УДК 551.71/.72

ВОЗРАСТ И ИСТОЧНИКИ СНОСА ПОРОД ЧЕТЛАССКОЙ СЕРИИ (РИФЕЙ) СРЕДНЕГО ТИМАНА ПО РЕЗУЛЬТАТАМ U-Th-Pb (LA-ICP-MS) ДАТИРОВАНИЯ ОБЛОМОЧНЫХ ЦИРКОНОВ

© 2021 г. Е. А. Брусницына^{1, *}, В. Б. Ершова^{2, 4, **}, А. К. Худолей², Т. Андерсон³, А. В. Маслов^{4, 5}

¹Всероссийский научно-исследовательский геологический институт им. А.П. Карпинского, Санкт-Петербург, Россия ²Санкт-Петербургский государственный университет, Санкт-Петербург, Россия ³The University of Oslo, Department of Geological Sciences, Oslo, Norway ⁴Геологический институт РАН, Москва, Россия ⁵Институт геологии и геохимии УрО РАН, Екатеринбург, Россия *e-mail: brusnicyna@yandex.ru **e-mail: v.ershova@spbu.ru Поступила в редакцию 03.12.2019 г. После доработки 17.02.2021 г. Принята к публикации 16.03.2021 г.

U–Th–Pb (LA-ICP-MS) датирование обломочных цирконов из метатерригенных пород четласской серии верхнего докембрия Среднего Тимана (светлинская, новобобровская и визингская свиты) позволило реконструировать источники обломочного материала и установить максимальный возраст формирования этих отложений (середина–конец среднего рифея). Выяснено, что в изученных терригенных породах присутствуют цирконы с архейско-раннепротерозойскими, ранне- и среднерифейскими возрастами. Источником зерен цирконов с дорифейскими и раннерифейскими возрастами могли выступать породы, слагающие фундамент Восточно-Европейской платформы (Балтики). Присутствие в составе популяций обломочных цирконов во всех трех свитах существенной доли зерен среднерифейского возраста указывает на значительную роль Свеконорвежско-Гренвилльского орогена в качестве источника обломочного материала для осадочных толщ Среднего Тимана. Полученные данные вместе с опубликованными сведениями о возрасте обломочных цирконов в породах верхнего докембрия Среднего Тимана и ряда других регионов северной и восточной (в современных координатах) периферии Балтики позволяют предполагать значительно более широкое распространение Свеконорвежско-Гренвилльского орогена, чем это принято в настоящее время.

Ключевые слова: Средний Тиман, рифей, четласская серия, обломочные цирконы **DOI:** 10.31857/S0869592X21060028

введение

U-Th-Pb датирование обломочных цирконов позволяет, в отличие от традиционных методов лито- и биостратиграфии, получить информацию не только об истории формирования и возрасте осадочных толщ, но и о возрасте пород в источниках обломочного материала. Датирование обломочных цирконов успешно применяется также для расчленения и корреляции толщ, особенно докембрийских (Андреичев и др., 2013: Ивлева и др., 2016; Malone et al., 2016; Ershova et al., 2019). Bo3раст самого молодого максимума на кривой относительной вероятности и/или самого молодого зерна из датированной популяции обломочных цирконов часто используется для определения нижней возрастной границы различных литостратиграфических подразделений, и это позволяет восстановить стратиграфическую последовательность немых осадочных толщ (Dickinson, Gehrels, 2009; Купцова и др., 2011; Coutts et al., 2019; Johnstone et al., 2019).

Целями настоящей работы являются реконструкция источников обломочного материала, а также уточнение временного интервала формирования и последовательности терригенных отложений Среднего Тимана (рис. 1а, 1б) на основе датирования обломочных цирконов, изучения их морфологии и количественной характеристики петрографического состава песчаников. Предшествующие работы, основанные на U–Th–Pb датировании обломочных цирконов, показали, что источником обломочного материала служили в основном выступы архейско-раннепротерозойского фундамента Восточно-Европейской платформы

и породы Свеконорвежско-Гренвилльского орогена (Kuznetsov et al., 2010; Андреичев и др., 2013, 2014; Государственная..., 2016; Удоратина и др., 2017; Соболева и др., 2019). Выполненное комплексное исследование, включающее, наряду с U–Th–Pb датированием обломочных цирконов, изучение их морфологии и количественную харак-

Рис. 1. Тектоническая схема северной части Восточно-Европейской платформы (a), по (Bogdanova et al., 2008; Ларин, 2009), с упрощениями и схема строения фундамента Печорской плиты и ее обрамления (б), по (Оловянишников, 1988), с упрощениями. (а): 1-4 – архей-протерозойские блоки фундамента Балтики; 5 – авлакогены и бассейны осадконакопления внутренней части пассивной окраины Балтики; 6 – Тиманский кряж; 7 – Баренцевоморская плита; 8 - Пайхой-Новоземельская складчатая область; 9 -Печорская плита: 10 – область распространения гранитов рапакиви с возрастом 1500-1600 млн лет; 11 фронт каледонской складчатой области: 12 – места отбора образцов для U–Pb датирования обломочных цирконов. (б): 1 – разломы (I – Западно-Тиманский, II – Центрально-Тиманский, III – Восточно-Тиманский); 2 – место отбора образцов для U-Pb датирования обломочных цирконов; 3 – выходы докембрийских пород на дневную поверхность; 4 - северо-восточная часть Восточно-Европейской платформы; 5 – Тиманская гряда: 6 – Ижемская впадина: 7 – Печоро-Кожвинский вал; 8 – Денисовская впадина.

теристику петрографического состава песчаников, позволило уточнить выводы предшественников.

КРАТКИЙ ГЕОЛОГИЧЕСКИЙ ОЧЕРК

Тиманский кряж протягивается в северо-запалном направлении на расстоянии около 1000 км от Колво-Вишерского края до Чёшской губы Баренцева моря и выделяется в рельефе в виде ряда сильно эродированных возвышенностей (рис. 1б). В пределах наиболее значительных из них, известных на Тимане под названием "камней", обнажаются в разной степени метаморфизованные докембрийские комплексы, пронизанные разновозрастными интрузиями (Оловянишников, 1998). Интрузивные тела основного состава (габбродолериты), прорывающие рифейские толщи, в большинстве имеют позднедевонский возраст, но присутствуют и единичные рифейские дайки (Государственная..., 2016). В настоящей работе рассматривается Четласский Камень. в пределах которого на дневную поверхность выведены породы среднего (четласская серия) и верхнего (быстринская серия) рифея (рис. 2).

Четласская серия на одноименном Камне объединяет светлинскую, новобобровскую и визингскую свиты (Гецен, 1987; Оловянишников, 1998). Светлинская свита, по данным предшествующих работ (Оловянишников, 1998) и наших полевых наблюдений, подразделяется на две подсвиты. Нижняя представлена в основном слюдистокварцевыми и полевошпат-кварцево-слюдистыми сланцами с подчиненным количеством метапесчаников, а верхняя сложена метапесчаниками, среди которых присутствуют пачки переслаивания слюдисто-кварцевых сланцев и метаалевролитов. Новобобровская свита состоит из кварц-хлорит-серицитовых сланцев и метаалевролитов с прослоями метапесчаников. Визингская свита характеризуется

ВОЗРАСТ И ИСТОЧНИКИ СНОСА ПОРОД ЧЕТЛАССКОЙ СЕРИИ (РИФЕЙ)

Рис. 2. Сводный стратиграфический разрез отложений рифея (Оловянишников, 1988; Государственная..., 2016) Четласского Камня и положение образцов, из которых выделены и исследованы обломочные цирконы (показано звездочками).

1 – сланцы; 2 – метапесчаники; 3 – известняки; 4 – мергели; 5 – доломиты; 6 – метаалевролиты; 7 – известняки и доломиты со строматолитами; 8 – конгломераты; 9 – прослои кремней; 10 – стратиграфические границы (а – согласные, б – несогласные). Свиты: RF₂sv – светлинская; RF₂nb – новобобровская; RF₂vs – визингская; RF₃an – аньюгская; RF₃vr – ворыквинская; RF₃pv – павьюгская; RF₃pn – паунская.

Общая стратиграфическая (reoxpohonoruчeckaя) шкала приведена по состоянию на 2019 г. (http:// www.vsegei.com/ru/info/stratigraphy/stratigraphic_scale/); Международная стратиграфическая шкала – согласно версии 30-04-2020 (www.stratigraphy.org). Однако, согласно представлениям (Семихатов и др., 2015), возраст нижних границ среднего рифея и венда предлагается считать как 1400 и 640 млн лет.

ритмично переслаивающимися пачками кварцхлорит-серицитовых сланцев, метаалевролитов и метапесчаников.

Быстринская серия, обнажающаяся вдоль северо-восточной границы Четласского выступа, преимущественно сложена карбонатными породами. К быстринской серии относятся ворыквинская, павьюгская и паунская свиты, для которых характерно переслаивание доломитов, мергелей, известковых сланцев, строматолитовых известняков. В верхней части разреза (паунская свита) породы представлены сланцами кварц-серицитхлоритового состава, метапесчаниками.

Считается (Гецен, 1987), что накопление отложений четласской серии происходило в шельфовых обстановках, а породы перекрывающей ее быстринской серии слагали крупный рифовый пояс.

МАТЕРИАЛ И МЕТОДЫ ИССЛЕДОВАНИЯ

Образцы, результаты исследования которых представлены в данной работе, характеризуют

СТРАТИГРАФИЯ. ГЕОЛОГИЧЕСКАЯ КОРРЕЛЯЦИЯ

том 29 № 6 2021

		_
Номер образца	Координаты мест отбора образцов	Свита
9048/5	64°18′46.3″ с.ш. 50°37′32.1″ в.д.	Визингская
9020/3	64°23′56.3″ с.ш. 50°51′07.7″ в.д.	Новобобровская
9016/2	64°22′22.2″ с.ш. 50°50′48.3″ в.д.	Светлинская

Таблица 1. Список образцов терригенных пород четласской серии с координатами мест их отбора

породы четласской серии, обнажающиеся в междуречье Мезени и Выми. Метапесчаники визингской свиты отобраны из разреза в верхнем течении р. Косью (правый приток р. Мезень), метаалевропесчаники новобобровской свиты и метапесчаники светлинской свиты представляют разрез в самых верховьях р. Мезень (табл. 1). Положение исследованных образцов в разрезе показано на рис. 2.

При изучении петрографического состава песчаников и построении диаграмм Q-F-L¹ использован метод Гацци–Дикинсона (Dickinson, 1970; Ingersoll et al., 1984), основанный на подсчете не менее 300 обломочных зерен, исключая матрикс и/или цемент (шлиф при подсчете передвигается с помощью препаратоводителя на равные расстояния, и подсчитываются зерна, находящиеся на перекрестии окулярных нитей). Подсчет в рамках указанного метода зерен лититового состава имеет свою специфику: так, если в обломочной фракции песчаников присутствуют обломки гранита, сложенные кварцем и полевым шпатом, размеры которых больше алевритовых, то они учитываются как кварц и полевой шпат, а не как обломок породы (гранита) (Dickinson, 1970; Ingersoll et al., 1984). В то же время в изученных нами образцах такие зерна составляют незначительное количество, и для интерпретации состава метапесчаников мы использовали как классическую классификационную диаграмму Q-F-L Ф.Дж. Петтиджона (Pettijohn, 1975), так и диаграмму Q-F-L В. Дикинсона с соавторами (Dickinson et al., 1983).

Подготовка образцов и выделение из них обломочных цирконов проведены в ИГГД РАН (Санкт-Петербург) по стандартной методике. Мономинеральные фракции цирконов исследованы под микроскопом в отраженном и проходящем свете, выполнено также изучение внутреннего строения цирконов в режиме катодолюминесценции (рис. 3).

U-Th-Pb LA-ICP-MS датирование цирконов проведено в Университете г. Осло на масс-спектрометре Nu Plasma HR с лазером СЕТАС Nd-YAG 213. Величины изотопных отношений и возрастов приведены с погрешностью на уровне 10. Диаметр

кратера не превышал 40 мкм. Калибровка выполнена по стандартам GJ1 (206 Pb/ 238 U = 601.7 ± 1.3 млн лет, 207 Pb/ 206 Pb = 607 ± 4 млн лет; Jackson et al., 2004), 91500 (1065 ± 1 млн лет; Wiedenbeck et al., 1995) и A382 (1877 ± 2 млн лет; Huhma et al., 2012). Детальная процедура проведения анализов описана в публикациях (Andersen et al., 2009, 2019; Rosa et al., 2009). Все изученные обломочные цирконы древнее 1 млрд лет (табл. 2), и в дальнейших обсуждениях за возраст цирконов нами принимается возраст, рассчитанный по отношению ²⁰⁷Pb/²⁰⁶Pb. Построение графиков распределения плотности вероятности возрастов произведено с помощью программы DensityPlotter (Vermeesch, 2012), при этом учитывались только те определения возраста, дискордантность которых находилась в пределах ±10%. Результаты U-Th-Pb датирования цирконов приведены в табл. 2 и на рис. 4.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

Петрографическое исследование метаосадочных пород четласской серии (рис. 5) показало, что песчаники светлинской свиты по своему составу отвечают лититовым аренитам до сублитаренитам, тогла как в песчаниках новобобровской и визингской свит обломки полевых шпатов преобладают над обломками пород и состав песчаников варьирует от аркозов до кварцевых аренитов (рис. 6a). На диаграмме Q–F–L (Dickinson et al., 1983) точки составов метапесчаников светлинской и метаалевропесчаников новобобровской свит сосредоточены преимущественно в области пролуктов размыва орогенных комплексов (рис. 6б), в то время как точки метапесчаников визингской свиты присутствуют как в области продуктов размыва поднятий фундамента, так и, в меньшей степени, в области продуктов эрозии орогенных комплексов.

