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Рассмотрены перспективы использования газотурбинных установок (ГТУ), в которых в качестве
топлива применяется аммиак, с термохимической рекуперацией тепла отходящих газов. Приведе-
ны примеры действующих газотурбинных установок, работающих на аммиаке, и указаны основ-
ные эксплуатационные ограничения применения существующих ГТУ. Выполнен термодинами-
ческий анализ простой газотурбинной установки с термохимической рекуперацией (ТХР) тепла в
широком диапазоне рабочих параметров: температура газов на входе в турбину варьировалась от
700 до 1300°C, степень сжатия – от 5 до 20. Установлено, что при термохимической рекуперации
тепла увеличение КПД газотурбинной установки может достигать 9%. Показано, что эффектив-
ность применения ТХР зависит от таких рабочих параметров, как температура и давление. При тем-
пературе выше 500°С энтальпия реакции разложения аммиака достигает значения близкого к мак-
симальному – примерно 3.0 МДж/кг NH3. Термохимическая рекуперация приводит к разложению
аммиака с получением богатого водородом газа [до 75% (по объему)], который сжигается в камере
сгорания, в результате чего изменяются характеристики процесса горения. В модуле Chemkin-Pro
на основе механизма GRI-Mech 3.0 выполнен расчет скорости распространения пламени газовой
смеси, состоящей из водорода, азота и аммиака, с различным их содержанием. Определено, что
продукты полного термохимического разложения аммиака имеют скорость распространения
пламени, примерно в 2 раза превышающую этот показатель для метана и более чем в 10 раз для
аммиака. Таким образом, ожидается, что использование термохимической рекуперации тепла в
газотурбинных установках, работающих на аммиаке, приведет к увеличению энергетической эф-
фективности и более стабильному процессу горения.
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Прогресс в науке и технологиях связан с не-
прерывным поиском направлений устойчивого
развития общества и промышленности. Одним из
главных вызовов XXI в. является повышение
средней глобальной температуры на Земле, при-
водящее к необратимым последствиям в биосфе-
ре. Среди потенциальных причин, вызывающих
такие изменения, по оценкам специалистов и
различных международных организаций, – вы-
бросы парниковых газов, в том числе CO2, про-
мышленными предприятиями [1], в частности
энергетическими. Несмотря на активное разви-
тие возобновляемых источников энергии (ветро-
вой, солнечной и др.), их доля в общем энергети-
ческом балансе большинства развитых и развива-
ющихся стран не является доминирующей [2].

В настоящее время во многих странах значитель-
ная доля генерации электроэнергии приходится
на тепловые электростанции [3].

Зачастую критика различных экологических
организаций в адрес современной теплоэнерге-
тики является необоснованной, так как совре-
менные образцы газотурбинных и парогазовых
установок способны достигать термического
КПД 44 и 64% [4, 5] соответственно. В этой свя-
зи ведущими производителями газовых турбин
(ГТ), как одних из наиболее эффективных теп-
ловых двигателей, принято решение по разра-
ботке подходов, связанных с использованием
безуглеродных топлив. Одним из таких топлив
является аммиак. В настоящее время в мире
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имеется несколько действующих газотурбинных
установок, работающих на аммиаке [6].

Специалисты из Mitsubishi Power разработали
ГТУ мощностью 40 МВт, способную напрямую
сжигать аммиак. Эта газовая турбина создана на
основе серии турбин H-25.

Газотурбинная установка от Turboden мощно-
стью 15 МВт, установленная на когенерационной
электростанции в Германии в 2018 г., предназна-
чена для работы на чистом аммиаке или смеси
аммиака и природного газа.

Инженеры Kawasaki Heavy Industries разрабо-
тали газовую турбину мощностью 1 МВт, работа-
ющую на аммиаке, которая в настоящее время
проходит испытания в Японии.

