоставления с другими высоко-продуктивными вулканами станет возможным только после получения данных о начале активности и длительности активного эруптивного периода вулкана.

Базальты Кроноцкого вулкана принадлежат низко-К толеитовой серии, что типично для фронтальных вулканов островных дуг [Авдейко и др., 2001; Volynets, 1994; Tatsumi et al., 1995]. Однако, крайне низкие содержания кремнезема, а так-

Рис. 9. Вариации содержаний SiO₂ и MgO в породах Кроноцкого вулкана в зависимости от гипсометрической позиции в постройке. Для потоков лав гипсометрическая позиция отражает относительную последовательность их формирования и отвечает стратиграфической позиции. Состав пород даек, некков, конусов и островов показан для сравнения. Состав пород предвершинного некка показан по данным [Фролова, 1974].

же оксидов калия, титана и фосфора в базальтах Кроноцкого вулкана выделяют их среди пород других фронтальных вулканов ВВП (см. рис. 8). Как показали наши предварительные геохимические данные [Горбач и др., 2022], подобные отличия присутствуют и на уровне микроэлементов. По сравнению с породами сходной петрохимической принадлежности (SiO₂ < 54 мас. %; K₂O < 0.7 мас. %), проявленными на других фронтальных вулканах Камчатки, породы Кроноцкого вулкана максимально обеднены высокозарядными элементами (Ti, Nb, Ta, Hf, Zr) и легкими редкоземельными элементами (La-Nd). Такие особенности позволяют предполагать, что происхождение серии пород Кроноцкого может быть связано с крайне обедненным магматическим источником и/или же обусловлено чрезвычайно высокой степенью его плавления.

Объекты на стыке построек вулканов Кроноцкий и Крашенинникова: приложение полученных данных

Выявленные петрохимические различия между породами вулканов Кроноцкий и Крашенинникова (см. рис. 8б) позволяют уточнить принадлежность отдельных объектов, которые расположены на стыке вулканических построек или же слагают фрагментарные коренные выходы на островах Кроноцкого озера. Так, коренные выходы лав на островах Круга и Линдера, а также блоки лав на островах Конради, Рябушинского, Алмазова, Державина и Шмидта (см. табл. 1, обр. с № 52 по № 61) идентичны по составу низко-К толеитовым базальтам Кроноцкого вулкана и на этом основании могут быть отнесены к продуктам его активности. Породы полуострова Скалистый, лавы вдоль реки Кроноцкой, породы конуса Красная сопка и лавового потока, распространяющегося от конуса вниз по левому борту реки Кроноцкой, по петрохимическим критериям близки зоне ареального вулканизма вулкана Крашенинникова (см. рис. 8б).

Полученные нами выводы о принадлежности объектов, расположенных на стыке вулканических построек Кроноцкого и Крашенинникова, важны для уточнения этапов формирования уникальной природной системы, включающей наиболее крупный по площади пресноводный водоем Камчатки – озеро Кроноцкое. Считается, что именно излияния лав Кроноцкого вулкана и расположенного южнее вулкана Крашенинникова сформировали запруду, перекрывшую сток р. Палеокроноцкой, в результате чего и было образовано озеро [Крохин, 1936; Мелекесцев, 1980]. Предполагается, что потоки лав ареальной зоны Крашенинникова играли ключевую роль в формировании запруды [Фролова, 1974; Пономарева, Брайцева, 1990]. Действительно, образцы андезитовых лав, отобранные на участке порогов по обоим бортам

Кроноцкой идентичны (см. табл. 1. реки обр. № 68–69) – река "пропилила" эти потоки. Потоки андезитовых лав формируют обрывистый правый борт реки, а на левом борту обнаружены в виде единичных небольших обнажений у уреза воды, выше которых залегают андезибазальтовые лавы потока, связанного с конусом Красная сопка. Наиболее вероятно, что основной объем запруды был сформирован андезитовыми лавами со стороны вулкана Крашенинникова, а излившиеся позднее лавы конуса Красная сопка оттеснили долину реки к правому борту. По нашему мнению, излияние данного потока могло временно увеличить объем запруды, что, в свою очередь, могло привести к временному подъему уровня озера. Признаки изменения уровня озера отмечались и в работах Ленгидропроекта [Фролова, 1974], а также предполагались в работе [Пономарева, Брайцева, 1990]. Определение возраста лавовых потоков в долине реки Кроноцкой может быть интересной и важной задачей будущих исслелований.

