УДК 669.046.584.2

ВЛИЯНИЕ ОКСИДА ЦЕРИЯ И ОСНОВНОСТИ ШЛАКОВ НА ИХ ВЯЗКОСТЬ И ТЕМПЕРАТУРУ НАЧАЛА КРИСТАЛЛИЗАЦИИ

© 2023 г. А. Г. Уполовникова^{*a*}, Р. Р. Шартдинов^{*a*}, А. Н. Сметанников^{*a*}

^аИнститут металлургии УрО РАН, Екатеринбург, Россия *e-mail: upol.ru@mail.ru

> Поступила в редакцию 18.07.2023 г. После доработки 02.08.2023 г. Принята к публикации 07.08.2023 г.

Исследование влияния содержания оксида церия и основности шлака на вязкость и температуру начала кристаллизации системы CaO-SiO₂-Ce₂O₃, содержащей 15% Al₂O₃ и 8% MgO, было выполнено с использованием симплекс-решетчатого метода планирования эксперимента, который позволяет получать математические модели, описывающие зависимость свойства от состава в виде непрерывной функции. Используя экспериментальные данные, построили математические модели, описывающие связь температуры заданной вязкости с составом оксидной системы. Затем совмещением полученных диаграмм состав-температура заданной вязкости на изотермический разрез диаграммы состав-вязкость получили совокупность изолиний вязкости. Обобщение результатов математического моделирования и графического отображения на изотермическом разрезе диаграммы состав-вязкость позволило получить новые данные о вязкости оксидной системы CaO-SiO₂-Ce₂O₃, содержащей 15% Al₂O₃ и 8% MgO, в интервале основности 2–5 и содержания 0–15% Се₂O₃. Экспериментальные данные показывают, что шлаки изучаемой оксидной системы, не содержащие оксид церия, характеризуются повышенной температурой начала кристаллизации и вязкостью в исследуемом диапазоне основности. Присутствие оксида церия в шлаках изучаемой оксидной системы обеспечивает в интервале температур 1500-1550°С достаточно низкую вязкость и температуру начала кристаллизации. Увеличение содержания оксида церия в шлаках основностью 2-3 от 1 до 15% сопровождается снижением температуры начала кристаллизации от 1490 до 1410°С. Повышение основности до 5.0 приводит к повышению температуры начала кристаллизации до 1520°С. При температуре 1500°С вязкость шлаков основностью 2.0-3.0, содержащих 7-15% Ce₂O₃, изменяется в пределах 0.2-0.3 Па · с. Рост основности шлака до 3.0-5.0 при фиксированном содержании Ce₂O₃ на уровне 7-15% сопровождается увеличением вязкости шлаков до 1.0 Па · с и достигает 2.0 Па · с при снижении Ce_2O_3 до 1–6%. Увеличение температуры до 1550°C и фиксированной основности 3.0-5.0 сопровождается значительным снижением вязкости, которая не превышает 0.35 Па · с при содержании Се₂O₃ 1–15%.

Ключевые слова: церийсодержащие шлаки, основность, вязкость, температура начала кристаллизации, планирование эксперимента, диаграммы состав—вязкость **DOI:** 10.31857/S0235010623060105, **EDN:** ZWFKDG

ВВЕДЕНИЕ

Эффективность реализации глубокой десульфурации стали под высокоосновными шлаками определяется и высокой химической активностью компонентов шлака, а также обеспечением благоприятных кинетических условий перехода серы в объем шлака. Кинетические условия в первую очередь зависят от вязкости рафинировочных шлаков, так как скорость диффузии компонентов в шлаке обратно пропорциональна его вязкости [1–3]. Поэтому снижение вязкости и температуры начала кристаллизации будут обеспечивать низкое содержание серы в металле, что влияет на качество готовой металлопродукции [4].