Основные ограничения применения суще-
ствующих газовых турбин для сжигания аммиака
следующие [7]:

увеличенный объем камеры сгорания по срав-
нению с газовыми турбинами, работающими на
метане. Следовательно, изменение размеров ка-
меры сгорания для эффективного сжигания ам-
миака приводит к существенной модификации
газовых турбин, работающих на природном газе;

нестабильное горение аммиака из-за низкой
скорости распространения его пламени. Газовые
турбины часто работают в переменном режиме
при различных нагрузках, что приводит к измене-
нию характеристик процесса горения и, как след-
ствие, его нестабильности.

Поэтому, чтобы решить эксплуатационные
проблемы, обусловленные этими ограничения-
ми, основное внимание в настоящее время уделя-
ется применению аммиака в качестве топлива для
газовых турбин, прежде всего путем его комбини-
рования с другими газами, такими как водород,
метан или синтез-газ [8]. Благодаря смешиванию
аммиака с водородом или метаном становится
возможным использовать существующую инфра-
структуру газовых турбин и повысить общую эф-
фективность процесса горения аммиака.

Водород также является перспективным безуг-
леродным топливом, и, чтобы добиться стабиль-
ного и эффективного горения, его можно смеши-
вать с аммиаком [9]. В отличие от аммиака, у во-
дорода высокая скорость распространения
пламени и он горит более стабильно даже при
больших коэффициентах избытка воздуха [10]. С
одной стороны, для применения водорода в каче-
стве вторичного компонента топлива (аммиачно-
водородных смесей) требуется модификация ин-
фраструктуры топливоснабжения при всех тех
проблемах, которые связаны с использованием
водорода в качестве топлива. С другой стороны,
аммиак можно рассматривать как носитель водо-

рода [11] – при его термохимическом разложении
образуется богатый водородом газ с объемным
содержанием Н2 до 75%:

(1)

где ∆H298 – энтальпия реакции разложения при
стандартных условиях.

В современных образцах газовых турбин темпе-
ратура отходящих газов составляет от 500 до 800°C
[12]. Этот температурный диапазон подходит для
термохимического разложения аммиака по реак-
ции (1). Следовательно, тепло отходящих газов
может быть использовано для производства обо-
гащенного водородом газа перед его непосред-
ственным сжиганием в ГТУ. Этот подход изве-
стен как термохимическая рекуперация тепла от-
ходящих газов [13, 14], а газовые турбины с ТХР
называются газовыми турбинами с химической
рекуперацией (chemically recuperated gas turbine –
CRGT) [15, 16].

В настоящей статье выполнен термодинами-
ческий анализ простой газотурбинной установки
с термохимической рекуперацией тепла отходя-
щих газов, работающей на аммиаке, а также про-
изведен расчет скорости распространения пламе-
ни для различных составов смесей, в которые
входят водород, азот и аммиак.

КОНЦЕПЦИЯ ГТУ С ТЕРМОХИМИЧЕСКОЙ 
РЕКУПЕРАЦИЕЙ ТЕПЛА

Принципиальная схема газотурбинной уста-
новки, работающей на аммиаке, с термохимиче-
ской рекуперацией тепла показана на рис. 1. В
этой схеме тепло отходящих дымовых газов газо-
вой турбины используется в системе для термо-
химического разложения аммиака, который по-
следовательно проходит через регазификатор,
подогреватель и риформер. В результате разло-
жения на выходе из риформера получается водо-
родно-азотная смесь с объемной долей водорода
до 75%. Стоит отметить, что при этом, согласно
принципу Ле Шателье – Брауна, состав продук-
тов разложения аммиака зависит от технологи-
ческих параметров, таких как температура и дав-
ление.