Большинство обломочных зерен циркона из метатерригенных пород четласской серии имеют удлиненную форму, их размеры варьируют от 70 до 200 мкм. Некоторые зерна сохранили фрагменты первичных граней, однако большинство имеют угловатую и среднеокатанную форму. В режиме катодолюминесценции значительная часть зерен характеризуется наличием отчетливой осцилляторной

¹ Здесь Q – кварц, F – полевые шпаты, L – обломки пород.

Рис. 3. Морфология и внутреннее строение кристаллов обломочных цирконов из метатерригенных пород светлинской, новобобровской и визингской свит четласской серии с указанием класса окатанности и возраста (млн лет).

СТРАТИГРАФИЯ. ГЕОЛОГИЧЕСКАЯ КОРРЕЛЯЦИЯ том 29 № 6 2021

Ta6.	пица 2.	Результ	аты U-	Th-Pb I	A-ICP-	-МЅисс)	тедовані	ий облог	ХІЧНЬОЙ	циркон	ов из ме	таосадо	чных по	род четл	тасской	серии			
					٩d		Изс	топные	отношен	ви					Возраст,	млн лет			
ΗÉ	очки	U, MKF/F	²⁰⁶ Рb, мкг/г	²⁰⁶ Pb _c ,	, ₀₀ /9d	²⁰⁷ Pb/ ²⁰⁶ Pb	$\pm 1\sigma$	²⁰⁷ Pb/ ²³⁵ U	±1σ	²⁰⁶ Pb/ ²³⁸ U	±1σ	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±lσ	²⁰⁷ Pb/ ²³⁵ U	±lσ	²⁰⁶ Pb/ ²³⁸ U	±1σ	D,%
									O6pas	зец 9016/.	2								
9016	2-01	159	51.00	0.17	16811	0.1176	0.0031	5.0864	0.1607	0.3136	0.0057	0.571	1921	45	1834	27	1758	28	6
9016	2-06	148	43.00	0.00	10999	0.1054	0.0026	4.0887	0.1282	0.2813	0.0054	0.617	1722	43	1652	26	1598	27	-8
9016	5_2-07	171	56.30	0.20	6900	0.1146	0.0029	4.9629	0.1628	0.3141	0.0064	0.626	1874	46	1813	28	1761	32	9-
9016	5_2-08	152	56.40	1.20	1717	0.1207	0.0033	5.7108	0.1997	0.3431	0.0076	0.633	1967	47	1933	30	1902	36	-3
9016	2-09	443	128.60	0.00	36542	0.1002	0.0024	3.8451	0.1222	0.2783	0.0057	0.644	1628	41	1602	26	1583	29	-3
9016	5_2_11	300	122.40	0.00	1215	0.1204	0.0047	5.6352	0.3537	0.3395	0.0167	0.786	1962	66	1921	54	1884	81	4-
9016	5_2_12	638	172.30	0.00	13775	0.0823	0.0031	2.6427	0.1620	0.2330	0.0112	0.784	1252	75	1313	45	1350	59	7
9016	$5_{-}2_{-}13$	463	128.00	1.50	1033	0.0830	0.0031	2.7811	0.1702	0.2429	0.0117	0.786	1270	72	1350	46	1402	61	6
- 0016 T	$5_{-}2_{-}14$	86	23.40	0.00	6965	0.0886	0.0033	3.0670	0.1873	0.2510	0.0121	0.788	1396	68	1424	47	1444	62	n
9016 PA	$2_{-}^{2}16$	581	135.30	0.00	39800	0.0808	0.0030	2.5371	0.1495	0.2278	0.0104	0.775	1216	71	1283	43	1323	55	8
9016 ТИ	2_{-}^{2}	287	65.80	0.00	31305	0.0834	0.0031	2.6743	0.1582	0.2327	0.0107	0.776	1278	69	1321	44	1349	56	S
9016 1 1 1	2^{-2}_{-18}	53	14.30	0.00	4098	0.0956	0.0036	3.6981	0.2347	0.2807	0.0144	0.806	1539	70	1571	51	1595	72	4
9016 PA	2^{-2}_{-20}	145	39.30	0.00	9942	0.0990	0.0037	4.0273	0.2381	0.2949	0.0134	0.769	1606	70	1640	48	1666	67	4
Ф 9016	2-25	366	113.00	0.85	1704	0.0935	0.0009	3.2851	0.1844	0.2549	0.0141	0.987	1497	17	1478	44	1464	73	-2
9016 И Я	5_2-26	200	56.00	0.00	16423	0.0860	0.0007	2.7887	0.1511	0.2353	0.0126	0.988	1337	16	1353	41	1362	99	7
9016	5_2-27	325	92.60	0.06	21940	0.0857	0.0007	2.8226	0.1541	0.2388	0.0129	0.988	1332	16	1362	41	1381	67	4
9016 TE(2-28	188	59.20	0.00	26910	0.0933	0.0008	3.3578	0.1924	0.2610	0.0148	0.989	1494	15	1495	45	1495	76	0
ол 016	2-29	403	147.90	0.96	1547	0.1062	0.0010	4.3569	0.2841	0.2976	0.0192	0.989	1735	17	1704	54	1679	95	-3
016 9016	5_2-30	200	73.70	0.04	39062	0.1066	0.0010	4.4119	0.2824	0.3002	0.0190	0.990	1742	16	1715	53	1692	94	-3
о 16	5_2-31	384	109.70	0.00	34483	0.0860	0.0007	2.8273	0.1605	0.2385	0.0134	0.989	1337	15	1363	43	1379	70	Э
9106 ЧF	5_2-32	165	66.40	0.00	56767	0.1146	0.0011	5.1320	0.3501	0.3248	0.0219	0.990	1874	17	1841	58	1813	107	ς
5016 2016	5_2-33	155	58.90	0.00	18960	0.1088	0.0010	4.6040	0.3041	0.3071	0.0201	0.990	1779	16	1750	55	1726	66	ŝ
9016 Ka	2-34	325	77.20	0.00	22751	0.0781	0.0006	2.1531	0.1159	0.1999	0.0106	0.989	1150	16	1166	37	1175	57	7
R 9016	5_2-35	123	52.80	0.00	22111	0.1221	0.0012	5.7502	0.4132	0.3416	0.0243	0.990	1987	17	1939	62	1894	117	-5
ж(9016	2-37	262	87.20	0.00	26426	0.0967	0.0009	3.6027	0.2291	0.2704	0.0170	0.990	1560	16	1550	51	1543	86	
9016 DP	2-39	195	58.40	0.00	33958	0.0907	0.0008	3.0569	0.1871	0.2443	0.0148	0.990	1441	16	1422	47	1409	77	-2
9106 PE	2-41	81	24.30	0.00	15076	0.0926	0.0009	3.0970	0.1913	0.2427	0.0148	0.988	1479	17	1432	47	1401	77	9-
9016 ЛЯ	2-42	100	30.50	0.00	28367	0.0919	0.0009	3.0371	0.1740	0.2398	0.0136	0.986	1464	18	1417	44	1386	70	9-
9016	2-43	363	120.70	0.84	1966	0.1049	0.0011	3.9919	0.3047	0.2761	0.0209	0.990	1712	20	1633	62	1572	105	6-
ЭО ИУ	5_{-}^{2-44}	241	111.00	0.01	59581	0.1277	0.0013	6.2243	0.4900	0.3535	0.0276	0.991	2066	18	2008	69	1951	131	9-
301 1	5_2-45	317	123.20	0.44	3192	0.1089	0.0010	4.5391	0.3217	0.3023	0.0212	0.991	1781	17	1738	59	1703	105	- V
- 9016	2-46	184	51.50	0.00	22690	0.0866	0.0008	2.6951	0.1662	0.2258	0.0138	0.990	1351	17	1327	46	1312	72	-
9016	2-47	293	91.00	0.21	5869	0.0923	0.0008	3.1398	0.2081	0.2467	0.0162	0.991	1474	16	1442	51	1421	84	4
2016	2-48	150	91.10	0.00	65166	0.1716	0.0021	10.471	1.0557	0.4425	0.0443	0.992	2574	20	2477	93	2362	198	6-
9016	2-49	257	104.50	0.00	5223	0.1158	0.0011	5.0200	0.3829	0.3144	0.0238	0.992	1893	17	1823	65	1762	117	7-
9016	5_2-50	321	174.10	0.00	17331	0.1852	0.0032	12.032	0.5033	0.4711	0.0180	0.911	2700	27	2607	39	2488	79	6
و 106 و	5_2-52	249	83.90	0.00	23193	0.1071	0.0013	4.5115	0.1363	0.3056	0.0085	0.917	1750	21	1733	25	1719	42	-2
9016	5_2-53	70	19.10	0.00	8317	0.0920	0.0011	3.1716	0.0947	0.2500	0.0069	0.923	1467	21	1450	23	1439	36	-2
9016	2-54	1380	384.60	0.16	9263	0.0885	0.0010	3.1047	0.0857	0.2545	0.0064	0.917	1393	21	1434	21	1461	33	5
0016 0016	2-55	520	187.10	0.00	23469	0.1098	0.0013	4.8977	0.1522	0.3235	0.0093	0.921	1796	22	1802	26	1807	45	
9016	2-56	299	85.40	0.00	26825	0.0927	0.0010	3.3421	0.0932	0.2616	0.0067	0.916	1481	21	1491	22	1498	34	1

8

БРУСНИЦЫНА и др.