выводы

Вулкан Кроноцкий — наиболее крупный стратовулкан фронтальной зоны Восточного вулканического пояса Камчатки. Используя цифровую модель рельефа, результаты дешифрирования космических снимков и данные полевых наблюдений о залегании лав в основании вулкана, объем постройки стратовулкана оценен в 350 км³.

Породы Кроноцкого вулкана представлены низко-К, высоко-Fe толеитовыми базальтами и андезибазальтами (SiO₂ = 47.04–53.4 мас. %; $K_2O = 0.24-0.58$ мас. %; FeO*/MgO = 1.2–2.89). Базальты доминируют среди изученных пород. Лавы нижних и средних горизонтов постройки (до абс. выс. 1550 м н.у.м.) демонстрируют разброс содержаний кремнезема от 47.04 до 52.48 мас. %, тогда как для лав верхних горизонтов постройки характерен более узкий диапазон вариаций данного компонента (SiO₂ = 50.67–52.29 мас. %).

По сравнению с породами других фронтальных вулканов базальты Кроноцкого вулкана отличаются минимальными содержаниями кремнезема, калия, титана и фосфора. Эта особенность, наряду с предварительными данными по геохимии пород, позволяет рассматривать базальты Кроноцкого вулкана как производные крайне обедненного магматического источника и/или же чрезвычайно высоких степеней его плавления по сравнению с другими объектами фронтальной зоны ВВП.

Коренные выходы лав на островах Круга и Линдера и блоки лав на островах Конради, Рябушинского, Державина и Шмидта полностью идентичны по составу низко-К толеитовым базальтам Кроноцкого вулкана и на этом основании могут быть отнесены к продуктам его активности.

Породы, связанные с рядом объектов на стыке построек Кроноцкого и Крашенинникова (конус Красная сопка, лавы вдоль р. Кроноцкой, п-ов Скалистый и о. Комарова (Зеленый)) отличаются от пород Кроноцкого вулкана и по петрохимическим критериям близки лавам вулкана Крашенинникова и его ареальной зоны.

БЛАГОДАРНОСТИ

Авторы искренне признательны сотрудникам Кроноцкого заповедника Руслану и Наталье Акбировым за неоценимую помощь и огромный вклад в реализацию многих наших маршрутов. Особая благодарность В.В. Пономаревой и Г.Н. Маркевичу за инициацию наших исследований в районе Кроноцкого озера и поддержку на всех этапах работы, а также О.В. Дирксену за обсуждение геоморфологических особенностей территории, прилегающей к Кроноцкому вулкану.

ИСТОЧНИКИ ФИНАНСИРОВАНИЯ

Работа выполнена при поддержке проекта РНФ № 23-27-00053 https://rscf.ru/project/23-27-00053/; полевые исследования 2022 г. были поддержаны проектом РНФ № 22-17-00074.

СПИСОК ЛИТЕРАТУРЫ

Авдейко Г.П., Попруженко С.В., Палуева А.А. Современная тектоническая структура Курило-Камчатского региона и условия магмообразования // Геодинамика и вулканизм Курило-Камчатской островодужной системы. Петропавловск-Камчатский: ИВГиГ ДВО РАН, 2001. С. 9–33.

Баранов Б.В., Цуканов Н.В., Гедике К. и др. Морфология и особенности строения зоны субдукции в районе сочленения Курило-Камчасткиой и Алеутской островных дуг // Океанология. 2022. Т. 62. № 4. С. 611–624.

Влодавец В.И. Вулканы Советского Союза / Отв. ред. И.Г. Головко. М.: Гос. изд-во географической литературы, 1949. 164 с.

Волынец О.Н., Пономарева В.В., Цурюпа А.А. Петрологические и тефрохронологические исследования вулкана Крашенинникова на Камчатке // Известия АН СССР. Сер. геологическая. 1989. № 7. С. 15–31.

Гаврилов В.Т. Вулканы Кроноцкого заповедника // Известия ВГО. 1944. Т. 76. Вып. 5. С. 241–249.