Термодинамический анализ цикла газотур-
бинной установки, работающей на аммиаке, с
термохимической рекуперацией тепла выпол-
нен в программном продукте Aspen HYSYS [17].
Параметры термодинамического цикла ГТУ рас-
считаны с учетом внутренних относительных
КПД отдельных элементов. Характеристики
процесса горения продуктов термохимического
разложения определены на основе энтальпии
реакции горения отдельных компонентов газово-
го топлива. Термодинамический анализ процесса

↔ + Δ =3 2 2 2982NH 3H N , 46.03 кДж/моль,H
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Рис. 1. Принципиальная схема ГТУ, работающей на аммиаке, с термохимической рекуперацией тепла отходящих ды-
мовых газов. 
К – компрессор; КС – камера сгорания; ГТ – газовая турбина; Г – генератор; Риф – риформер; П – подогреватель;
Рег – регазификатор.
1 – воздух; 2 – сжатый воздух; 3 – продукты сгорания; 4, 4 ', 4 '' – отходящие газы; 5 – уходящие газы (например, в па-
росиловой цикл); 6 – жидкий аммиак; 7, 8 – газообразный аммиак; 9 – продукты разложения аммиака
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Рис. 2. Расчетная схема для термодинамического анализа газотурбинной установки с термохимической рекуперацией
тепла отходящих газов. 
Риф1 – идеальный реактор Гиббса (G); Риф2 – теплообменник, в котором происходит теплообмен между дымовыми
газами и реакционной смесью. Остальные обозначения см. рис. 1
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термохимического разложения аммиака выпол-
нен методом минимизации свободной энергии
Гиббса, позволяющим определить равновесные
концентрации продуктов реакции в зависимости
от давления и температуры [18]. В качестве урав-

нения состояния выбрано уравнение Пенга – Ро-
бинсона [19], так как процесс термохимического
разложения аммиака протекает при давлениях до
2.0 МПа. Расчетная схема для термодинамиче-
ского анализа ГТУ с ТХР показана на рис. 2.
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Исходные значения рабочих параметров ГТУ,
использованные для термодинамического анали-
за, приведены далее:

Термодинамический анализ проведен для по-
стоянного массового расхода аммиака, что обу-
словливает разную мощность ГТУ при различных
рабочих параметрах. В реальности для их изме-
нения в столь широких диапазонах требуется пе-
реход от газовой турбины одного типа к газовой
турбине другого типа. Однако при постоянном
заданном массовом расходе аммиака становится
возможным построить зависимости КПД ГТУ
при условно одинаковых значениях параметров
для различных температур и давлений. При вы-
полнении термодинамического анализа темпе-
ратура для определения состава продуктов раз-
ложения аммиака была принята на 50°С ниже
температуры отходящих газов газовой турбины.

Массовый расход аммиака, кг/ч ......................... 50
Температура, °C:

рабочего газа 
на входе в ГТ ....................... 700; 900; 1100; 1300
атмосферного воздуха и аммиака ................. 20
продуктов разложения аммиака .............. t4–50

Степень сжатия в компрессоре/ 
степень расширения в ГТ ......................5; 10; 15; 20
КПД, %:

газовой и паровой турбин ............................. 90
компрессора................................................... 85

Примечание. t4 – температура после ГТ (см. рис. 1).

Более точный расчет как температуры продуктов
реакции, так и их состава возможно провести на
основе моделирования процессов тепломассо-
обмена в риформере с учетом химической кине-
тики реакции (1) [20].

Эффективность системы термохимической
рекуперации определяется количеством тепла от-
ходящих дымовых газов, трансформировавшего-
ся в химическую энергию продуктов разложения
аммиака. При этом состав продуктов разложения
аммиака зависит от температуры и давления. От
этих параметров зависит также энтальпия реак-
ции (1). Стоит отметить, что согласно закону со-
хранения энергии теплота сгорания продуктов
разложения аммиака больше теплоты сгорания
аммиака на значение энтальпии реакции (в пере-
счете на единицу массы исходного аммиака).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ
На рис. 3 показаны зависимости молярного

состава продуктов термохимического разложе-
ния аммиака при давлении 1.0 МПа и энтальпии
реакции (1) от температуры при различных давле-
ниях.

При температуре выше 500°С продукты разло-
жения аммиака состоят, в основном, из водорода,
при этом доля остаточного аммиака не превыша-
ет 5% (см. рис. 3, а). Поэтому можно ожидать, что
при использовании отходящих газов ГТУ для тер-
мохимического разложения аммиака продукты
реакции будут состоять главным образом из водо-
рода и азота в соотношении приблизительно 3 : 1.