	D, %	7 c -	10	2	-2	-2		2	-	-	- 3	7	0	0	9-	_	0	- C	-	-8		0		ς	9-	6-	0 ·	4		- 4 (7 -	- + c	0 0	n I	4	ς	ς	-5	-10	ς. Ι	6	
	±1σ	40	1 4	48	37	47	43	38	26	43	48	55	5	4 <u>6</u>	83	36	34	43	46	87	40	27	36	33	36	29	30	47	46	5 5	972	5 5	5/	46	41	48	54	26	24	51	44	31
	²⁰⁶ Pb/ ²³⁸ U	1683 1757	1594 1594	1514	1566	1851	1760	1588	1237	1730	1862	2014	1802	1828	2541	1528	1504	1717	1788	2561	1628	1226	1525	1420	1484	1266	1346	1713	1792	16/1	5011	1505	95 CI	1765	1636	1801	1945	1127	1059	1862	1673	1318
млн лет	±1σ	24 26	25 25	29	23	27	26	23	18	25	28	30	26 21	27	40	22	22	26	27	42	24	19	23	21	24	20	20	28	27	17	٩I ور	77	74	27	25	28	30	19	20	29	27	21
Возраст,	²⁰⁷ Pb/ ²³⁵ U	1694 1766	1584	1502	1578	1868	1770	1574	1234	1724	1886	2036	1800	1828	2628	1523	1504	1737	1794	2683	1637	1226	1531	1438	1523	1311	1347	1745	1803	1/82	1911	15/2	95CI	1792	1666	1827	1974	1146	1093	1891	1739	1324
	±1σ	20	22	22	21	21	21	21	20	21	22	22	21	21	27	21	20	22	22	27	20	20	20	20	25	20	19	20	22	77	77	77	71	21	21	22	22	22	34	23	21	20
	²⁰⁷ Pb/ ²⁰⁶ Pb	1709	1570	1486	1593	1887	1782	1555	1229	1716	1912	2058	1798	1828	2695	1516	1503	1762	1800	2776	1649	1227	1539	1465	1577	1385	1349	1784	1816	1819	0/11	1401	65CI	1823	1704	1857	2005	1182	1162	1923	1820	1335
	Rho	0.017	0.923	0.950	0.920	0.921	0.920	0.921	0.910	0.923	0.922	0.924	0.922	0.923	0.922	0.919	0.919	0.925	0.929	0.924	0.925	0.914	0.920	0.920	0.891	0.917	0.920	0.935	0.924	176.0	016.0	176.0	0.918	0.925	0.924	0.930	0.930	0.910	0.813	0.925	0.927	0.924
	±lσ	0.0081	0.0081	0.0094	0.0074	0.0097	0.0089	0.0075	0.0050	0.0087	0.0100	0.0116	0.0093	0.0095	0.0191	0.0070	0.0067	0.0087	0.0095	0.0201	0.0079	0.0051	0.0071	0.0063	0.0070	0.0054	0.0058	0.0096	0.0095	2600.0	0.0049	C0UU.U	0.00/4	0.0093	0.0082	0.0099	0.0113	0.0048	0.0044	0.0106	0.0088	0.0059
вин	²⁰⁶ Pb/ ²³⁸ U	0.2983	0.2806	0.2647	0.2750	0.3325	0.3140	0.2794	0.2116	0.3078	0.3350	0.3668	0.3226	0.3279	0.4832	0.2674	0.2629	0.3052	0.3197	0.4877	0.2873	0.2094	0.2670	0.2465	0.2589	0.2169	0.2322	0.3043	0.3204	0.3120	3000.0	0.2337	0.2697	0.3150	0.2888	0.3224	0.3522	0.1911	0.1785	0.3349	0.2963	0.2268
отношен	±1σ	0.1277	0.1172	0.1267	0.1086	0.1672	0.1447	0.1076	0.0610	0.1359	0.1758	0.2193	0.1521	0.1586	0.5274	0.0992	0.0946	0.1404	0.1548	0.5803	0.1200	0.0626	0.1016	0.0872	0.1060	0.0716	0.0753	0.1539	0.1570	C2CI.0	0800.0	1080.0	001.0	0.1545	0.1275	0.1669	0.2061	0.0578	0.0586	0.1862	0.1455	0.0760
отопные	²⁰⁷ Pb/ ²³⁵ U	4.3051	4.0229	3.3917	3.7291	5.2933	4.7166	3.7118	2.3719	4.4606	5.4080	6.4258	4.8885	5.0540	12.301	3.4794	3.3980	4.5352	4.8499	13.042	4.0141	2.3449	3.5176	3.1218	3.4816	2.6352	2.7689	4.5768	4.9033	4./831	2.1309	2.8604	6200.5	4.8396	4.1582	5.0462	5.9899	2.0912	1.9345	5.4381	4.5437	2.6853
Изе	$\pm 1\sigma$	0.0012	0.0012	0.0011	0.0011	0.0014	0.0013	0.0011	0.0009	0.0012	0.0015	0.0017	0.0013	0.0014	0.0031	0.0011	0.0010	0.0013	0.0013	0.0033	0.0012	0.0009	0.0011	0.0010	0.0014	0.0010	0.0009	0.0013	0.0014	0.0013	0100.0	0.0010	0.0011	0.0014	0.0012	0.0014	0.0016	0.0009	0.0014	0.0015	0.0013	0.0009
	²⁰⁷ Pb/ ²⁰⁶ Pb	0.1047	0.0972	0.0929	0.0984	0.1155	0.1090	0.0963	0.0813	0.1051	0.1171	0.1271	0.1099	0.1118	0.1846	0.0944	0.0938	0.1078	0.1100	0.1939	0.1013	0.0812	0.0956	0.0919	0.0975	0.0881	0.0865	0.1091	0.1110	0.1112	76/0.0	0.0888	00660.0	0.1114	0.1044	0.1135	0.1233	0.0794	0.0786	0.1178	0.1112	0.0859
٩dţ	, ₀₇ /9d ₉₀₇	3613 24006	04090 11351	4085	28687	39137	34474	10461	20 654	44139	20710	48422	26307	71801	37838	24669	15884	31052	24679	27430	26105	23226	36012	5499	5754	2352	26628	7746	17582	07807	2030	0441	5945/	14067	5372	19272	32403	823	1091	110613	1261	11231
	²⁰⁶ Pb _c , %	0.40	0.05	0.00	0.00	0.00	0.00	0.13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.23	0.00	0.61	0.00	0.00	0.00	0.00	0.68	0.00	0.00	0.00	0.00	0.00	0.00	1.80	1.70	0.00	1.10	0.00
	²⁰⁶ Рb, мкг/г	168.10	33.40	11.10	47.70	118.10	74.20	168.90	51.40	99.80	51.70	72.30	77.30	115.20	85.60	67.60	51.60	67.00	62.50	40.40	62.50	39.00	59.60	86.60	29.50	48.60	53.00	28.10	75.50	06.05	04.60	02.01	06.201	93.00	111.70	51.10	59.80	64.10	150.20	76.40	67.90	30.30
	U, MKF/F	508 171	109	39	158	317	212	544	223	291	137	174	214	313	151	229	176	196	174	70	195	171	202	319	103	203	207	83	211	140	785	00 240	349 2,2	265	349	142	151	304	771	204	203	122
	Номер точки	9016_2-57	9016 2-59	9016_2-61	9016_2-62	9016_2-63	9016_2-64	9016_2-65	9016_2-66	9016_2-67	9016_2-68	9016_2-70	9016_2-71	9016_2-72	9016_2-73	$9016_{-}2-74$	9016_2-76	$9016_{-}2-78$	9016_2-79	$9016_{-}2-80$	$9016_{-}2-81$	$9016_{-}2-83$	9016_2-84	9016_2-86	9016_2-87	9016_2-88	9016_2-89	9016_2-90	9016_2-91	9016_2-92	9016_2-93	9016_2-94	<u>c6-7</u> 0106	9016_2-97	$9016_{-}2-98$	9016_2-99	9016_2-100	9016_2-101	9016_2-102	9016_2-103	9016_2-104	9016_2-105
CT	РАТИГР	ΆΦΙ	ИЯ.	ГІ	EO	лс	Л	лч	EC	CK	АЯ	K	OI	рр	ЕЛ	яі	и	Я		то	м	29		Ng	2.6		20	21														

Таблица 2. Продолжение

ВОЗРАСТ И ИСТОЧНИКИ СНОСА ПОРОД ЧЕТЛАССКОЙ СЕРИИ (РИФЕЙ)

9

	D,%		- 10		-3	-		-2	2	-2	4-	2	2	- 3	-3		ī	4	-10	-3	-5	-3	-2	6-	-0	L—	6-	-0	L—	-5	L—	-4	-5	-10	-5	-4	-2	-2	-4	-4
	±lσ	34 28	4 8 8	29	41	_	25	29	23	25	24	24	31	31	30	32	31	39	35	28	35	38	38	38	42	29	33	48	63	52	30	41	50	41	50	53	43	37	46	63
	²⁰⁶ Pb/ ²³⁸ U	1430 1196	1784	1237	1591	_	1608	1802	1378	1465	1444	1436	1833	1790	1684	1751	1589	1991	1637	1326	1715	1832	1818	1652	1686	1107	1244	1892	2589	1989	1066	1473	1654	1381	1716	1805	1475	1302	1558	1898
млн лет	$\pm 1\sigma$	22 20	28	20	25	_	15	16	14	15	15	15	17	17	17	17	18	20	20	17	20	20	21	22	24	19	21	26	28	27	20	24	28	26	28	29	26	23	28	34
Возраст,	²⁰⁷ Pb/ ²³⁵ U	1436 1206	1800	1232	1611	-	1618	1819	1368	1476	1467	1450	1849	1814	1707	1756	1594	2030	1707	1342	1752	1857	1836	1720	1734	1135	1287	1945	2685	2037	1091	1500	1693	1437	1756	1839	1487	1310	1581	1934
	±lσ	20 20	21	20	21	-	5	З	4	4	4	4	З	4	б	ю	з	ю	4	4	4	з	4	4	5	7	9	4	4	4	9	5	9	8	4	5	13	13	14	13
	²⁰⁷ Pb/ ²⁰⁶ Pb	1444 1224	1820	1222	1636	_	1631	1839	1352	1493	1500	1471	1868	1843	1736	1761	1600	2070	1794	1368	1797	1884	1856	1805	1792	1190	1359	2002	2758	2087	1140	1538	1741	1520	1803	1879	1505	1324	1613	1973
	Rho	0.927	0.930	0.924	0.929	-	0.989	0.996	0.995	0.993	0.994	0.992	0.996	0.994	0.995	0.996	0.997	0.996	0.995	0.996	0.995	0.996	0.996	0.996	0.996	0.993	0.995	0.997	0.995	0.997	0.995	0.997	0.996	0.992	0.997	0.997	0.976	0.974	0.976	0.978
	$\pm 1\sigma$	0.0067	0.0097	0.0055	0.0082		0.0050	0.0059	0.0045	0.0048	0.0047	0.0047	0.0064	0.0063	0.0060	0.0064	0.0061	0.0082	0.0070	0.0053	0.0072	0.0078	0.0079	0.0076	0.0084	0.0053	0.0061	0.0100	0.0146	0.0109	0.0055	0.0079	0.0099	0.0079	0.0101	0.0108	0.0084	0.0069	0.0092	0.0131
ви	²⁰⁶ Pb/ ²³⁸ U	0.2483 0.2038	0.3188	0.2116	0.2799	вец 9020/	0.2832	0.3225	0.2384	0.2552	0.2511	0.2495	0.3288	0.3200	0.2984	0.3122	0.2796	0.3619	0.2891	0.2283	0.3049	0.3288	0.3259	0.2920	0.2989	0.1874	0.2128	0.3412	0.4942	0.3614	0.1798	0.2566	0.2925	0.2388	0.3050	0.3231	0.2571	0.2238	0.2733	0.3424
отношен	±lσ	0.0901	0.1604	0.0660	0.1220	O	0.0705	0.0922	0.0536	0.0618	0.0611	0.0602	0.1006	0.0984	0.0876	0.0958	0.0838	0.1455	0.1058	0.0641	0.1091	0.1248	0.1239	0.1168	0.1281	0.0587	0.0740	0.1708	0.3894	0.1944	0.0589	0.1048	0.1466	0.1044	0.1541	0.1725	0.1107	0.0838	0.1287	0.2240
топные	²⁰⁷ Pb/ ²³⁵ U	3.1124 2.2787	4.8889	2.3640	3.8850	_	3.9190	5.0001	2.8469	3.2802	3.2407	3.1716	5.1802	4.9698	4.3713	4.6360	3.8053	6.3830	4.3706	2.7496	4.6175	5.2257	5.0976	4.4422	4.5138	2.0595	2.5507	5.7921	13.076	6.4366	1.9272	3.3791	4.2963	3.1156	4.6358	5.1193	3.3262	2.6343	3.7465	5.7184
Изс	$\pm 1\sigma$	0.0010	0.0013	0.0009	0.0012	_	0.0003	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0003	0.0003	0.0002	0.0003	0.0002	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0006	0.0003	0.0002	0.0002	0.0003	0.0004	0.0003	0.0003	0.0007	0.0006	0.0008	0.0010
	²⁰⁷ Pb/ ²⁰⁶ Pb	0.0909	0.1112	0.0810	0.1007	-	0.1004	0.1125	0.0866	0.0932	0.0936	0.0922	0.1143	0.1126	0.1062	0.1077	0.0987	0.1279	0.1097	0.0873	0.1099	0.1153	0.1135	0.1103	0.1095	0.0797	0.0869	0.1231	0.1919	0.1292	0.0778	0.0955	0.1065	0.0946	0.1102	0.1149	0.0938	0.0854	0.0994	0.1211
٩d	₇₀₇ /9d ₉₀₇	24305 16887	22572	46251	50804		380990	49811	26310	11724	22960	16735	25127	27576	32816	48780	43380	30977	22717	16687	23916	9750	47494	19594	12594	13894	13422	30069	32929	33031	21466	64697	43792	6495	23094	60351	84272	22479	5403	49680
	²⁰⁶ Pb _c , %	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.28	0.00
	²⁰⁶ Рb, мкг/г	107.20 24.90	88.60	75.90	43.60	-	47.50	60.90	181.70	29.10	64.90	32.70	139.50	63.20	64.60	101.40	89.60	59.30	49.80	107.20	58.10	173.00	89.50	43.10	30.60	92.40	42.80	56.20	55.60	86.00	38.90	62.60	94.30	15.20	103.70	118.10	121.50	32.50	214.80	102.00
	U, MKr/r	391 113	248	329	141	-	152	169	678	102	231	117	379	176	193	289	284	145	153	413	168	462	241	130	89	428	175	143	98	206	188	211	283	55	293	315	392	122	646	242
	Номер точки	9016_2-106 9016_2-108	9016 2-109	9016_2-110	9016_2-111		9020_3-02	9020_3-05	$9020_{-3}-06$	9020_3-07	$9020_{-}3-08$	$9020_{-}3-09$	9020_3-12	9020_3-13	9020_{-3-14}	9020_3-15	9020_3-16	$9020_{-}3-19$	$9020_{-}3-20$	$9020_{-}3-21$	9020_3-22	9020_3-23	9020_3-24	9020_3-27	9020_3-29	9020_3-31	9020_3-32	9020_3-33	9020_3-34	9020_3-35	9020_3-36	9020_3-37	9020_3-39	$9020_{3}-41$	$9020_{-}3-42$	9020_{-3-43}	$9020_{-3_{-73}}$	9020_3_74	$9020_{-}3_{-}76$	9020_3_78
									(CTI	PA	ТИ	IΓF	PAG	ÞИ	Я.	ГE	EOJ	ло	ГИ	ЧЕ	ECH	ΧA	Яŀ	κo	PP	ЕЛ	ЯL	и	я		гол	1 29	9	N	€ 6)	20	021	

10

Таблица 2. Продолжение

БРУСНИЦЫНА и др.

