УЛК 544.23:620.193.4

КОРРОЗИОННО-ЭЛЕКТРОХИМИЧЕСКОЕ ПОВЕДЕНИЕ АМОРФНЫХ СПЛАВОВ Al-Ni-Co-Nd

© 2022 г. Э. А. Карфидов $^{a,\ b}$, Б. А. Русанов $^{c,\ *}$, В. Е. Сидоров $^{b,\ c}$, Е. В. Никитина $^{a,\ b}$, Д. Яничкович d , П. Швец Ст. d

^а Институт высокотемпературной электрохимии УрО РАН, Екатеринбург, Россия ^b Уральский федеральный университет, Екатеринбург, Россия ^c Уральский государственный педагогический университет, Екатеринбург, Россия ^d Институт физики Словацкой академии наук, Братислава, Словакия *e-mail: rusfive@mail.ru

> Поступила в редакцию 21.09.2021 г. После доработки 29.09.2021 г. Принята к публикации 05.10.2021 г.

Аморфные и нанокристаллические сплавы на основе алюминия с переходными и редкоземельными металлами обладают повышенными механическими характеристиками и высокой химической устойчивостью. В работе изучено влияние соотношения компонентов материала на коррозионно-электрохимическое поведение аморфных сплавов состава алюминий—никель—кобальт—неодим, полученных методом спиннингования из металлических расплавов. По данным гравиметрического и химического анализа установлено, что сплав $Al_{86}Ni_4Co_4Nd_6$ демонстрирует большую коррозионную стойкость в исследуемых условиях, чем $Al_{86}Ni_6Co_2Nd_6$ (скорость коррозии 0.635 и 2.1 мг/м 2 · ч соответственно). С увеличением концентрации никеля в составе исходного сплава потенциал коррозии сдвигается в электроотрицательную область. Исследуемые сплавы обладают широкой областью пассивации за счет формирования на поверхности устойчивого слоя оксида алюминия, что обуславливает их стойкость в исследуемых условиях. Они могут рассматриваться как перспективные составы для изготовления защитных покрытий на основе алюминия.

Ключевые слова: кристаллизация, коррозия, алюминиевые сплавы, аморфные сплавы **DOI:** 10.31857/S0235010622010054

ВВЕДЕНИЕ

Интерес к таким материалам, как металлические стекла и частично-закристаллизованные аморфные сплавы на основе алюминия, обусловлен как их некристаллической структурой, так и хорошими прочностными характеристиками при малом удельном весе [1, 2]. Наиболее широко исследуемой группой среди таких стекол являются сплавы систем алюминий—переходный 3d-элемент—редкоземельный 4f-элемент [1, 3, 4]. Рассматриваемые объекты находят применение в качестве защитных покрытий, работающих в агрессивных средах и испытывающих высокие механические напряжения, а также рассматриваются как перспективные материалы для анодов в литий-ионных аккумуляторах [5, 6].

Эти сплавы демонстрируют интересные особенности фазового разделения в процессе кристаллизации, которые могут оказывать существенное влияние на коррозионные характеристики и другие эксплуатационные свойства этих материалов [7, 8]. Частично закристаллизованные алюминиевые сплавы демонстрируют механические свойства, значительно отличающиеся от полностью аморфных сплавов, а вопрос о

влиянии частичной кристаллизации на коррозионные свойства этих материалов до сих пор обсуждается [9, 10]. Сплавы композиции Al—Ni—Co—Nd с различным соотношением переходных металлов имеют более широкий интервал существования аморфного состояния по сравнению с тройными сплавами, что позволяет считать их более перспективными для создания защитных покрытий. Задачей настоящего исследования было изучить особенности коррозионно-электрохимического поведения этих материалов в растворе хлорида натрия.