Горбач Н.В., Рогозин А.Н., Пономарева В.В. Вулкан Кроноцкий (Восточная Камчатка): особенности строения и первые представительные данные по геохимии пород // Материалы XXV ежегодной научной конференции, посвященной Дню вулканолога: Вулканизм и связанные с ним процессы. Петропавловск-Камчатский, 2022. С. 30–33.

Гущенко И.И. Некоторые замечания о Кроноцкой сопке и ее побочных образованиях // Бюлл. вулканол. станций. 1957. № 26. С. 75–80. *Гущенко И.И.* Вулкан Кроноцкий // Действующие вулканы Камчатки. Т. 2. М.: Наука, 1991. С. 52–61.

Действующие вулканы Камчатки. Т. 2 // Отв. ред. С.А. Федотов, Ю.П. Масуренков. М.: Наука, 1991. 415 с.

Крохин Е.М. Исследование Кроноцкого озера в мартемае 1935 г. // Известия ВГО. 1936. Т. 68. Вып. 5. С. 702– 727.

Мелекесцев И.В. Вулканизм и рельефообразование // Отв. ред. К.Н. Рудич. М.: Наука, 1980. 212 с.

Мелекесцев И.В. Действующие и потенциально активные вулканы Курило-Камчатской островной дуги в начале XXI в.: этапы исследований, определение термина "действующий вулкан", будущие извержения и вулканическая опасность // Вестник КРАУНЦ. Сер. Науки о Земле. 2006. Вып. 7. № 1. С. 15–35.

Новейший и современный вулканизм на территории Росиии. М.: Наука, 2005. 604 с.

Новограбленов П.Т. Каталог вулканов Камчатки // Известия ВГО. Т. 64. Вып. 1. 1932. С. 88–99.

Пономарева В.В. Вулкан Крашенинникова: история формирования и динамика активности // Вулканология и сейсмология. 1987. № 5. С. 28–44.

Пономарева В.В., Брайцева О.А. Вулканическая опасность для района Кроноцкое озеро –Узон – Долина гейзеров // Вулканология и сейсмология. 1990. № 1. С. 27–42.

Пономарева В.В., Чурикова Т.Г., Мелекесцев И.В. и др. Позднеплейстоцен-голоценовый вулканизм Камчатки // Изменение окружающей среды и климата: природные и связанные с ними техногенные катастрофы. 2008. Т. II. Новейший вулканизм северной Евразии: закономерности развития, вулканическая опасность, связь с глубинными процессами и изменениями природной среды и климата. М.: ИГЕМ РАН, С. 19–40.

Тобелко Д.П., Горбач Н.В., Портнягин М.В. и др. Первые данные по составу минералов и предварительные оценки условий кристаллизации магм Кроноцкого вулкана (Восточный вулканический пояс Камчатки) // Материалы XXVI ежегодной научной конференции, посвященной Дню вулканолога: Вулканизм и связанные с ним процессы. Петропавловск-Камчатский, 2023. С. 70–74.

Шмидт П.Ю. Работы зоологического отдела на Камчатке в 1908–1909 гг. // Камчатская экспедиция Федора Павловича Рябушинского, снаряженная при содействии Русского географического общества. Зоологический отдел. Вып. 1. М.: Типография Товарищества Рябушинских, 1916. 432 с.

Фролова М.Л. Район Кроноцкой сопки и вулкана Крашенинникова // Материалы IV Всесоюзного вулканологического совещания: Вулканы и геотермы Камчатки / Отв. ред. Э.Н. Эрлих. Петропавловск-Камчатский: ИВ ДВНЦ АН СССР, 1974. С. 193–223.

Яцковский А.И. Маршрут первовосхождения на Кроноцкий вулкан // Бюлл. вулканол. станций. 1957. № 26. С. 81-85.

Amosova A.A., Panteeva S.V., Chubarov V.M., Finkelshtein A.L. Determination of major elements by wavelength-dispersive X-ray fluorescence spectrometry and trace elements by inductively coupled plasma mass spectrometry in igneous rocks from the same fused sample (110mg) // Spectrochim. Acta. Part B. 2016. V. 122. P. 62–68. https://doi.org/10.1016/j.sab.2016.06.001

ВУЛКАНОЛОГИЯ И СЕЙСМОЛОГИЯ № 5 2023

Arculus R.J. Use and Abuse of the Terms Calcalkaline and Calcalkalic // J. of Petrology. 2003. V. 44. № 5. P. 929–935.