	D,%		-3	2	-3	9–	-8	-5	-5		-		9-	- S	ς	-3	ς	-2	-4	-2	-3	-10	4	- S		-		-8	6	-2	-2	9-	- S	1	С	-4	-5	-5	-8	-3
	- 1 -	±Ια	53	42	54	65	33	67	53	52	35	43	40	48	56	52	53	54	65	55	72	56	36	56	44	37	55	24	27	15	25	20	20	22	19	20	20	54	20	26
	$^{206}\mathrm{Pb}/$	²³⁸ U	1698	1449	1728	1938	1214	1922	1703	1681	1318	1553	1264	1603	1766	1695	1710	1706	2004	1751	2073	1722	1271	1746	1278	1216	1736	1653	1767	1140	1601	1439	1360	1574	1256	1404	1461	2780	1455	1780
млн лет	-	±Iα	30	26	31	35	22	36	30	29	23	26	27	28	31	30	30	30	34	31	37	32	23	31	28	24	31	25	27	11	14	12	12	13	12	13	13	24	13	15
Возраст,	$^{207}\text{Pb}/$	²³⁵ U	1721	1461	1754	1996	1248	1970	1738	1692	1324	1558	1293	1626	1794	1720	1735	1725	2044	1763	2107	1799	1251	1767	1280	1212	1748	1715	1837	1148	1615	1473	1377	1567	1244	1426	1488	2868	1500	1805
	-	±1α	13	14	14	14	13	14	13	13	18	14	26	14	13	14	13	13	15	13	4	15	13	14	14	16	14	43	44	8	7	9	9	9	7	7	9	6	7	9
	$^{207}Pb/$	²⁰⁶ Pb	1749	1477	1784	2058	1308	2022	1781	1706	1334	1564	1341	1656	1827	1752	1766	1747	2085	1778	2140	1889	1216	1793	1285	1204	1762	1792	1918	1164	1633	1522	1405	1556	1223	1458	1527	2930	1565	1834
	Rho		0.977	0.976	0.977	0.978	0.975	0.977	0.977	0.978	0.948	0.972	0.931	0.975	0.977	0.977	0.977	0.977	0.974	0.978	0.979	0.975	0.975	0.978	0.980	0.969	0.976	0.550	0.555	0.965	0.978	0.976	0.977	0.981	0.973	0.973	0.975	0.974	0.974	0.980
	-	1+10	0.0107	0.0082	0.0110	0.0136	0.0062	0.0140	0.0107	0.0104	0.0067	0.0086	0.0076	0.0096	0.0115	0.0106	0.0107	0.0108	0.0137	0.0113	0.0154	0.0113	0.0069	0.0113	0.0084	0.0068	0.0112	0.0049	0.0055	0.0029	0.0049	0.0039	0.0038	0.0044	0.0035	0.0039	0.0040	0.0130	0.0040	0.0054
Бł	²⁰⁶ Pb/	²³⁸ U	0.3013	0.2521	0.3075	0.3507	0.2071	0.3473	0.3023	0.2980	0.2269	0.2725	0.2167	0.2824	0.3152	0.3007	0.3038	0.3030	0.3645	0.3121	0.3793	0.3062	0.2180	0.3110	0.2192	0.2076	0.3091	0.2923	0.3153	0.1934	0.2819	0.2502	0.2348	0.2766	0.2152	0.2434	0.2545	0.5391	0.2532	0.3180
тношени	-	0 H	0.1609	0.1067	0.1690	0.2435	0.0742	0.2466	0.1643	0.1537	0.0832	0.1177	0.0967	0.1387	0.1807	0.1600	0.1634	0.1636	0.2508	0.1724	0.2887	0.1849	0.0785	0.1747	0.0986	0.0782	0.1703	0.1339	0.1606	0.0322	0.0693	0.0516	0.0474	0.0597	0.0404	0.0505	0.0534	0.3923	0.0542	0.0853
гопные о	$^{207}Pb/$	²³⁵ U	4.447	3.2140	4.6244	6.1438	2.4182	5.9628	4.5392	4.2942	2.6852	3.6372	2.5732 (3.9616	4.8538	4.4431	4.5239	4.4651	5.4840	4.6786	5.9628	4.8811	2.4278	4.7009	2.5292 (2.2979	4.5915	4.4159	5.1060	2.0978	3.9060 (3.2664	2.8823	3.6785	2.4044 (3.0732	3.3305 (15.847	3.3818 (4.9162
Изот	-	⊢Iα	0.0008	0.0007	0.0008	0.0011	0.0006	0.0011	0.0009	0.0008	0.0008	0.0007	0.0012	0.0008	0.0009	0.0008	0.0008	0.0008	0.0011	0.0008	0.0011	0.0010	0.0006	0.0009	0.0007	0.0007	0.0009	0.0028	0.0031	0.0003	0.0004	0.0003	0.0003	0.0003	0.0003	0.0004	0.0003	0.0012	0.0004	0.0004
	207 Pb/	²⁰⁶ Pb	0.1070	0.0925	0.1091	0.1271	0.0847	0.1245	0.1089	0.1045	0.0858	0.0968	0.0861	0.1018	0.1117	0.1072	0.1080	0.1069	0.1290	0.1087	0.1332	0.1156	0.0808	0.1096	0.0837	0.0803	0.1077	0.1096	0.1174	0.0787	0.1005	0.0947	0.0890	0.0965	0.0811	0.0916	0.0949	0.2132	0.0969	0.1121
٩d	⊳07 ^{/q}	Id ₉₀₇	84188	8426	37563	13705	14716	56311	4898	39479	5678	10 471	10504	2685	19882	6253	30403	29736	4215	60701	38999	2405	2904	39980	5459	6068	2894	65246	94479	5103	18054	6819	3403	78441	4128	14401	13081	30335	4624	43317
	⁰⁶ Pb _c ,	%	0.00	0.16	0.00	0.10	0.10	0.00	0.27	0.00	0.43	0.00	1.40	0.58	0.00	0.21	0.03	0.00	0.36	0.00	0.00	0.59	0.48	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 2	0.00	0.00
	²⁰⁶ Pb,	MKT/F	61.70	80.40	62.90	276.20	110.80	94.10	75.10	71.60	171.70	96.30	80.70	74.10	39.80	119.20	149.00	39.50	204.40	88.10	105.70	45.70	59.90	54.10	9.20	13.00	151.50	99.50	73.50	10.90	94.50	62.10	66.30	101.80	75.50	23.80	80.50	124.70	109.80	75.60
	U,	MIKL/1	169	267	168	638	456	225	206	201	643	299	314	220	105	332	413	110	460	238	230	126	237	148	37	55	413	341	230	64	379	282	320	417	398	111	360	256	494	270
	Номер	имеот	$9020_{3}79$	$9020_{-3}81$	$9020_{-3}82$	$9020_{-3}84$	$9020_{-3}85$	$9020_{-3}86$	9020_3-87	$9020_{-}3-88$	$9020_{3}-89$	$9020_{-}3-90$	9020_3-91	9020_3-92	9020_3-93	$9020_{-}3-94$	9020_3-95	$9020_{3}-96$	9020_3-97	$9020_{-}3-100$	9020_3-101	9020_3-102	9020_3-103	$9020_{-}3-104$	9020_3-105	9020_3-106	9020_3-107	$9020_{-3}-109$	9020_3-110	9020-3-111	9020-3-112	9020-3-113	9020-3-114	9020-3-115	9020-3-117	9020-3-118	9020-3-119	9020-3-120	9020-3-122	9020-3-123
СТ	PAT	ИГР	AΦ	м	A. 1	ГЕС	ΟЛ	ОГ	ИЧ	IEC	CK	АЯ	K	OP	PE	Л۶	Щ	ИЯ	[тс	ом	29		N⁰	6		202	21												

Таблица 2. Продолжение

ВОЗРАСТ И ИСТОЧНИКИ СНОСА ПОРОД ЧЕТЛАССКОЙ СЕРИИ (РИФЕЙ)

11

																			1
					٩dţ		Изс	отопные	отношен	вин					Возраст	, млн лет			
	Номер	U, wr/r	²⁰⁶ Pb,	$^{206}Pb_{c}$	₇₀₇ /q	$^{207}\mathrm{Pb}/$	1 	$^{207}\mathrm{Pb}/$	1 	$^{206}\mathrm{Pb}/$	-	Rho	$^{207}\mathrm{Pb}/$	1 	$^{207}\text{Pb}/$		$^{206}\mathrm{Pb}/$	1 	D,%
	INITO		MKI/I	%	d ₉₀₇	²⁰⁶ Pb	10	²³⁵ U	01H	²³⁸ U	0 H		^{206}Pb	01H	²³⁵ U	0 H	²³⁸ U	01H	
	9020-3-124	245	77.00	0.00	11332	0.1259	0.0008	6.1685	0.1175	0.3553	0.0064	0.946	2042	11	2000	17	1960	30	-4
	9020-3-125	581	163.50	0.00	217742	0.1151	0.0004	5.0579	0.0939	0.3188	0.0058	0.979	1881	9	1829	16	1784	28	-5
	9020-3-126	312	84.20	0.00	4471	0.1143	0.0005	4.8341	0.0872	0.3068	0.0054	0.975	1868	7	1791	15	1725	27	-8
	9020-3-127	311	86.10	0.00	31536	0.1090	0.0004	4.7308	0.0821	0.3149	0.0054	0.980	1782	9	1773	15	1765	26	
2.	9020-3-128	554	167.00	0.00	7691	0.1135	0.0004	5.3383	0.0971	0.3412	0.0061	0.983	1856	9	1875	16	1892	29	2
21	9020-3-130	61	13.00	0.00	60995	0.0920	0.0004	3.0737	0.0498	0.2423	0.0038	0.967	1468	7	1426	12	1398	20	-5
	9020-3-132	319	57.00	0.00	20731	0.0809	0.0003	2.2911	0.0340	0.2055	0.0030	0.977	1218	9	1210	Π	1205	16	Ξ
	9020-3-133	315	82.20	0.00	24308	0.1090	0.0004	4.4888	0.0770	0.2986	0.0050	0.979	1783	9	1729	14	1684	25	9-
СТ	9020-3-134	289	85.70	0.00	36897	0.1196	0.0004	5.5671	0.0998	0.3377	0.0059	0.981	1950	9	11911	15	1875	29	4-
PA	9020-3-135	608	170.00	0.00	23035	0.1090	0.0004	4.7912	0.0833	0.3188	0.0054	0.981	1783	9	1783	15	1784	27	0
ΤV	9020-3-136	157	30.90	0.00	15705	0.0866	0.0003	2.6970	0.0416	0.2259	0.0034	0.973	1351	7	1328	II	1313	18	- S
1ГI	9020-3-137	138	37.60	0.00	3206	0.1140	0.0005	4.9087	0.0894	0.3123	0.0055	0.975	1864	7	1804	15	1752	27	9-
PAG	9020-3-138	256	70.40	0.00	4428	0.1131	0.0005	4.8907	0.0862	0.3137	0.0054	0.972	1849	7	1801	15	1759	26	-5
ФИ	9020-3-139	183	32.40	0.00	19061	0.0810	0.0003	2.2815	0.0340	0.2042	0.0030	0.972	1222	7	1207	II	1198	16	-2
. Я.	9020-3-140	414	92.70	0.00	7080	0.0985	0.0004	3.4909	0.0592	0.2571	0.0043	0.975	1595	7	1525	13	1475	22	-8
Г	9020-3-142	281	74.90	0.00	43678	0.1069	0.0004	4.5188	0.0781	0.3066	0.0052	0.978	1747	9	1734	14	1724	26	
EO.	9020-3-143	385	96.30	0.00	12811	0.1077	0.0004	4.2848	0.0726	0.2885	0.0048	0.981	1761	9	1690	14	1634	24	-8
ло	9020-3-144	309	87.20	0.00	13116	0.1168	0.0004	5.2283	0.0922	0.3247	0.0056	0.978	1908	9	1857	15	1812	27	-5
ГИ	9020-3-147	377	103.10	0.00	8668	0.1083	0.0004	4.6861	0.0824	0.3137	0.0054	0.979	1772	9	1765	15	1759	27	-
Ч	-	_	-	_	_	-	_	-	O	зец 9048/	15	-	-	-	_	_	-	_	
ECI	9048-5-1	285	95.60	0.00	13667	0.1111	0.0004	5.0553	0.0642	0.3301	0.0040	0.961	1817	9	1829	11	1839	20	-
KA	9048-5-3	299	62.80	0.00	22101	0.0807	0.0002	2.3578	0.0269	0.2118	0.0023	0.968	1215	9	1230	8	1239	12	2
я	9048-5-4	445	154.20	0.00	51428	0.1128	0.0004	5.3527	0.0743	0.3441	0.0047	0.974	1845	9	1877	12	1906	22	3
χo	9048-5-5	289	84.30	0.00	56625	0.0967	0.0003	3.8919	0.0593	0.2918	0.0043	0.974	1562	9	1612	12	1651	22	5
PP	9048-5-6	257	83.00	0.00	14275	0.1121	0.0004	4.9801	0.0687	0.3221	0.0043	0.971	1834	9	1816	12	1800	21	-2
ЕЛ	9048-5-7	85	46.00	0.00	59342	0.2167	0.0011	15.802	0.2900	0.5290	0.0093	0.963	2956	8	2865	18	2737	39	-8
яц	9048-5-8	156	41.80	0.00	12766	0.0939	0.0003	3.4829	0.0430	0.2690	0.0032	0.964	1506	9	1523	10	1536	16	2
ц ИУ	9048-5-9	70	19.70	0.00	9917	0.0990	0.0004	3.8584	0.0506	0.2826	0.0035	0.956	1606	7	1605	II	1604	18	0
я	9048-5-10	296	108.80	0.00	196690	0.1198	0.0004	6.0328	0.0875	0.3651	0.0051	0.972	1954	9	1981	13	2006	24	3
T	9048-5-12	82	30.90	0.00	44359	0.1298	0.0005	6.7489	0.0981	0.3770	0.0053	0.966	2096	9	2079	13	2062	25	-2
ом	9048-5-13	213	52.40	0.00	2456	0.0915	0.0005	3.1273	0.0411	0.2479	0.0030	0.914	1457	10	1439	10	1428	15	-2
29	9048-5-14	297	92.40	0.00	4673	0.1110	0.0004	4.7560	0.0645	0.3108	0.0041	0.969	1815	9	1777	Π	1745	20	4-
)	9048-5-16	255	68.70	0.00	40461	0.0938	0.0003	3.4733	0.0431	0.2685	0.0032	0.960	1505	9	1521	10	1533	16	7
N	9048-5-20	199	64.50	0.00	18709	0.1103	0.0004	4.9329	0.0653	0.3243	0.0042	0.968	1805	9	1808	Π	1811	20	0
⊵ 6	9048-5-21	85	22.00	0.00	10012	0.0947	0.0003	3.4019	0.0423	0.2605	0.0031	0.959	1522	9	1505	10	1492	16	-2
2.	9048-5-22	197	62.90	0.00	9770	0.1098	0.0005	4.8388	0.0651	0.3197	0.0041	0.945	1796	8	1792	11	1788	20	0
20	9048-5-23	161	38.50	0.00	3446	0.0943	0.0004	3.1335	0.0386	0.2409	0.0028	0.950	1514	7	1441	6	1392	15	6-
021	9048-5-24	332	111.10	0.00	15740	0.1122	0.0004	5.1788	0.0702	0.3348	0.0044	0.968	1835	9	1849	12	1862	21	1
- •	9048-5-25	165	59.10	0.00	25129	0.1216	0.0005	6.0317	0.0857	0.3597	0.0049	0.965	1980	9	1980	12	1981	23	0