На рис. 3, б приведена зависимость энтальпии
реакции термохимического разложения аммиака

Рис. 3. Молярный состав М продуктов термохимического разложения аммиака при p = 1.0 МПа (а) и зависимость эн-
тальпии реакции ∆H298 от температуры t при различных давлениях (б). 
Давление, МПа: 1 – 0.1; 2 – 0.5; 3 – 1.0; 4 – 2.0
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от температуры при различных давлениях. На этом
рисунке видно, что при температуре выше 500°С
энтальпия реакции (1) достигает значения близко-
го к максимальному – примерно 3.0 МДж/кг NH3.
Таким образом, можно утверждать, что при пол-
ном разложении аммиака теплота сгорания про-
дуктов реакции (1) приблизительно на 3.0 МДж
выше теплоты сгорания аммиака (в пересчете на
1 кг исходного аммиака). Также стоит отметить,
что, если продукты разложения аммиака ис-
пользуются в ГТУ согласно схеме, показанной
на рис. 1, в камеру сгорания помимо химически
связанного тепла (∆Qхим) отходящих газов (выра-
женного в виде возросшей теплоты сгорания)
также вносится физическое тепло (Qф.г) подогре-
тых продуктов разложения аммиака. Таким обра-
зом, суммарную рекуперацию тепла отходящих
газов Qрек в ГТУ можно представить в виде следу-
ющего выражения:

(2)

Влияние термохимической рекуперации тепла
на эффективность ГТУ можно определить, если
сравнить КПД ГТУ с термохимической рекупера-
ций тепла отходящих газов и без таковой. На
рис. 4 показана зависимость КПД ГТУ с ТХР и
без нее при различной температуре газов на входе
в турбину и разной степени сжатия. На этом ри-
сунке видно, что использование ТХР позволяет
увеличить КПД ГТУ на 8–9% при температуре га-
зов на входе 1300°C и степени сжатия 20. Стоит
отметить, что минимальный эффект ТХР наблю-
дается при температуре газов на входе в турбину

= Δ + = Δ +рек хим ф.г 298 ф.г.Q Q Q Н Q

700°C. В этом случае температура отходящих га-
зов после ГТ минимальная и недостаточная для
полного разложения аммиака. При температуре
газов на входе в турбину от 900 до 1300°C увели-
чение КПД ГТУ с ТХР может достигать 9%.

Следует также отметить, что, поскольку тепло
отходящих газов газовой турбины имеет бóльший
потенциал, использование его в цикле с ТХР
более эффективно, чем в цикле паротурбинной
установки (ПТУ) [21]. Это связано с тем, что
большее количество тепла используется в цикле
ГТУ, эффективность которого значительно пре-
вышает эффективность паротурбинного цикла
вследствие разных температурных уровней [22].
При этом доля полезной работы, производимой в
цикле ГТУ, увеличивается, а доля таковой в цик-
ле ПТУ снижается.

Из принципиальной схемы на рис. 1 видно,
что в ГТУ с ТХР в качестве топлива используются
продукты термохимического разложения аммиа-
ка, состоящие, главным образом, из водорода и
азота. Известно, что скорость распространения
пламени водорода значительно превышает этот
показатель аммиака. Для определения влияния
изменения состава топлива, подаваемого в каме-
ру сгорания ГТУ, на скорость распространения
пламени, был выполнен анализ процесса горе-
ния. Для расчета этой скорости применялся мо-
дуль Chemkin-Pro с механизмом GRI-Mech 3.0
[23]. Несмотря на то что механизм GRI-Mech 3.0
был разработан специалистами Калифорний-
ского университета в Беркли для моделирова-
ния основных свойств горения природного газа,
он может быть применен с большой точностью

Рис. 4. Зависимость КПД газотурбинной установки η с термохимической рекуперацией тепла отходящих газов (а) и
без термохимической рекуперации (б) от степени сжатия при различной температуре газов на входе в турбину.
Температура, °С: 1 – 700; 2 – 900; 3 – 1100; 4 – 1300
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для моделирования горения продуктов термохи-
мического разложения. Это связано с тем, что
механизм GRI-Mech 3.0 состоит из 325 элемен-
тарных химических реакций, в том числе хими-
ческих реакций горения водорода.