Для формирования жидкоподвижных шлаков с высокими рафинирующими свойствами можно использовать оксиды церия в ковшевой металлургии. Результаты исследования влияния добавок оксида церия на физические свойства оксидных систем показали, что оксид церия снижает вязкость и их температуру кристаллизации [5–7]. Кроме того, равновесие между рафинировочным шлаком, содержащим Се₂O₃, и расплавленной сталью, раскисленной Al, предполагает возможность восстановления небольшого количества Се, который переходит в сталь [8–11], что играет важную роль в микролегировании и модифицировании стали. Однако в настоящее время в отечественной и зарубежной литературе практически отсутствуют сведения о влиянии оксида церия и основности на физические свойства ковшевых шлаков. Целью данной работы было исследование вязкости и температуру кристаллизации шлаков системы CaO-SiO₂-Ce₂O₃-Al₂O₃-MgO. В работе приведены результаты исследования вязкости и температуры начала кристаллизации шлаков системы CaO-SiO₂-Ce₂O₃, содержащих 15% Al₂O₃ и 8% MgO, с использованием метода симплексных решеток планирования эксперимента, который позволяет получать математические модели, описывающие зависимость свойства от состава в виде непрерывной функции.

МЕТОДИКА

Рассмотрена оксидная система CaO–SiO₂–Ce₂O₃, содержащая 15% Al₂O₃ и 8% MgO. Для исследования влияния основности и содержания Ce₂O₃ в шлаке на вязкость использовали симплекс-решетчатый метод планирования эксперимента, который позволяет получать математические модели, описывающие зависимость свойства от состава в виде непрерывной функции [12, 13]. При построении матрицы планирования эксперимента для системы CaO–Al₂O₃–SiO₂–MgO–Ce₂O₃ на переменные составляющие оксидной системы были наложены ограничения: CaO/SiO₂ = 2.0–5.0; 15% Al₂O₃; 8% MgO; 0–15% Ce₂O₃. Область варьирования составом шлака в пятикомпонентной системе CaO–SiO₂–Ce₂O₃–15%Al₂O₃–8% MgO представлена двумя концентрационными треугольниками CaO–SiO₂–Ce₂O₃, вершинами которого являются псевдокомпоненты Y_1 , Y_2 , Y_3 и Y_4 (рис. 1). В табл. 1 приводится состав шлаков симплекса, выраженный в координатах псевдокомпонентов и исходных компонентов.

Синтетические шлаки, соответствующие по составу вершинам Y1-Y4 изучаемого симплекса, выплавляли в графитовых тиглях из предварительно прокаленных в течение двух—трех часов при температуре 900°С оксидов марки "ч. д. а". После расплавления шлак перемешивали в течение 0.5 ч с целью гомогенизации расплава. Экспериментальные составы шлаков, соответствующие остальным точкам плана локального симплекса, получали встречной шихтовкой шлаков вершин симплекса. Вязкость шлаков измеряли в графитовых тиглях с помощью электровибрационного вискозиметра в токе аргона при непрерывном охлаждении расплава от гомогенно-жидкого до твердого состояния [14, 15]. В качестве измерительного шпинделя применяли молибденовый стержень диаметром 1.5 мм. Температуру шлака фиксировали с помощью термопары ВР 5/20. Температуру начала кристаллизации шлаков исследуемой оксидной системы определяли графически по перегибу кривой зависимости логарифма вязкости от обратной температуры [16]. Результаты замера вязкости и температуры кристаллизации приведены в матрице планирования (табл. 2).

Для каждого значения вязкости в точках плана локального симплекса были получены математические модели в виде приведенного полинома III степени, адекватные

Рис. 1. Расположение экспериментальных точек на исследуемом локальном симплексе.

при уровне значимости $\alpha = 0.05$, описывающие зависимость температуры заданной вязкости от состава шлака. Ниже приведена математическая модель, в качестве примера, зависимости температуры от состава шлака при постоянной вязкости 0.3 Па · с для трехкомпонентной системы $Y_1 Y_2 Y_3$ (рис. 1):

$$T = 1530X_1 + 1600X_2 + 1512X_3 - 51.75X_1X_2 - - 13.5X_1X_3 - 78.75X_2X_3 + 56.25X_1X_2 \cdot (X_1 - X_2) + + 27X_1X_3 \cdot (X_1 - X_3) - 42.75X_2X_3 \cdot (X_2 - X_3) + 126X_1X_2X_3,$$

где *X*₁, *X*₂ и *X*₃ – состав шлака, выраженный в дол. ед.