12

Таблица 2. Продолжение

БРУСНИЦЫНА и др.

				٩dţ		Изс	топные	отношен	ви					Bo3pacT,	млн лет			
Номер	Ú,	206 Pb,	$^{206}\text{Pb}_{c}$	≠07 [/]	207 DF/		207.02/		206 ph/		Rho	207/		207 ₀₆ /		206mL/		% C
ТОЧКИ	MKT/T	MKF/F	%	/9d ₉₀₇	²⁰⁶ Pb	$\pm 1\sigma$	²³⁵ U	±1σ	238 U	±1σ		²⁰⁶ Pb	±lσ	²³⁵ U	±lσ	²³⁸ U	±lσ	ر. ۶
9048-5-26	403	82.60	0.00	19985	0.0799	0.0002	2.2858	0.0271	0.2074	0.0024	0.967	1196	9	1208	8	1215	13	2
9048-5-27	198	63.10	0.00	14179	0.1106	0.0004	4.8901	0.0645	0.3208	0.0041	0.965	1809	9	1801	11	1793	20	. T
9048-5-28	177	49.40	0.00	5813	0.1027	0.0005	3.9649	0.0527	0.2799	0.0035	0.935	1674	8	1627	11	1591	18	-5
9048-5-29	321	99.40	0.00	1413	0.1158	0.0008	4.9435	0.0765	0.3096	0.0043	0.893	1892	12	1810	13	1739	21	-6
9048-5-30	200	64.00	0.00	22927	0.0966	0.0005	3.6864	0.2775	0.2768	0.0208	0.998	1559	6	1568	60	1575	105	-
9048-5-31	223	78.50	0.00	3785	0.1108	0.0006	4.5966	0.3642	0.3009	0.0238	0.998	1813	10	1749	99	1696	118	L
9048-5-32	94	37.40	0.00	16048	0.1227	0.0007	5.7271	0.4916	0.3385	0.0290	0.998	1996	10	1935	74	1880	140	9-
9048-5-33	171	56.10	0.00	23050	0.0995	0.0005	3.8607	0.2963	0.2815	0.0216	0.998	1614	6	1605	62	1599	108	
9048-5-34	128	46.00	0.00	67489	0.1101	0.0006	4.6426	0.3746	0.3058	0.0246	0.998	1801	6	1757	67	1720	122	-5
9048-5-35	71	19.90	0.00	5950	0.0914	0.0005	3.0687	0.2200	0.2434	0.0174	0.997	1456	6	1425	55	1404	90	-4
9048-5-36	154	46.00	0.00	2803	0.0950	0.0008	3.3811	0.2532	0.2582	0.0192	0.994	1527	15	1500	59	1481	98	-3 -
9048-5-40	166	62.40	0.00	13 086	0.1166	0.0008	5.0610	0.4221	0.3149	0.0262	0.997	1904	12	1830	71	1765	128	-8
9048-5-41	515	196.90	0.00	98020	0.1138	0.0006	5.0195	0.4320	0.3199	0.0275	0.998	1861	10	1823	73	1789	134	4
9048-5-42	54	15.30	0.00	4637	0.0941	0.0006	3.1577	0.2354	0.2433	0.0181	0.996	1511	12	1447	57	1404	94	-8
9048-5-43	38	11.30	0.00	3598	0.0940	0.0006	3.2530	0.2468	0.2511	0.0190	0.996	1507	12	1470	59	1444	98	4
9048-5-44	548	218.10	0.00	5633	0.1191	0.0007	5.4219	0.4799	0.3302	0.0292	0.998	1943	10	1888	76	1839	141	9–
9048-5-45	226	86.10	0.00	2758	0.1140	0.0008	4.9921	0.4327	0.3175	0.0274	0.997	1864	11	1818	73	1778	134	-5
9048-5-46	208	75.30	0.00	15179	0.1105	0.0007	4.6116	0.3900	0.3026	0.0255	0.997	1808	11	1751	71	1704	126	9
9048-5-48	481	145.20	0.00	5762	0.0957	0.0005	3.3687	0.2644	0.2553	0.0200	0.998	1542	10	1497	61	1466	103	-5
9048-5-49	172	43.60	0.00	16637	0.0865	0.0005	2.5951	0.1916	0.2177	0.0160	0.997	1349	10	1299	54	1270	85	9-
9048-5-50	217	48.40	0.00	13214	0.0791	0.0004	2.0934	0.1486	0.1919	0.0136	0.997	1175	10	1147	49	1132	73	4-
9048-5-51	155	45.20	0.00	17928	0.0943	0.0005	3.2111	0.2516	0.2469	0.0193	0.997	1515	10	1460	61	1422	100	L—
9048-5-52	436	76.80	0.00	24408	0.0847	0.0004	2.4235	0.2040	0.2075	0.0174	0.998	1309	10	1250	61	1215	93	-8
9048-5-53	287	69.20	0.00	23678	0.0990	0.0006	3.6372	0.3549	0.2665	0.0260	0.998	1605	10	1558	78	1523	132	-5
9048-5-54	322	93.10	0.00	13421	0.1094	0.0007	4.5749	0.5004	0.3034	0.0331	0.998	1789	11	1745	91	1708	164	-5
9048-5-55	431	121.20	0.00	3442	0.1107	0.0006	4.5447	0.4931	0.2978	0.0323	0.999	1811	10	1739	60	1680	160	-8
9048-5-56	806	207.10	0.00	13840	0.0988	0.0005	3.7844	0.3879	0.2778	0.0284	0.999	1602	6	1589	82	1580	143	
9048-5-57	229	48.30	0.00	18008	0.0911	0.0005	2.9965	0.2775	0.2385	0.0221	0.999	1449	6	1407	71	1379	115	-5
9048-5-59	191	44.20	0.00	28105	0.0955	0.0005	3.3602	0.3275	0.2552	0.0248	0.999	1538	6	1495	76	1465	128	-5
9048-5-60	44	9.90	0.00	4924	0.0949	0.0006	3.2470	0.3144	0.2483	0.0240	0.998	1525	12	1468	75	1430	124	-7
9048-5-61	214	60.10	0.00	8389	0.1064	0.0007	4.2854	0.4751	0.2920	0.0323	0.998	1739	12	1691	91	1652	161	-5
9048-5-63	414	123.70	0.00	11522	0.1089	0.0006	4.5560	0.5393	0.3034	0.0359	0.999	1781	10	1741	66	1708	177	-4
9048-5-64	761	152.50	0.00	53680	0.0843	0.0004	2.6068	0.2457	0.2243	0.0211	0.999	1299	8	1303	69	1305	111	0
9048-5-65	460	127.40	0.00	20324	0.1011	0.0006	3.9649	0.4454	0.2845	0.0319	0.998	1644	11	1627	91	1614	160	-2
9048-5-66	148	42.00	0.00	17047	0.1026	0.0007	4.0859	0.4692	0.2889	0.0331	0.998	1671	11	1651	94	1636	166	-2
9048-5-67	840	212.30	0.00	1922	0.0965	0.0006	3.5073	0.3742	0.2636	0.0281	0.998	1557	11	1529	84	1508	143	θ
9048-5-68	293	70.40	0.00	7623	0.0946	0.0005	3.3206	0.3514	0.2547	0.0269	0.999	1519	6	1486	83	1463	138	4-
9048-5-69	308	94.40	0.00	2828	0.1122	0.0007	4.6691	0.5879	0.3018	0.0380	0.999	1835	11	1762	105	1700	188	-8
9048-5-70	263	53.20	0.00	18862	0.0846	0.0004	2.5897	0.2514	0.2219	0.0215	0.999	1307	10	1298	71	1292	113	-1

Таблица 2. Продолжение

ВОЗРАСТ И ИСТОЧНИКИ СНОСА ПОРОД ЧЕТЛАССКОЙ СЕРИИ (РИФЕЙ)