Скорость распространения пламени зависит
от различных факторов, таких как давление в ка-
мере сгорания, начальная температура компо-
нентов горения, состав топлива, коэффициент
избытка воздуха. На рис. 5 показана зависимость
скорости распространения пламени для газовой
смеси, в состав которой входят азот, водород и
аммиак в различном соотношении, при давлении
1.0 и 2.0 МПа.

Результаты расчета были сопоставлены с дан-
ными, полученными другими исследователями
[24, 25], и показали хорошую сходимость. Рису-
нок 5 иллюстрирует, что повышение концентра-
ции водорода в газовой смеси значительно увели-
чивает скорость распространения пламени. При
составе газовой смеси H2 : N2 = 3 : 1 скорость рас-
пространения пламени составляет 78 см/с, что
практически в 2 раза превышает этот показатель
для метана и более чем в 10 раз для аммиака.

Данные, приведенные на рис. 5, позволяют
предположить, что термохимическая трансформа-
ция аммиака благодаря использованию тепла от-
ходящих газов положительно влияет не только на
энергетический КПД ГТУ, но и на эффективность
процесса горения. Более детальную информацию
о характеристиках процесса горения водородно-
азотно-аммиачной газовой смеси можно полу-
чить, проанализировав влияние начальной темпе-

ратуры газовой смеси и коэффициента избытка
воздуха на характеристики процесса горения.

На основе результатов исследований можно
сделать вывод, что термохимическая рекупера-
ция тепла отходящих газов в газотурбинных
установках, работающих на аммиаке, оказывает
положительное влияние на их энергетическую
эффективность и улучшает процесс горения.
Следовательно, можно полагать, что для органи-
зации ТХР можно использовать существующие
камеры сгорания ГТУ, работающие на природ-
ном газе, без значительной их модификации [26].
Стоит также отметить, что согласно результатам
проведенных исследований в современных ГТУ
возможно задействовать те же горелочные
устройства камер сгорания при содержании водо-
рода до 30% в газовой смеси [27, 28]. Однако даль-
нейшее увеличение объемной доли водорода в
топливном газе потребует модификации горелоч-
ных узлов [29].

Наряду с очевидными преимуществами термо-
химической трансформации аммиака в ГТУ, име-
ется немало задач, которые необходимо решить,
прежде чем такие установки будут внедрены в ре-
альную энергетику. Например, частичная загрузка
газотурбинных установок обусловлена изменени-
ем расхода топлива, что приводит к повышению
или снижению коэффициента избытка воздуха в
камере сгорания. Это, в свою очередь, влияет на
стабильность и эмиссионные характеристики про-
цесса горения.

Кроме того, ГТУ нередко работают циклично,
к примеру по несколько часов несколько раз в

Рис. 5. Скорость распространения пламени газовой смеси, в состав которой входят водород, азот, аммиак в различном
соотношении, при p = 1.0 МПа (а) и p = 2.0 МПа (б).
Экспериментальные данные: 1 – [24]; 2 – [25]
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сутки, чтобы покрыть пиковые потребления
электроэнергии. Это связано с коротким време-
нем отклика ГТУ в сравнении с ПТУ. Однако при
включении в схему ГТУ системы ТХР время от-
клика увеличивается, кроме того, в начальный
момент времени требуется использовать в каче-
ства топлива аммиак, что также приводит к по-
вышению нестабильности процесса горения.
Частично решить эту проблему можно, устано-
вив ресивер/накопитель для водородсодержа-
щего газа после риформера. В этом случае такой
накопитель будет выполнять роль термохимиче-
ского аккумулятора, работающего на принци-
пах термохимического аккумулирования тепло-
вой энергии [30].