Aoki Yosuke, Tsunematsu Kae, Yoshimoto Mitsuhiro. Recent progress of geophysical and geological studies of Mt. Fuji Volcano, Japan // Earth-Science Reviews. 2019. V. 194. P. 264–282.

https://doi.org/10.1016/j.earscirev.2019.05.003

Grosse P., Euillades P.A., Euillades L.D. et al. A global database of composite volcano morphometry // Bull. Volcanol. 2014. P. 784.

https://doi.org/10.1007/s00445-013-0784-4

Gill J.B. Orogenic andesites and plate tectonics. Berlin, Heidelberg: Springer-Verlag. 1981. 390 p.

Gorbatov A., Kostoglodov V., Suarez G., Gordeev E. Seismicity and structure of the Kamchatka subduction zone // J. of Geophys. Res. 1997. V. 102(B8). P. 17833–17898.

Kepezhinskas P., McDermott F., Defant M. J. et al. Trace element and Sr–Nd–Pb isotopic constraints on a three-component model of Kamchatka Arc petrogenesis // Geochim. Cosmichim. Acta. 1997. V. 61(3). P. 577–600.

Miyashiro A. Volcanic rock series in island arcs and active continental margins // American Journal of Science. 1974. V. 274. P. 321–355.

Straub S.M. Compilation of published major and trace elements and Sr-Nd-Pb-Hf isotope ratios of Quaternary-age arc volcanic rocks from 9 arc settings. Version 1.0. Interdisciplinary Earth Data Alliance (IEDA). 2017. https://doi.org/10.1594/IEDA/100664.

Tatsumi Y., Kogiso T., Nohda S. Formation of a third volcanic chain in Kamchatka: generation of unusual subductionrelated magmas // Contrib. Mineral. Petrol. 1995. V. 120. P. 117–128.

https://doi.org/10.1007/BF00287109

Volynets O.N. Geochemical types, petrology and genesis of Late Cenozoic volcanic rocks from the Kurile-Kamchatka Island ark system // International Geological Review. 1994. V. 36. № 4. P. 373–405.

Yamamoto T., Nakano S., Ishizuka Y. Temporal variations of magma composition, eruption style and rate at Fuji Volcano, Japan // Earth Planets and Space. 2021. V. 73. Article number: 169.

https://doi.org/10.1186/s40623-021-01505-1

Geological Structure Features and Rocks Composition of Kronotsky Volcano, the Largest Stratovolcano in the Frontal Zone of the Eastern Volcanic Belt of Kamchatka

N. V. Gorbach^{1, *} and A. N. Rogozin¹

¹Institute of Volcanology and Seismology, Far East Branch, Russian Academy of Sciences, bul'var Piipa, Petropavlovsk-Kamchatsky, 683006 Russia *e-mail: n gorbach@mail.ru

Based on the results of 2020–2022 field works, this paper presents a characterization of the geological structure and whole rock composition of Kronotsky volcano, one of the poorly studied eruptive centers of the Eastern Volcanic Belt (EVB) of Kamchatka. The volume of the volcanic edifice is estimated at 350 km³, that significantly exceeds the volumes of other stratovolcanoes of the frontal zone of EVB. Rocks of a volcano are presented by low-K, high-Fe tholeiitic basalts and basaltic andesites (SiO₂ = 47.04–53.15 wt %; K₂O = 0.24-0.65 wt %; FeO*/MgO = 1.2-2.89). The basalts show extremely low contents of silica, potassium, titanium, and phosphorus in comparison with rocks of other frontal volcanoes of Kamchatka. The revealed petrochemical features were used to clarify the belonging of the objects located at the junction of Kronotsky and Krasheninnikov volcanic edifices. The obtained data will serve as the background for further petrological and geochemical studies of the volcano, and also may be used for reconstruction the sequence of volcanic events in this area, including clarification of the history of Kronotsky Lake formation.

Keywords: Kronotsky volcano, volume of stratovolcano, low-potassic basalts, Eastern volcanic belt of Kamchatka