13

				٩d		И36	отопные	отношен	вин					Возраст,	млн лет			
Номер точки	U, MKT/T	²⁰⁶ Рb, мкг/г	²⁰⁶ Pb _c , %	₅₀₀ /9d	²⁰⁷ Pb/ ²⁰⁶ Pb	$\pm 1\sigma$	²⁰⁷ Pb/ ²³⁵ U	±1σ	²⁰⁶ Pb/ ²³⁸ U	±1σ	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±1σ	²⁰⁷ Pb/ ²³⁵ U	±lσ	²⁰⁶ Pb/ ²³⁸ U	±lσ	D, %
9048-5-71 0048 5 77	211	60.00 55 50	0.00	27587	0.0999	0.0006	3.9377	0.4631	0.2859	0.0336	0.999 0 000	1622 1640	10	1621 1620	95 04	1621	168 165	° 0
9048-5-74	55	16.00	0.00	36687	0.1034	0.0008	4.2103	0.1739	0.2953	0.0120	0.981	1686	14	1676	46	1668	60	ا ا
9048-5-75	125	80.80	0.00	39539	0.2958	0.0055	27.674	2.5822	0.6785	0.0620	0.980	3449	28	3408	91	3338	238	ŝ
9048-5-76	181	35.50	0.00	20837	0.0812	0.0006	2.3306	0.0995	0.2082	0.0088	0.986	1226	14	1222	30	1219	47	
9048-5-77	124	39.50	0.00	18768	0.1161	0.0011	5.4256	0.2948	0.3389	0.0181	0.986	1897	16	1889	47	1881	87	
9048-5-79	160	47.90	0.00	1590	0.1169	0.0011	5.0968	0.2502	0.3161	0.0152	0.982	1910	16	1836	42	1771	75	-8
9048-5-82	260	79.40	0.00	40788	0.1057	0.0009	4.7590	0.2606	0.3267	0.0177	0.987	1726	16	1778	46	1822	86	5
9048-5-83	330	115.60	0.00	5836	0.1198	0.0010	6.0304	0.3054	0.3652	0.0182	0.986	1953	14	1980	44	2007	86	ŝ
9048-5-84	100	52.70	0.00	35115	0.1976	0.0022	14.945	1.0466	0.5487	0.0380	0.988	2806	17	2812	67	2820	158	0
9048-5-85	64	21.40	0.00	10800	0.1217	0.0011	5.9376	0.3346	0.3537	0.0197	0.987	1982	16	1967	49	1952	94	-2
9048-5-87	150	45.80	0.00	18978	0.1128	0.0009	5.0441	0.2626	0.3243	0.0167	0.987	1845	15	1827	44	1811	81	-2
9048-5-88	185	56.80	0.00	5453	0.1143	0.0009	5.0665	0.2503	0.3215	0.0157	0.987	1869	13	1831	42	1797	77	4
9048-5-89	248	90.20	0.00	2862	0.1301	0.0012	6.7947	0.3842	0.3788	0.0211	0.986	2099	16	2085	50	2070	66	-
9048-5-90	68	23.40	0.00	10251	0.1240	0.0012	6.1820	0.3532	0.3616	0.0204	0.986	2014	16	2002	50	1990	96	-
9048-5-91	371	117.90	0.00	1120	0.1239	0.0018	5.8122	0.3750	0.3404	0.0214	0.974	2012	26	1948	56	1888	103	L—
9048-5-92	217	81.00	0.00	6477	0.1334	0.0012	7.2387	0.4158	0.3935	0.0223	0.988	2143	16	2141	51	2139	103	0
9048-5-94	93	27.10	0.00	15879	0.1121	0.0010	4.7948	0.2565	0.3103	0.0164	0.986	1833	16	1784	45	1742	80	-5
9048-5-95	202	65.80	0.00	1193	0.1291	0.0013	6.1004	0.3490	0.3426	0.0193	0.985	2086	17	1990	50	1899	93	-10
9048-5-96	247	63.10	0.00	26851	0.0931	0.0008	3.4901	0.1753	0.2719	0.0135	0.987	1490	15	1525	40	1550	68	4
9048-5-97	108	23.20	0.00	10599	0.0867	0.0007	2.7531	0.1301	0.2304	0.0107	0.986	1353	15	1343	35	1337	56	-
9048-5-98	239	63.20	0.00	26094	0.0946	0.0008	3.6756	0.1883	0.2818	0.0143	0.987	1520	15	1566	41	1600	72	5
9048-5-99	249	65.30	0.00	32650	0.0938	0.0008	3.6182	0.1844	0.2799	0.0141	0.987	1503	15	1554	41	1591	71	9
9048-5-100	169	48.90	0.00	10781	0.1081	0.0009	4.5967	0.2455	0.3083	0.0163	0.987	1768	15	1749	45	1732	80	-2
9048-5-103	178	56.10	0.00	7728	0.1207	0.0012	5.5293	0.3014	0.3324	0.0178	0.983	1966	17	1905	47	1850	86	-0
9048-5-104	614	167.00	0.00	15228	0.0945	0.0007	3.6855	0.1841	0.2829	0.0140	0.989	1518	14	1568	40	1606	70	5
9048-5-105	121	29.40	0.00	13543	0.0918	0.0007	3.2274	0.1542	0.2551	0.0120	0.987	1462	14	1464	37	1465	62	0
9048-5-106	161	41.20	0.00	20827	0.0945	0.0007	3.5276	0.1730	0.2707	0.0131	0.988	1518	14	1533	39	1544	67	2
9048-5-107	386	133.30	0.00	2009	0.1172	0.0010	5.8297	0.3276	0.3609	0.0200	0.988	1913	15	1951	49	1986	95	4
9048-5-109	671	151.20	0.00	3144	0.0870	0.0007	2.8426	0.1360	0.2371	0.0112	0.987	1359	14	1367	36	1372	58	1
9048-5-110	127	48.60	0.00	22795	0.1341	0.0012	7.4316	0.4448	0.4020	0.0238	0.988	2152	15	2165	54	2178	109	1
9048-5-111	74	18.40	0.00	9115	0.0936	0.0008	3.3655	0.1640	0.2607	0.0125	0.986	1501	15	1496	38	1494	64	0
9048-5-112	212	73.00	0.00	9618	0.1273	0.0011	6.3578	0.3601	0.3622	0.0203	0.988	2061	15	2026	50	1993	96	-3
Примечани	e. Rho –	коэффиг	циент кор	иипкпадс	ошибок	отношен	ий ²⁰⁷ Рb	$/^{235}U^{-21}$	⁰⁶ Pb/ ²³⁸ L	J; D, % –	дискорд	антности	, рассчи	танная п	сумдоф о	пе: D = 1($0 \times [1 - 0]$	BO3DACT
$(^{207}Pb/^{206}Pt$)/Bo3pac	т (²⁰⁶ Рb/	²³⁸ U))].								i		-		•			•

14

Таблица 2. Окончание

БРУСНИЦЫНА и др.

СТРАТИГРАФИЯ. ГЕОЛОГИЧЕСКАЯ КОРРЕЛЯЦИЯ том 29 <u>№</u> 6

2021

Рис. 4. Гистограммы и кривые плотности вероятности распределения U–Pb изотопных возрастов обломочных цирконов из метатерригенных пород четласской серии Среднего Тимана (возраст рассчитан по 207 Pb/ 206 Pb, *n* – количество измерений).

СТРАТИГРАФИЯ. ГЕОЛОГИЧЕСКАЯ КОРРЕЛЯЦИЯ том 29 № 6 2021

Рис. 5. Микрофотография шлифов в скрещенных николях (а) субаркоз светлинской, (б) субаркоз новобобровской и (в) аркоз визингской свит четласской серии (Q – кварц, Fsp – полевой шпат, Ca – кальцит).

зональности, у некоторых зерен наблюдаются ядра и каймы обрастания (рис. 3).

Для определения степени окатанности датированных кристаллов циркона использована шкала Ф.Дж. Петтиджона (Pettijohn, 1975), позволяющая отнести их к одной из следующих групп: окатанные, среднеокатанные, угловатые и неокатанные. Примеры зерен с характерной морфологией приведены на рис. 3. Оценка степени окатанности исследованных зерен циркона показала, что в метапесчаниках светлинской и метаалевропесчаниках новобобровской свит преобладают среднеокатанные и угловатые зерна (рис. 7). Для метапесчаников визингской свиты характерно преобладание среднеокатанных и хорошо окатанных зерен циркона. В новобобровской свите ~15% от всей популяции цирконов имеют неокатанный облик с близкой к идиоморфной формой зерен. Для светлинской и визингской свит количество неокатанных зерен циркона меньше, около 4—6% от общей популяции цирконов.

Одной из задач, решавшихся в настояшем исследовании, являлось определение нижнего предела/максимального возраста накопления терригенных пород четласской серии Среднего Тимана. В настоящее время не существует общепринятого подхода к определению максимального возраста осадконакопления (maximum depositional age) на основе данных датирования обломочных цирко-HOB (Dickinson, Gehrels, 2009; Coutts et al., 2019; Johnstone et al., 2019). Наиболее часто используются следующие алгоритмы определения такого возраста, предложенные В. Дикинсоном и Дж. Герелсом (Dickinson, Gehrels, 2009): 1) по возрасту самого молодого зерна среди датированных цирконов (Youngest Single Grain, YSG); 2) по возрасту самого молодого максимума на графиках распределения возрастов обломочных цирконов (Youngest Graphical Peak, YPP), при этом такой максимум должен быть образован определениями возрастов в не менее чем трех зернах; 3) по возрасту самого молодого кластера обломочных цирконов (Youngest Grain Cluster at 1σ , YGC 1σ), определяемому с помощью расчета средневзвешенного значения по двум и более зернам, чьи возрасты перекрываются в пределах ошибки измерения. Эти зерна могут не образовывать максимум на графиках распределения возрастов.

Нами рассчитаны нижние пределы возраста осадконакопления для метаосадочных пород четласской серии с использованием всех трех методов (табл. 3). Возрасты, рассчитанные по алгоритмам YGC 1 о и YPP, с учетом погрешности, довольно близки. В то же время значения, полученные с использованием алгоритма YSG, оказались на 40–60 млн лет моложе значений, определенных двумя первыми алгоритмами. Нами выбран, как наиболее предпочтительный, возраст, рассчитанный по возрасту самого молодого кластера, определяемому с помощью вычисления средневзвешенного значения по двум и более зернам (алгоритм YGC 1 о).

В светлинской свите U–Th–Pb возраст обломочных цирконов определялся в образце метапесчаников субаркозового состава (обр. 9016/2).

Рис. 6. Диаграммы Q-F-L для метаосадочных пород четласской серии.

Условные обозначения: vs – визингская свита; nb – новобобровская свита; sv – светлинская свита. (a): классификационная диаграмма Ф.Дж. Петтиджона (Pettijohn, 1975). 1 – аркозы, 2 – литарениты; 3 – лититовые аркозы; 4 – полевошпатовые литарениты; 5 – лититовые субаркозы; 6 – субаркозы; 7 – сублитарениты; 8 – кварцевые арениты; (б): диаграмма тектонических обстановок (Dickinson et al., 1983). П – платформенные области; О – орогенные комплексы; Д – островные дуги.

Здесь в 88 зернах из 111 были получены определения возраста с дискордантностью менее 10%, среди них ~40% цирконов имеют раннепротерозойский возраст, 30% — раннерифейский и 20% — среднерифейский. На графике плотности вероятности отмечаются два отчетливых максимума в области раннепротерозойских возрастов (1900 и 1796 млн лет) и три максимума с рифейскими возрастами (1482, 1339 и 1225 млн лет) (рис. 4).

В новобобровской свите U–Th–Pb возраст обломочных цирконов определялся в образце метаалевропесчаников аркозового состава (обр. 9020/3).

СТРАТИГРАФИЯ. ГЕОЛОГИЧЕСКАЯ КОРРЕЛЯЦИЯ

том 29 № 6 2021

Номер образца	Свита	Возраст самого молодого зерна (YSG), млн лет	Возраст самого молодого максимума на графиках распределения возрастов обломочных цирконов (YPP), млн лет	Возраст самого молодого кластера обломочных цирконов (YGC 1σ), млн лет
9016/2	Светлинская	1150 ± 16	1225	1198 ± 36
9020/3	Новобобровская	1140 ± 6	1209	1200 ± 12
9048/5	Визингская	1175 ± 10	1213	1223 ± 10

Таблица 3. Данные расчета максимального возраста осадконакопления для метаосадочных пород четласской серии

Возрасты с дискордантностью менее 10% получены для 91 зерна из 150. Зерна циркона с раннепротерозойскими возрастами (2100—1700 млн лет) преобладают над зернами с рифейскими возрастами, единичные зерна имеют архейский возраст. На графике плотности вероятности отмечаются четыре максимума с раннепротерозойскими возрастами (2073, 1865, 1778 и 1750 млн лет) и столько же максимумов с рифейскими возрастами (1633, 1518, 1344 и 1209 млн лет) (рис. 4).

В визингской свите U–Th–Pb возраст обломочных цирконов определялся в образце мелкозернистых метапесчаников, по составу относящихся к кварцевым аренитам (обр. 9048/5). Определения возраста с дискордантностью менее 10% получены для 91 зерна из 113. Около половины обломочных цирконов имеют раннепротерозойские возрасты, примерно 40% зерен – раннерифейские возрасты и не более 10% зерен – среднерифейские возрасты. Обломочные цирконы с архейскими возрастами в составе данной популяции крайне редки. На графике плотности вероятности отмечаются четыре максимума с раннепротерозойскими (2093, 1957, 1803 и 1671 млн лет) возрастами и три максимума с рифейскими (1508, 1353 и 1213 млн лет) возрастами (рис. 4).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Распределение U–Th–Pb возрастов обломочных цирконов, выделенных из метаосадочных пород четласской серии Четласского Камня, в значительной степени сходно (рис. 4), что, вероятно, указывает на единый источник обломочного материала для всех изученных образцов. Преобладают обломочные цирконы раннепротерозойского возраста, составляющие около 52% от всей изученной популяции, обломочные цирконы с раннерифейскими возрастами составляют примерно 33%, а со среднерифейскими – около 14% от общего числа датированных зерен. На долю обломочных цирконов с архейскими возрастами приходится не более 1%.

Источниками цирконов с архейскими возрастами могли являться магматические и метаморфические породы того же возраста, обнажающиеся в северо-западной части Балтики (рис. 1а) (Korja et al., 2006; Зозуля и др., 2007; Сергеев и др., 2007; Bogdanova et al., 2008; Бибикова и др., 2009; Ларин, 2009; Егорова, 2014). Обломочные цирконы с раннепротерозойскими (1.9-1.7 млрд лет) возрастами могли поступать из раннепротерозойских комплексов фундамента Восточно-Европейской платформы (Петров, 1999; Балтыбаев и др., 2004; Балтыбаев, Левченков, 2005; Балтыбаев, 2005; Koria et al., 2006: Балаганский и др., 2016 и др.). В то же время, учитывая наличие значительного числа окатанных и среднеокатанных зерен этого возраста (рис. 3), что предполагает их неоднократное переотложение (Pettijohn, 1975), их источником могли служить более древние осадочные породы, в частности обнажающиеся в пределах Свеконорвежско-Гренвилльского орогена, располагающегося на севере и северо-западе (в современных координатах) Балтики (Bingen et al., 2008; Rivers et al., 2012; Spencer et al., 2015; Mints, 2017 и др.).

Источником цирконов с раннерифейскими возрастами кристаллизации (1570–1500 млн лет) являлись, вероятно, граниты рапакиви, широко развитые на Балтийском щите (рис. 1a) (Amelin et al., 1997; Баянова и др., 2002; Bogdanova et al., 2008; Ларин, 2009; Rämö et al., 2014 и др.). Граниты рапакиви служили основным источником обломочного материала и при накоплении нижнерифейских отложений Паша-Ладожского грабена (Купцова и др., 2011; Ивлева и др., 2016; Ershova et al., 2019).