Необходимо отметить, что процесс термохи-
мической трансформации аммиака является ка-
талитическим. Несмотря на то что химическая
реакция (1) не сопровождается побочными реак-
циями, в результате которых образуются отравля-
ющие катализатор компоненты, каталитическая
активность реакционного пространства с течени-
ем времени снижается. Это обусловливает необ-
ходимость резервирования риформера, а также
учета изменяющихся каталитических свойств. В
дополнение следует отметить, что реакционное
пространство представляет собой заполненный
частицами катализатора неподвижный слой, для
которого характерно значительное аэродинами-
ческое сопротивление. Связанные с этим допол-
нительные энергетические затраты также могут
оказывать влияние на общую энергетическую эф-
фективность ГТУ.

Несмотря на эффективность предложенного
подхода, необходимо выполнить большое коли-
чество исследований, прежде чем он будет про-
мышленно реализован. К числу перспективных
направлений исследований можно отнести тех-
нико-экономический анализ ГТУ с ТХР, опреде-
ление параметров системы ТХР с учетом химиче-
ской кинетики реакции разложения аммиака,
анализ эмиссионных характеристик процесса го-
рения и др. Также представляется весьма важным
провести анализ парогазовой установки с ТХР,
работающей на аммиаке, так как в этом случае
часть тепла отходящих газов используется в цикле
ГТУ, тем самым доля отходящего тепла, применя-
емого цикле в ПТУ, снижается. Это, в свою оче-
редь, может привести к изменению структуры ка-
питальных затрат на газотурбинный и паротур-
бинный циклы.

ВЫВОДЫ
1. На основе проведенного термодинамиче-

ского анализа простой ГТУ с ТХР установлено,

что использование тепла отходящих газов для
термохимического разложения аммиака с после-
дующим сжиганием продуктов его разложения в
камере сгорания приводит к тому, что увеличение
КПД ГТУ может достигать 9%.

2. При температуре выше 500°C продукты
термохимического разложения аммиака содер-
жат до 75% водорода, а энтальпия реакции со-
ставляет около 3 кДж/кг.

3. Повышение концентрации водорода в газо-
вой смеси значительно увеличивает скорость рас-
пространения пламени. При составе газовой смеси
H2 : N2 = 3 : 1 скорость распространения пламени
составляет 78 см/с, что практически в 2 раза пре-
вышает скорость распространения пламени мета-
на и более чем в 10 раз скорость распространения
пламени аммиака.

4. Необходимо решить сформулированные в
данной работе задачи, прежде чем ГТУ с ТХР, ра-
ботающие на аммиаке, будет возможно использо-
вать в промышленном масштабе.
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Abstract—The prospects are examined for application of ammonia-fired gas turbine units (GTUs) with ther-
mochemical recuperation of the exhaust gas heat. Examples of operating ammonia-fired gas turbine units are
given, and the main operating restrictions for the use of existing gas turbine units are specified. A thermody-
namic analysis of a simple gas turbine unit with thermochemical heat recuperation (TCR) was performed in
a wide range of operating conditions: the gas temperature at the turbine inlet varied from 700 to 1300℃ and
the compressor pressure ratio from 5 to 20. It has been established that the thermochemical heat recuperation
can increase the GTU efficiency by as much as 9%. The effectiveness of TCR application has been demon-
strated to depend on such operating parameters as pressure and temperature. At a temperature above 500°C,
the enthalpy of the ammonia decomposition reaction reaches a value close to the maximum of approximately
3.0 MJ/kg NH3. Thermochemical recuperation leads to the decomposition of ammonia with production of
a hydrogen-rich gas (up to 75% (by volume)), which is burned in the combustion chamber, thereby changing
the combustion process characteristics. The flame propagation velocity in a gas mixture consisting of hydro-
gen, nitrogen, and ammonia in different proportions was calculated on the basis of the GRI-Mech 3.0 list of
elementary reactions in the Chemkin-Pro module. It has been found that the products of complete thermo-
chemical decomposition of ammonia have a f lame propagation velocity that is approximately two times high-
er than that for methane and more than ten times higher than that for ammonia. Thus, the implementation
of the thermochemical heat recuperation in ammonia-fired gas turbine units is expected to increase the
energy efficiency and improve the combustion process stability.
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