	Индекс шлака	Состав шлака									
N⁰		псе	в коорд вдокомпо	цинатах онентов,	дол.	в координатах исходных компонентов, мас. %					
		<i>X</i> 1	X2	Х3	<i>X</i> 4	CaO	SiO ₂	Ce ₂ O ₃	Al ₂ O ₃	MgO	
1	<i>Y</i> 1	1	0	0	0	51.3	25.7	0	15	8	
2	Y2	0	1	0	0	64.2	12.8	0	15	8	
3	Y3	0	0	1	0	51.7	10.3	15	15	8	
4	<i>Y</i> 4	0	0	0	1	41.3	20.7	15	15	8	
5	<i>Y</i> 12	0.67	0.33	0	0	55.6	21.4	0	15	8	
6	<i>Y</i> 13	0.33	0.67	0	0	59.9	17.1	0	15	8	
7	Y21	0	0.67	0.33	0	60.1	11.9	5	15	8	
8	Y22	0	0.33	0.67	0	55.8	11.2	10	15	8	
9	Y31	0	0	0.67	0.33	48.2	13.8	15	15	8	
10	Y32	0	0	0.33	0.67	44.8	17.2	15	15	8	
11	<i>Y</i> 41	0.33	0	0	0.67	44.6	22.4	10	15	8	
12	<i>Y</i> 42	0.67	0	0	0.33	48	24	5	15	8	
13	<i>Y</i> 121	0.67	0	0.33	0	52	20	5	15	8	
14	<i>Y</i> 122	0.33	0	0.33	0.33	48.4	18.6	10	15	8	
15	<i>Y</i> 131	0.33	0.33	0.33	0	56	16	5	15	8	
16	Y132	0.33	0	0.67	0	52.1	14.9	10	15	8	

Таблица 1. Матрица планирования

_

N⁰	Индекс шлака		Состав	в шлака.	мас. %		Температура, °С при вязкости, Па · с		Вязкость, Па · с. при <i>T</i> , °С		t _{kp} , °C
		CaO	SiO ₂	Ce ₂ O ₃	Al_2O_3	MgO	0.3	0.5	1500	1550]
1	<i>Y</i> 1	51.3	25.7	0	15	8	1530	1492	0.40	0.26	1485
2	Y2	64.2	12.8	0	15	8	1600	1543	6.11	0.45	1532
3	Y3	51.7	10.3	15	15	8	1512	1494	0.41	0.23	1497
4	<i>Y</i> 4	41.3	20.7	15	15	8	1440	1413	0.20	0.16	1397
5	<i>Y</i> 12	55.6	21.4	0	15	8	1546	1516	0.70	0.30	1494
6	<i>Y</i> 13	59.9	17.1	0	15	8	1561	1525	1.10	0.34	1503
7	<i>Y</i> 21	60.1	11.9	5	15	8	1550	1516	1.80	0.30	1519
8	Y22	55.8	11.2	10	15	8	1527	1508	0.70	0.26	1510
9	<i>Y</i> 31	48.2	13.8	15	15	8	1492	1471	0.26	0.18	1463
10	Y32	44.8	17.2	15	15	8	1465	1441	0.22	0.17	1419
11	<i>Y</i> 41	44.6	22.4	10	15	8	1464	1432	0.24	0.20	1425
12	<i>Y</i> 42	48	24	5	15	8	1508	1461	0.32	0.23	1448
13	<i>Y</i> 121	52	20	5	15	8	1523	1488	0.39	0.25	1475
14	Y122	48.4	18.6	10	15	8	1493	1462	0.28	0.21	1445
15	<i>Y</i> 131	56	16	5	15	8	1536	1505	0.60	0.27	1497
16	Y132	52.1	14.9	10	15	8	1513	1491	0.39	0.22	1485

Таблица 2. Результаты замера вязкости

Для трехкомпонентной системы $Y_1 Y_4 Y_3$:

$$T = 1530X_1 + 1440X_2 + 1512X_3 + 4.5X_1X_2 - - 13.5X_1X_3 + 11.25X_2X_3 + 94.5X_1X_2 \cdot (X_1 - X_2) + + 27X_1X_3 \cdot (X_1 - X_3) - 20.25X_2X_3 \cdot (X_2 - X_3) - 33.75X_1X_2X_3,$$

где X_1, X_4 и X_3 – состав шлака, выраженный в дол. ед.