Для цирконов с возрастами кристаллизации от 1370 до 1170 млн лет источник сноса был иным, так как комплексы пород такого возраста практически отсутствуют в структурах фундамента Балтики (Bogdanova et al., 2008; Lahtinen, 2012 и др.). В то же время магматические и метаморфические события в интервале 1.0-1.4 млрд лет широко проявлены в пределах Свеконорвежско-Гренвилльского орогена (включая участвующие в его строении террейны), расположенного на северозападе (в современных координатах) Балтики (Bingen et al., 2008; Rivers et al., 2012; Spencer et al., 2015; Mints, 2017 и др.). Выполненное ранее (Kuznetsov et al., 2010) U-Th-Рb датирование обломочных цирконов из песчаников верхнерифейской джежимской свиты Южного Тимана показало преобладание зерен с раннепротерозойскими и позднеархейскими возрастами, в то же время в составе исследованной популяции присутствовало ~7% зерен с возрастом от 1350 до 1200 млн лет. Авторы указанной работы высказали предположение, что породы джежимской свиты сформировались в основном за счет размыва кристаллических комплексов северных и центральных частей Балтики. В то же время, согласно исследованиям, основанным на оценке возраста обломочных цирконов из рифейских пород Среднего и Северного Тимана, в том числе и четласской серии (Андреичев и др., 2013, 2014; Удоратина и др., 2017; Соболева и др., 2019), источниками обломочного материала для них выступали и кристаллические комплексы фундамента Балтики, и породы расположенного на ее северо-западной периферии Свеконорвежско-Гренвилльского орогена.

Наши петрографические исследования показали, что для терригенных пород четласской серии основным источником обломочного материала были орогенные области (рис. 6б), и наиболее вероятным кандидатом на роль такой питающей провинции является существовавший в это же время Свеконорвежско-Гренвилльский ороген. Однако широкое распространение среднеокатанных и угловатых цирконов, имеющих средне- и раннерифейские возрасты (рис. 3), как и присутствие незрелых песчаников, близких по составу к аркозам и лититовым аренитам (рис. 6а), свидетельствует об относительно близком расположении источника сноса и/или незначительной переработке обломочного материала при транспортировке осадка, что ставит под сомнение перенос обломочного материала из области распространения породных ассоциаций современного Свеконорвежско-Гренвилльского орогена. В то же время еще в публикации (Lorenz et al., 2012) было высказано предположение, что Свеконорвежско-Гренвилльский ороген протягивался вдоль всей северной окраины Балтики и далее на север (в современных координатах), приближаясь к рассматриваемым в настоящей работе объектам на Среднем Тимане, т.е. слагавшие его комплексы пород могли располагаться заметно ближе к рассматриваемому в настоящей статье региону, чем это наблюдается ныне.

В пользу точки зрения Х. Лоренца с соавторами (Lorenz et al., 2012) свидетельствует широкое распространение обломочных цирконов с среднерифейскими возрастами на северной и северо-восточной окраинах Балтики. Присутствие обломочных цирконов со среднерифейскими возрастами отмечено в песчаниках среднерифейской ишеримской свиты Северного Урала (Петров и др., 2015; Маслов и др., 2018б), породах базальных уровней каратавия Южного Урала (Маслов и др., 2018а), верхнерифейских отложениях Южного (Kuznetsov et al., 2010) и Северного Тимана (Андреичев и др., 2013, 2014), п-овов Рыбачий и Средний (Михайленко и др., 2016), метаосадочных породах Северной Норвегии (Zhang et al., 2015, 2016). Сравнение распределения U-Th-Pb возрастов обломочных цирконов из средне- и верхнерифейских толщ Балтики и ее периферии (Тиманская гряда, докаледонские комплексы Скандинавии, Южный и Средний Урал) (рис. 8) показывает значительное их сходство, что указывает, по всей видимости, на единый источник сноса обломочного материала. Следовательно, наиболее вероятно, что одним из основных источников сноса для верхнедокембрийских терригенных пород Тимана, Южного и Среднего Урала и докалендонских комплексов Скандинавии выступал Свеконорвежско-Гренвилльский ороген, что подтверждает предположение о сушественно более широком его распространении на севере Балтики (в современных координатах) (Lorenz et al., 2012).

Проведенное U-Th-Рb датирование обломочных цирконов дает возможность определить нижнюю возрастную границу пород четласской серии и уточнить стратиграфическое расчленение изучаемых комплексов. Считается (Cawood et al., 2012), что осадочные бассейны, питающиеся обломочным материалом, поступающим за счет разрушения расположенных рядом орогенов, характеризуются присутствием обломочных цирконов с возрастом, близким к возрасту седиментации. Это позволяет предполагать, что возраст наиболее молодых цирконов в изученных нами терригенных комплексах рифея Среднего Тимана является близким к возрасту седиментации. Возрасты, рассчитанные на основе возраста самого молодого максимума на графиках распределения (YPP), варьируют от 1225 до 1209 млн лет, средневзвешенные возрасты молодых кластеров обломочных цирконов (YGC 1о) – от 1198 до 1223 млн лет. Полученные данные свидетельствуют о том, что породы четласской серии сформировались не ранее середины среднего рифея. Наиболее молодые цирконы среди датированных популяций хорошо сопоставляются с магматическими и тектоническими событиями в интервале 1170-1135 млн лет, которые интерпретируются (Bingen, Solli, 2009) как свидетельство формирования активной окраины и задуговых бассейнов на ранних стадиях развития Свеконорвежско-Гренвилльского орогена. В то же время интенсивные тектонические события, сопровождавшиеся синколлизионным гранитным магматизмом, происходили в Свеконорвежско-Гренвилльском орогене около 1050-1020 млн лет назад (Bingen et al., 2008; Rivers et al., 2012; Spencer et al., 2015). Если считать, что Свеконорвежско-Гренвилльский ороген был одним из основных источников обломочного материала, то отсутствие не только отчетливых максимумов, но даже единичных цирконов такого возраста, как в популяциях, изученных в работе (Удоратина и др., 2017) и в нашем исследовании, свидетельствует о

Рис. 8. Кумулятивные кривые изотопных возрастов обломочных цирконов четласской серии и рифейских толщ Балтики и ее периферии.

1 – рифейские осадочные породы Паша-Ладожского грабена (Купцова и др., 2011; Ивлева и др., 2016); 2 – четласская серия, Средний Тиман (настоящая работа; Удоратина и др., 2017); 3 – рифейские осадочные породы Кольского п-ова (Михайленко и др., 2016); 4 – неопротерозойские осадочные породы Северной Норвегии (Zhang et al., 2015); 5 – поздненеопротерозойские осадочные породы Южного Тимана (Kuznetsov et al., 2010); 6 – рифейские толщи Северного Тимана (Андреичев и др., 2013, 2014); 7 – аркозовые песчаники бирьянской подсвиты зильмердакской свиты верхнего рифея Южного Урала (Маслов и др., 2018а); 8 – терригенные породы среднего рифея Среднего Урала (Петров и др., 2015; Маслов и др., 2018б).

том, что формирование пород четласской серии завершилось, скорее всего, до ~1170 млн лет. Это позволяет значительно сузить стратиграфический интервал формирования терригенных толщ четласской серии до средней части среднего рифея.

выводы

Минералого-петрографический состав метатерригенных пород четласской серии Среднего Тимана и слабая окатанность значительной части присутствующих в них обломочных цирконов указывают на относительно близкое положение бассейна осадконакопления и источников обломочного материала.

Подтверждено, что в метапесчаниках четласской серии Среднего Тимана присутствуют обломочные цирконы с архейско-раннепротерозойскими, ранне- и среднерифейскими возрастами. Архейскораннепротерозойские и раннерифейские (около 1570—1500 млн лет) магматические и метаморфические породы широко развиты в фундаменте Балтики, и, вероятно, именно они выступали источниками обломочных цирконов этого временного интервала, присутствующих в породах светлинской, новобобровской и визингской свит.

Среднерифейские магматические и метаморфические комплексы в пределах фундамента Балтики неизвестны, а следовательно, источники обломочных цирконов с такими возрастами находились, скорее всего, вне пределов кристаллического цоколя Балтики. Близкие по возрасту магматические и метаморфические образования широко распространены в структурах Свеконорвежско-Гренвилльского орогена. Результаты наших исследований дают основание полагать, что одним из источников обломочного материала для терригенных отложений четласской серии Среднего Тимана выступал, по всей видимости, именно названный ороген вместе с входящими в его состав более древними террейнами.

Возраст наиболее молодых обломочных цирконов в изученных метапесчаниках фиксирует нижний предел возраста накопления терригенных пород четласской серии. В то же время отсутствие цирконов с возрастом около 1050—1020 млн лет, характерных для интенсивного магматического события в Свеконорвежско-Гренвилльском орогене, предполагает, что к этому рубежу накопление отложений четласской серии уже завершилось. Таким образом, слагающие четласскую серию метатерригенные породы отвечают интервалу 1170—1140 млн лет, т.е. относятся к средней части среднего рифея.

Данные о присутствии обломочных цирконов со среднерифейскими возрастами в терригенных породах юрматиния и каратавия Северного и Южного Тимана, Среднего и Южного Урала и Северной Норвегии свидетельствуют, на наш взгляд, о существенно более широком распространении комплексов пород Свеконорвежско-Гренвилльского орогена на севере (в современных координатах) палеоконтинента Балтика. Они, вероятно, в значительной степени переработаны последующими тектоническими событиями и перекрыты в настоящее время мощным осадочным чехлом и водами Баренцева моря.

Благодарности. Рецензии В.В. Акинина и А.Б. Котова позволили существенно улучшить представленную работу. Отбор образцов для данного исследования проводился в рамках проекта "Выполнение геолого-съемочных работ в пределах листов Q-39-XXXIII, XXXIV (Вымская площадь)", ЗАО "Поляргео", ФГБУ "ВСЕГЕИ".

СПИСОК ЛИТЕРАТУРЫ

Андреичев В.Л., Соболева А.А., Герелс Дж. U–Pb-возраст детритовых цирконов из верхнедокембрийских терригенных отложений Северного Тимана // Докл. АН. 2013. Т. 450. № 5. С. 562–566.

Андреичев В.Л., Соболева А.А., Герелс Дж. U–Pb возраст и источники сноса обломочных цирконов из верхнедокембрийских отложений Северного Тимана // Стратиграфия. Геол. корреляция. 2014. Т. 22. № 2. С. 32–45.

Балаганский В.В., Горбунов И.А., Мудрук С.В. Палеопротерозойские Лапландско-Кольский и Свекофеннский орогены (Балтийский щит) // Вестник Кольского научного центра РАН. 2016. Т. 26. № 3. С. 5–11.

Балтыбаев Ш.К. Свекофенниды Фенноскандии: пространственно-временная корреляция эндогенных процессов. Автореф. дисс. ... докт. геол.-мин.наук. СПб.: ИГГД РАН, 2005. С. 46.

Балтыбаев Ш.К., Левченков О.А. Вулканиты в свекофеннидах Приладожья и результаты U–Pb, Pb–Pb датирования пород разного генезиса как основа для кор-

СТРАТИГРАФИЯ. ГЕОЛОГИЧЕСКАЯ КОРРЕЛЯЦИЯ

реляции свекофеннских событий // Стратиграфия. Геол. корреляция. 2005. Т. 13. № 2. С. 3–18.

Балтыбаев Ш.К., Левченков О.А., Бережная Н.Г., Левский Л.К., Макеев А.Ф., Яковлева С.З. Время и длительность свекофеннской плутонометаморфической активности на юго-востоке Балтийского щита, Приладожье // Петрология. 2004. Т. 12. № 4. С. 374–393.

Баянова Т.Б., Пожиленко В.И., Смолькин В.Ф., Кудряшов Н.М., Каулина Т.В., Ветрин В.Р. Каталог геохронологических данных по северо-восточной части Балтийского щита. Апатиты: Кольский научный центр РАН, 2002. 53 с.

Бибикова Е.В., Богданова С.В., Постников А.В., Попова Л.П., Кирнозова Т.И., Фугзан М.М., Глущенко В.В. Зона сочленения Сарматии и Волго-Уралии: изотопно-геохронологическая характеристика супракрустальных пород и гранитоидов // Стратиграфия. Геол. корреляция. 2009. Т. 17. № 6. С. 3–16.

Гецен В.Г. Тектоника Тимана. Л.: Наука, 1987. 171 с.

Государственная геологическая карта Российской Федерации 1 : 1000000 (третье поколение). Лист Q-39 (Нарьян-Мар). Объяснительная записка. Ред. Якобсон К.Э. СПб.: Картфабрика ВСЕГЕИ, 2016. 517 с.

Егорова Ю.С. Санукитоиды Фенно-Карельской провинции Балтийского щита: геология, состав, источники. Автореф. дисс. ... канд. геол.-мин. наук. СПб.: ИГГД РАН, 2014. 20 с.

Зозуля Д.Р., Баянова Т.Б., Серов П.Н. Возраст и изотопно-геохимические характеристики архейских карбонатитов и щелочных пород Балтийского щита // Докл. АН. 2007. Т. 415. № 3. С. 383–388.

Ивлева А.С., Подковыров В.Н., Ершова В.Б., Анфисон О., Худолей А.К., Федоров П.В., Маслов А.В., Здобин Д.Ю. Результаты U–Pb (LA ICP MS) датирования обломочных цирконов из верхневендско-нижнекембрийских отложений востока Балтийской моноклизы // Докл. АН. 2016. Т. 468. № 4. С. 441–446.

Купцова А.В., Худолей А.К., Дэвис В., Рейнбирг Р.Х., Ковач В.П., Загорная Н.Ю. Возраст и источники сноса песчаников приозерской и салминской свит рифея в восточном борту Пашско-Ладожского бассейна (южная окраина Балтийского щита) // Стратиграфия. Геол. корреляция. 2011. Т. 19. № 2. С. 3–19.

Ларин А.М. Граниты рапакиви в геологической истории Земли. Статья 1. Рапакивигранитсодержащие магматические ассоциации: возраст, геохимия, тектоническое положение // Стратиграфия. Геол. корреляция. 2009. Т. 17. № 3. С. 3–28.

Маслов А.В., Ерохин Е.В., Гердес А., Ронкин Ю.Л., Иванов К.С. Первые результаты U–Pb LA-ICP-MS-датирования обломочных цирконов из аркозовых песчаников бирьянской подсвиты зильмердакской свиты верхнего рифея (Южный Урал) // Докл. АН. 2018а. Т. 482. № 5. С. 558–561.

Маслов А.В., Петров Г.А., Ронкин Ю.Л. К реконструкции состава пород – источников сноса для средне- и верхнерифейских отложений Ишемского и Башкирского антиклинориев (Урал) // Геохимия. 20186. № 5. С. 410–426.

Михайленко Ю.В., Соболева А.А., Хоуриган Д.К. U-Рb возраст детритовых цирконов из верхнедокембрий-

том 29 № 6 2021

ских отложений полуострова Средний и Рыбачий (северное обрамление Кольского полуострова) // Стратиграфия. Геол. корреляция. 2016. Т. 24. № 5. С. 3–27.

Оловянишников В.Г. Верхний докембрий Тимана и полуострова Канин. Екатеринбург: УрО РАН, 1998. 163 с.

Петров В.П. Метаморфизм раннего протерозоя Балтийского щита. Апатиты: КНЦ РАН, 1999. 325 с.

Петров Г.А., Ронкин Ю.Л., Гердес А., Маслов А.В. Первые результаты U–Pb (LA-ICP-MS)-датирования обломочных цирконов из метапесчаников Ишемского антиклинория (Северный Урал) // Докл. АН. 2015. Т. 464. № 5. С. 589–593.

Сергеев С.А., Бибикова Е.В., Матуков Д.И., Лобач-Жученко С.Б. Возраст пород и метаморфических процессов Водлозерского комплекса Балтийского щита (по результатам анализа цирконов U–Th–Pb изотопным методом на ионном микрозонде SHRIMP II) // Геохимия. 2007. № 2. С. 229–236.

Соболева А.А., Андреичев В.Л., Бурцев И.Н., Никулова Н.Ю., Хубанов В.Б., Соболев И.Д. Детритовые цирконы из верхнедокембрийских пород вымской серии Среднего Тимана: U–Pb возраст и источники сноса // Бюлл. МОИП. Отд. геол. 2019. Т. 94. Вып. 1. С. 3–16.

Удоратина О.В., Бурцев И.Н., Никулова Н.Ю., Хубанов В.Б. Возраст метапесчаников верхнедокембрийской четласской серии Среднего Тимана на основании U–Pb датирования детритных цирконов // Бюлл. МОИП. Отд. геол. 2017. Т. 92. Вып. 5. С. 15–32.

Amelin Y.A., Larin A.M., Tucker R.D. Chronology of multiphase emplacement of the Salmi Rapakivi granite anorthosite complex, Baltic shield: implications for magmatic evolution // Contrib. Mineral. Petrol. 1997. V. 127. P. 353–368.

Andersen T., Andersson U.B., Graham S., Aberg G., Simonsen S.L. Granitic magmatism by melting of juvenile continental crust: new constraints on the source of Palaeoproterozoic granitoids in Fennoscandia from Hf isotopes in zircon // J. Geol. Soc. (London). 2009. V. 166. P. 233–247.

Andersen T., Elburg M.A., Magwaza B.N. Sources of bias in detrital zircon geochronology: discordance, concealed lead loss and common lead correction // Earth-Sci. Rev. 2019. V. 197. P. 1–15.

Bingen B., Solli A. Geochronology of magmatism in the Caledonian and Sveconorwegian belts of Baltica: synopsis for detrital zircon provenance studies // Norwegian J. Geol. 2009. V. 89. P. 267–290.

Bingen B., Nordgulen Ø., Viola G. A four-phase model for the Sveconorwegian orogeny, SW Scandinavia // Norsk Geol. Tidsskrift. 2008. V. 88. P. 43–72.

Bogdanova S.V., Bingen B., Gorbatschev R., Kheraskova T.N., Kozlov V.I., Puchkov V.N., Volozh Yu.A. The East European Craton (Baltica) before and during the assembly of Rodinia // Precambrian Res. 2008. V. 160. P. 23–45.

Cawood P.A., Hawkesworth C., Dhuime B. Detrital zircon record and tectonic setting // Geology. 2012. V. 40. P. 875–878.

Coutts D.S., Matthews W.A., Hubbard S.M. Assessment of widely used methods to derive depositional ages from detrital zircon populations // Geosci. Front. 2019. V. 10. P. 1421–1435.

Dickinson W.R. Interpreting detrital modes of graywacke and arkose // J. Sed. Petrol. 1970. V. 40. P. 695–707.

Dickinson W.R., Gehrels G.E. Use of U–Pb ages of detrital zircons to infermaximum depositional ages of strata: a test against a Colorado Plateau Mesozoic database // Earth Planet. Sci. Lett. 2009. V. 288. P. 115–125.

Dickinson W.R., Beard L.S., Brakenridge G.R., Erjavec J.L., Ferguson R.C., Inman K.F., Knepp R.A., Lindberg F.A., Ryberg P.T. Provenance of North American sandstones in relation to tectonic setting // Bull. Geol. Soc. Am. 1983. V. 94. P. 222–235.

Ershova V.B., Ivleva A.S., Podkovyrov V.N., Khudoley A.K., Fedorov P.V., Stockli D., Anferson O., Maslov A.V., Khubanov V. Detrital zircon record of the Mesoproterozoic to Early Cambrian sequences of NW Russia: implications for the paleogeography of the Baltic interior // GFF. 2019. https://doi.org/10.1080/11035897.2019.1625073

Huhma H., Mänttäri I., Peltonen P., Kontinen A., Halkoaho T., Hanski E., Hokkanen T., Hölttä P., Juopperi H., Konnunaho J., Layahe Y., Luukkonen E., Pietikäinen K., Pulkkinen A., Sorjonen-Ward P., Vaasjoki M., Whitehouse M. The age of the Archaean greenstone belts in Finland // Geol. Surv. Finland Spec. Pap. 2012. V. 54. P. 74–175.

Ingersoll R.V., Bullard T.F., Ford R.L., Grimm J.P., Pickle J.D., Sares S.W. The effect of grain size on detrital modes: a test of the Gazzi–Dickinson pointcounting method // J. Sed. Petrol. 1984. V. 54. P. 212–220.

Jackson S.E., Pearson N.J., Griffin W.L., Belousova E.A. The application of laser ablation-inductively coupled plasma mass spectrometry to in situ U–Pb zircon geochronology // Chem. Geol. 2004. V. 211. P. 47–69.

Johnstone S.A., Schwartz T.M., Holm-Denoma C.S. A Stratigraphic approach to inferring depositional ages from detrital geochronology data // Front. Earth Sci. 2019. https://doi.org/10.3389/feart.2019.00057

Korja A., Lahtinen R., Nironen M. The Svecofennian orogen: a collage of microcontinents and island arcs // Geol. Soc. London Mem. 2006. V. 32. P. 561–578.

Kuznetsov N.B., Natapov L.M., Belousova E.A., O'Reilly S.Y., Griffin W.L. Geochronological, geochemical and isotopic study of detrital zircon suites from late Neoproterozoic clastic strata along the NE margin of the East European Craton: implications for plate tectonic models // Gondwana Res. 2010. V. 17. P. 583–601.

Lahtinen R. Main geological features of Fennoscandia // Geol. Surv. Finland. Spec. Pap. 2012. V. 53. P. 13–18.

Lorenz H., Gee D.G., Larionov A.N., Majka J. The Grenville–Sveconorwegian orogen in the high Arctic // Geol. Mag. 2012. V. 149. P. 875–891.

Malone D.H., Stein C.A., Craddock J.P., Kley J., Stein S., Malone J.E. Maximum depositional age of the Neoproterozoic Jacobsville Sandstone, Michigan: implications for the evolution of the Midcontinent Rift // Geosphere. 2016. V. 12. P. 1–12.

Mints M.V. Meso-Neoproterozoic Grenville-Sveconrowegian intracontinental orogeny: history, tectonics, geodynamics // Geodynamics & Tectonophysics. 2017. V. 8. P. 619–642.

Pettijohn F.J. Sedimentary Rocks. 3rd ed. N.Y.: Harper and Row, 1975. 628 p.

Rämö O.T., Turkki V., Mänttäri I., Heinonen A., Larjamo K., Lahaye Y. Age and isotopic fingerprints of some plutonic rocks in the Wiborg rapakivi granite batholith with special reference to the dark wiborgite of the Ristisaari Island // Bull. Geol. Soc. Finland. 2014. V. 86. P. 71–91.

Rivers T., Culshaw N., Hynes A., Indares A., Jamieson R., Marignol J. The Grenville Orogen – a post-LITHOPROBE perspective // Geol. Ass. Can. Spec. Pap. 2012. V. 49. P. 97–236.

Rosa D.R.N., Finch A.A., Andersen T., Inverno C.M.C. U– Pb geochronology and Hf isotope ratios of magmatic zircons from the Iberian Pyrite Belt // Miner. Petrol. 2009. V. 95. P. 47–69.

Spencer C.J., Cawood P.A., Hawkesworth C.J., Prave A., Roberts N., Horstwood M., Whitehouse M. Generation and preservation of continental crust in the Grenville Orogeny // Geosci. Front. 2015. V. 6. P. 357–372.

Vermeesch P. On the visualisation of detrital age distributions // Chem. Geol. 2012. V. 312–313. P. 190–194.

Wiedenbeck M., Allé P., Corfu F., Griffin W.L., Meier M., Oberli F., VonQuadt A., Roddick J.C., Spiegel W. Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analysis // Geostandards Newslett. 1995. V. 19. P. 1–23.

Zhang W., Roberts D., Pease V. Provenance characteristics and regional implications of Neoproterozoic, Timanianmargin successions and a basal Caledonian nappe in northern Norway // Precambrian Res. 2015. V. 268. P. 153–167. Zhang W., Roberts D., Pease V. Provenance of sandstones from Caledonian nappes in Finnmark, Norway: implications for Neoproterozoic–Cambrian palaeogeography // Tectonophysics. 2016. V. 691. P. 198–205.

Рецензенты В.В. Акинин, А.Б. Котов

Age and Provenance of Rocks of the Riphean Chetlas Group of Middle Timan: U-Th-Pb (LA-ICP-MS) Dating of Detrital Zircons

E. A. Brusnitsyna^{a, #}, V. B. Ershova^{b, d, ##}, A. K. Khudoley^b, T. Andersen^c, and A. V. Maslov^{d, e}

^aKarpinsky All-Russian Research Geological Institute, St. Petersburg, Russia

^bSaint Petersburg State University, Saint Petersburg, Russia

^cThe University of Oslo, Department of Geological Sciences, Oslo, Norway

^dGeological Institute of the Russian Academy of Sciences, Moscow, Russia

^eInstitute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia

[#]e-mail: brusnicyna@yandex.ru

##e-mail: v.ershova@spbu.ru

U–Th–Pb (LA-ICP-MS) dating of detrital zircons from metaterrigenous rocks of the Chetlas Group of the Upper Precambrian of Middle Timan (Svetlinskaya, Novobobrovskaya, and Vizingskaya formations) made it possible to reconstruct the provenance of clastic and establish the maximum depositional age (mid–end of the Middle Riphean). It was found that the studied terrigenous rocks contain zircons of Archean–Early Proterozoic, Early and Middle Riphean ages. The source area of Archean–Early Proterozoic and Early Riphean zircons is the uplifts of the basement of the East European platform (EEP). The presence of Middle Riphean detrital zircons in all studied formations indicates a significant role of the Sveconorwegian-Grenvillian orogen as a source of clastic for sedimentary strata of Middle Timan. The obtained data support the assumptions on wider distribution of the Sveconorwegian-Grenvillian Orogen in the north of the EEP during the deposition of the Upper Precambrian sedimentary sequences of Northern Norway, Timan, the Middle and Southern Urals, and, possibly, a number of other EEP regions.

Keywords: Middle Timan, Riphean, Chetlas Group, detrital zircons