Графическое изображение математических моделей в виде диаграмм состав—вязкость проводили в два этапа [17]. На первом этапе для каждого значения вязкости строили диаграммы, в которых изображались изотермы линий заданной постоянной вязкости. На рис. 2*a* приведен разрез диаграммы изотерм постоянной вязкости 0.3 Па · с шлака системы CaO–SiO₂–Ce₂O₃, содержащего 15% Al₂O₃ и 8% MgO. На рис. 2*б* приведен разрез диаграммы изотерм постоянной вязкости 0.5 Па · с шлака системы CaO– SiO₂–Ce₂O₃, содержащего 15% Al₂O₃ и 8% MgO. На втором этапе для двух значений температуры (1500 и 1550°C) строили диаграммы, в которых изображались зависимости вязкости от состава шлака. На рис. З*а* приведен разрез диаграммы вязкости-состав шлака при температуре 1500°C и на рис. З*б* при температуре 1550°C. Также для каждого образца шлака по матрице планирования (табл. 1) были получены математические модели в виде приведенного полинома III степени, адекватные при уровне значимости *α* = 0.05, описывающие зависимость температуры начала кристаллизации шлака от состава шлака (рис. 4).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Приведенные на диаграммах состав-свойство экспериментальные данные показывают, что шлаки изучаемой оксидной системы, не содержащие Ce₂O₃, характеризуютУПОЛОВНИКОВА и др.

Рис. 2. Диаграмма температур заданной вязкости шлаков системы CaO–SiO₂–Ce₂O₃, содержащих 8% MgO и 15% Al₂O₃: a - 0.3; $\delta - 0.5$ Па · с (синие линии – температура, °C; черные линии – линии основности).

ся повышенной температурой начала кристаллизации и вязкостью. Температура начала кристаллизации изменяется от 1485°С при основности 2.0 до 1520°С при основности 5.0 (рис. 4). При этом вязкость шлаков в рассматриваемом диапазоне основности изменяется от 0.4 до 2.0 Па · с при температуре 1500°С (рис. 3*a*) и от 0.27 до 0.35 Па · с при температуре 1500°С (рис. 3*a*).

ВЛИЯНИЕ ОКСИДА ЦЕРИЯ И ОСНОВНОСТИ ШЛАКОВ

Рис. 3. Диаграмма вязкостей шлаков системы CaO–SiO₂–Ce₂O₃, содержащих 8% MgO и 15% Al₂O₃: a – при температуре 1500; δ – при температуре 1550°C (синие линии – вязкость, Па · с; черные линии – линии основности).

Присутствие Ce₂O₃ в шлаках изучаемой оксидной системы расширяет диапазон состава шлаков с низкой температурой начала кристаллизации и вязкостью. Увеличение содержания Ce₂O₃ в шлаках основностью 2.0–3.0 от 1 до 15% сопровождается снижением температуры начала кристаллизации от 1490 до 1410°C с сохранением низкой вязкости не более 0.6 и 0.27 Па · с в диапазоне температур нагрева системы 1500 и 1550°C соответственно.

Рис. 4. Диаграмма температур кристаллизации шлаков системы $CaO-SiO_2-Ce_2O_3$, содержащих 8% MgO и 15% Al_2O_3 (синие линии – вязкость, $\Pi a \cdot c$; черные линии – линии основности).

Присутствие Ce₂O₃ в шлаках изучаемой оксидной системы обеспечивает в интервале температур 1500–1550°C достаточно низкую вязкость. При температуре 1500°C вязкость шлаков основностью 2.0–3.0, содержащих 7–15% Ce₂O₃, изменяется в пределах 0.2–0.3 Па · с. Рост основности шлака до 3.0–5.0 при фиксированном содержании Ce₂O₃ на уровне 7–15% сопровождается увеличением вязкости шлаков до 1.0 Па · с и достигает 2.0 Па · с при снижении Ce₂O₃ до 1–6% (рис. 4).

Увеличение температуры до 1550°С и фиксированной основности 3.0–5.0 сопровождается значительным снижением вязкости, которая не превышает 0.35 Па \cdot с при содержании Се₂O₃ 1–15% (рис. 5).

Таким образом, экспериментальные исследования физических свойств основных церийсодержащих шлаков с использованием метода симплексных решеток планирования позволили с минимальными материальными и временными затратами получить новые данные, характеризующие влияние химического состава шлаков на вязкость и температуру кристаллизации, которые имеют практическую значимость. При температурах 1500–1550°С шлаки основностью 2.0–5.0 ед., содержащие 1–15% Се₂O₃, будут сохранят высокую жидкоподвижность.

ЗАКЛЮЧЕНИЕ

1. Экспериментальные исследования в совокупности с математическим методом симплексных решеток планирования позволили с минимальными (16 опытов) затратами получить новые данные о вязкости шлаков системы CaO–SiO₂–Ce₂O₃, содержащей 15% Al₂O₃ и 8% MgO в широком диапазоне химического состава и температур.

2. На диаграммах состав–вязкость шлаки основностью 2.0–5.0, содержащие 1–15% Ce_2O_3 , 15% Al_2O_3 и 8% MgO характеризуются при температуре 1550°C высокой жидко-подвижностью с вязкостью, изменяющейся от 0.18 до 0.35 Па · с. При этом снижение

температуры до 1500°C высокая жидкоподвижность шлаков сохраняется в диапазоне основности 2.0–4.0 при концентрации 7–15% Се₂О₃.

3. Шлаки основностью 2.0–5.0, содержащие 1–15% Ce₂O₃, характеризуется достаточно низкой температурой начала кристаллизации, изменяющейся от 1410 до 1520°C.

Исследование выполнено за счет гранта Российского научного фонда № 22-29-00975, https://rscf.ru/project/22-29-00975/.

СПИСОК ЛИТЕРАТУРЫ

- 1. Попель С.И. Теория металлургических процессов. М.: Металлургия. 1986.
- 2. Соколов Г.А. Внепечное рафинирование стали. М.: Металлургия. 1977.
- 3. Истомин С.А., Бахвалов С.Г., Денисов В.М., Пастухов Е.А., Овчинников Т.Ю. Вязкость и электропроводность расплавов систем CaO-B₂O₃ и ZnO-B₂O₃ // Расплавы. 1995. № 5. С. 36-43.
- Чумаков С.М., Ламухин А.М., Зинченко С.Д. Концепция производства низкосернистых сталей на ОАО "Северсталь" с учетом технологических аспектов // Тр. VI конгресса сталеплавильщиков. М.: АО "Черметинформация". 2001. С. 63–66.
- 5. Wu C., Cheng G., Long H. // High Temperature Materials and Processes. 2014. **33**. № 1. P. 77–84. https://doi.org/10.1515/htmp-2013-0025
- Zheng X., Liu Ch., Qi J., Sun J., Zhang X. // Journal of Sustainable Metallurgy. 2022. 8. P. 1104– 1116.
 - https://doi.org/10.1007/s40831-022-00544-6
- Zheng X., Liu Ch. // ISIJ International. 2022. 62. № 6. P. 1091–1098. https://doi.org/10.2355/ isijinternational.ISIJINT-2021-545
- 8. Yang X., Long H., Cheng G., Wu C., Wu B. // Journal of rare earths. 2011. 29. № 11. P. 1079–1083. https://doi.org/10.1016/S1002-0721(10)60602-3
- Babenko A.A., Smirnov L.A., Upolovnikova A.G., Shartdinov R.R. Study of possibility of cerium reduction from slags of CaO-SiO₂-Ce₂O₃-15%Al₂O₃-8%MgO system // IOP Conference Series: Materials Science and Engineering. "15th International Conference on Industrial Manufacturing and Metallurgy". 2020. P. 012010.
- 10. Wu Ch., Cheng G., Long H., Yang X.A // High Temp. Mater. Proc. 2013. **32**. № 3. P. 207–214. https://doi.org/10.1515/htmp-2012-0119
- Уполовникова А.Г., Бабенко А.А., Смирнов Л.А., Михайлова Л.Ю. Прямое микролегирование стали церием под шлаками системы CaO-SiO₂-Ce₂O₃-15%Al₂O₃-8%MgO дополнительными восстановителями // Известия ВУЗов. Черная металлургия. 2021. 64. № 8. С. 581– 587.
- Ким В.А., Акбердин А.А., Куликов И.С. Использование метода симплексных решеток для построения диаграмм типа состав-вязкость // Известия ВУЗов. Черная металлургия. 1980. № 9. С. 167.
- Ким В.А., Николай Э.И., Акбердин А.А., Куликов И.С. Планирование эксперимента при исследовании физико – химических свойств металлургических шлаков: Методическое пособие. Алма–Ата: Наука, 1989.
- 14. Штенгельмейер С.В., Прусов В.А., Богечов В.А. Усовершенствование методики измерения вязкости вибрационным вискозиметром // Заводская лаборатория. 1985. № 9. С. 56–57.
- 15. Истомин С.А., Хохряков А.А., Рябов В.В., Иванов А.В., Пайвин А.С. Влияние механо-активированных оксидов РЗЭ лантанидной группы на вязкость боратных расплавов // Расплавы. 2014. № 5. С. 69–77.
- 16. Воскобойников В.Г. и др. Свойства доменных шлаков: справочник. М.: Металлургия, 1975.
- 17. Бабенко А.А., Шартдинов Р.Р., Сметанников А.Н., Лобанов Д.А., Уполовникова А.Г. Построение диаграмм вязкости шлаков, содержащих оксиды хрома и бора, методом симплексных решеток // Металлы. 2023. № 3. С. 61–65.

EFFECT OF CERIUM OXIDE AND BASICITY OF SLAGS ON THEIR VISCOSITY AND CRYSTALLIZATION START TEMPERATURE

A. G. Upolovnikova¹, R. R. Shartdinov¹, A. N. Smetannikov¹

¹Institute of Metallurgy, Ural Branch of the RAS, Yekaterinburg, Russia

The study of the influence of the content of cerium oxide and the basicity of the slag on the viscosity and temperature of the onset of crystallization of the $CaO-SiO_2-Ce_2O_3$ system

containing 15% Al₂O₃ and 8% MgO was carried out using the simplex-lattice method of experiment planning, which makes it possible to obtain mathematical models describing the dependence of the property on the composition as a continuous function. Using the experimental data, we built mathematical models that describe the relationship between the temperature of a given viscosity and the composition of the oxide system. Then, by combining the obtained composition-temperature diagrams of a given viscosity on the isothermal section of the composition-viscosity diagram, a set of viscosity isolines was obtained. Generalization of the results of mathematical modeling and graphical display on the isothermal section of the composition-viscosity diagram made it possible to obtain new data on the viscosity of the CaO-SiO₂-Ce₂O₃ oxide system containing 15% Al₂O₃ and 8% MgO, in the range of basicity 2-5 and the content of 0-15% Ce₂O₃. Experimental data show that the slags of the studied oxide system, which do not contain cerium oxide, are characterized by an increased crystallization temperature and viscosity in the studied range of basicity. The presence of cerium oxide in the slags of the studied oxide system provides a rather low viscosity and crystallization start temperature in the temperature range of 1500–1550°C. An increase in the content of cerium oxide in slags with a basicity of 2-3 from 1 to 15% is accompanied by a decrease in the crystallization onset temperature from 1490 to 1410°C. Increasing the basicity to 5.0 leads to an increase in the temperature of the onset of crystallization to 1520°C. At a temperature of 1500°C, the viscosity of slags with a basicity of 2.0–3.0, containing 7–15% Ce₂O₃, varies within 0.2–0.3 Pa \cdot s. An increase in slag basicity to 3.0–5.0 at a fixed Ce₂O₃ content of 7–15% is accompanied by an increase in slag viscosity up to 1.0 Pa \cdot s and reaches 2.0 Pa \cdot s with a decrease in Ce₂O₃ to 1–6%. An increase in temperature to 1550°C and a fixed basicity of 3-5 is accompanied by a significant decrease in viscosity, which does not exceed 0.35 Pa \cdot s at a Ce₂O₃ content of 1–15%.

Keywords: cerium-containing slags, basicity, viscosity, crystallization onset temperature, experiment planning, composition-property diagrams

REFERENCES

- 1. Popel' S.I. Teoriya metallurgicheskih processov [Theory of metallurgical processes]. M.: Metallurgiya, 1986. [In Russian].
- Sokolov G.A. Vnepechnoe rafinirovanie stali [Out-of-furnace steel refining]. M.: Metallurgiya, 1977. [In Russian].
- Istomin S.A., Bahvalov S.G., Denisov V.M., Pastukhov E.A., Ovchinnikov T.Y. Vyazkost' i elektroprovodnost' rasplavov sistem CaO-B₂O₃ i ZnO-B₂O₃ [Viscosity and electrical conductivity of melts of the CaO-B₂O₃ and ZnO-B₂O₃ systems] // Rasplavy. 1995. № 5. P. 36-43. [In Russian].
 Chumakov S.M., Lamuhin A.M., Zinchenko S.D. Koncepciya proizvodstva nizkosernistyh stalej
- Chumakov S.M., Lamuhin A.M., Zinchenko S.D. Koncepciya proizvodstva nizkosernistyh stalej na OAO "Severstal" s uchetom tekhnologicheskih aspektov [The concept of low-sulfur steel production at OAO "Severstal", taking into account technological aspects] // Trudy VI kongressa staleplavil'shchikov. M.: AO "Chermetinformaciya". 2001. P. 63–66. [In Russian].
- 5. Wu C., Cheng G., Long H. // High Temperature Materials and Processes. 2014. 33. № 1. P. 77–84. https://doi.org 10.1515/htmp-2013-0025
- Zheng X., Liu Ch., Qi J., Sun J., Zhang X. // Journal of Sustainable Metallurgy. 2022. 8. P. 1104– 1116. https://doi.org/10.1007/s40831-022-00544-6
- 7. Zheng X., Liu Ch. // ISIJ International. 2022. **62**. № 6. P. 1091–1098. https://doi.org/10.2355/ isijinternational.ISIJINT-2021-545
- 8. Yang X., Long H., Cheng G., Wu C., Wu B. // Journal of rare earths. 2011. 29. № 11. P. 1079–1083. https://doi.org/10.1016/S1002-0721(10)60602-3
- Babenko A.A., Smirnov L.A., Upolovnikova A.G., Shartdinov R.R. Study of possibility of cerium reduction from slags of CaO–SiO₂–Ce₂O₃–15%Al₂O₃–8%MgO system // IOP Conference Series: Materials Science and Engineering. "15th International Conference on Industrial Manufacturing and Metallurgy". 2020. P. 012010.
- 10. Wu Ch., Cheng G., Long H., Yang X.A. // High Temp. Mater. Proc. 2013. **32**. № 3. P. 207–214. https://doi.org/10.1515/htmp-2012-0119
- Upolovnikova A.G., Babenko A.A., Smirnov L.A., Mihajlova L.Yu. Pryamoe mikrolegirovanie stali ceriem pod shlakami sistemy SaO-SiO₂-Ce₂O₃-15%Al₂O₃-8%MgO dopolnitel'nymi vosstanovitelyami [Direct microalloying of steel with cerium under slags of the CaO-SiO₂-Ce₂O₃-15%Al₂O₃-8%MgO system with additional reducing agents] // Izvestiya VUZov. Chernaya metallurgiya. 2021. 64. № 8. P. 581-587. [In Russian].

- 12. Kim V.A., Akberdin A.A., Kulikov I.S. Ispol'zovanie metoda simpleksnyh reshetok dlya postroeniya diagramm tipa sostav–vyazkost' [Using the method of simplex lattices for constructing composition-viscosity diagrams] // Izvestiya VUZov. Chernaya metallurgiya. 1980. № 9. P. 167. [In Russian].
- Kim V.A., Nikolaj E.I., Akberdin A.A., Kulikov I.S. Planirovanie eksperimenta pri issledovanii fiziko-himicheskih svojstv metallurgicheskih shlakov: Metodicheskoe posobie [Planning an experiment in the study of the physico-chemical properties of metallurgical slags: Methodological guide]. Alma-Ata: Nauka. 1989. [In Russian].
- 14. Shtengel'mejer S.V., Prusov V.A., Bogechov V.A. Usovershenstvovanie metodiki izmereniya vyazkosti vibracionnym viskozimetrom [Improving the method for measuring viscosity with a vibrating viscometer] // Zavodskaya laboratoriya. 1985. № 9. P. 56–57. [In Russian].
- 15. Istomin S.A., Hohryakov A.A., Ryabov V.V., Ivanov A.V., Pajvin A.S. Vliyanie mekhano-aktivirovannyh oksidov RZE lantanidnoj gruppy na vyazkosť boratnyh rasplavov [Influence of mechanically activated oxides of REE of the lanthanide group on the viscosity of borate melts] // Rasplavy. 2014. № 5. P. 69–77. [In Russian].
- Voskobojnikov V.G. Svojstva domennyh shlakov: spravochnik [Properties of blast-furnace slags: a reference book]. M.: Metallurgiya. 1975. [In Russian].
- 17. Babenko A.A., Shartdinov R.R., Smetannikov A.N., Lobanov D.A., Upolovnikova A.G. Postroenie diagramm vyazkosti shlakov, soderzhashchih oksidy hroma i bora, metodom simpleksnyh reshetok [Construction of viscosity diagrams for slags containing chromium and boron oxides using the simplex lattice method] // Metally. 2023. № 3. P. 61–65. [In Russian].