МАТЕРИАЛЫ И МЕТОДЫ

Исходные сплавы составов $Al_{86}Ni_4Co_4Nd_6$ и $Al_{86}Ni_6Co_2Nd_6$ для изготовления аморфных лент получены после переплава исходных компонентов Al (99.99%), Ni (99.9%), Co (99.9%) и Nd (98.9%) в электродуговой печи в атмосфере аргона. Переплавка повторялась 4 раза для равномерного перемешивания компонентов сплавов. Металлические ленты получены методом спиннингования в защитной атмосфере аргона, ширина лент составила 3—5 мм, толщина 35—42 мкм. Структура лент проверена на дифрактометре Bruker D8 Advance ($CuK\alpha$), все ленты оказались рентгеноаморфными.

Коррозионное поведение аморфных сплавов исследовано в водном растворе 5 мас. % NaCl при температуре 293 К на протяжении 1500 ч. Для приготовления раствора использовали хлорид натрия марки х. ч., а также дистиллированную воду. Предварительно образцы лент длиной 50 мм подвергались промывке в дистиллированной воде, спиртово-ацетоновой смеси, сушке и взвешиванию. Для достоверности получаемых данных коррозионные исследования проводились в параллельном режиме для трех образцов одного состава. Выдержка образцов осуществлялась в термостате Tagler.

По данным гравиметрических измерений определены массовый и глубинный показатель скорости коррозии аморфных лент. Морфология поверхности образцов изучена на электронном микроскопе TESCAN MIRA 3 LMU до и после эксперимента для определения характера деградации сплава. Взвешивание исследуемых образцов осуществлялось на аналитических весах марки MSA 225P с точностью до 0.0001 г. Измерение размеров образцов осуществлялось с помощью цифрового штангенциркуля. Элементный анализ раствора после длительной коррозионной выдержки образцов выполняли с использованием эмиссионного спектрометра с индуктивно-связанной плазмой OPTIMA 4300 DV. Электрохимические измерения выполнены с помощью потенциостата AutoLAB PGSTAT 30 посредством снятия циклических вольтамперных кривых (ЦВА) со скоростью развертки 1 мВ/с. Рабочим и вспомогательным электродом служили исследуемые образцы аморфных лент. В качестве электрода сравнения использовали платиновую проволоку.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Скорости коррозии, расчитанные по данным гравиметрического и химического анализа, приведены в табл. 1.

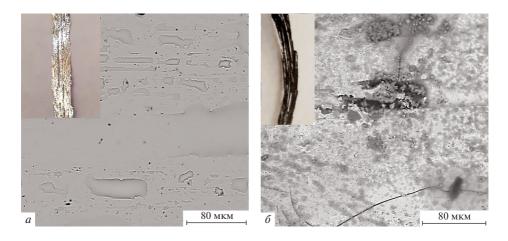
Обнаружено, что значения скоростей коррозии, расчитаные по данным гравиметрических измерений оказались несколько меньше, чем показатели, полученные с помощью элементного химического анализа растворов после испытаний. Мы связываем это с образованием на поверхности прочных оксидных слоев, и, как следствие, некоторым занижением реальных показателей коррозионных потерь материала. Установлено, что аморфный сплав $Al_{86}Ni_4Co_4Nd_6$ демонстрирует большую коррозионную стойкость в исследуемых условиях (скорость коррозии меньше в 3.5 раза по сравнению с составом $Al_{86}Ni_6Co_2Nd_6$).

Выполненный химический анализ растворов, контактировавших с образцами, показал, что селективность выделения в раствор алюминия составляет 70-75%, Ni-20-

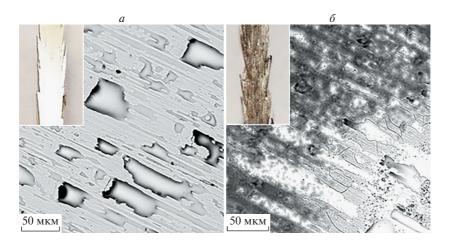
	По данным гравиметрического анализа		По данным химического анализа	
Сплав	скорость коррозии, мг/м ² · ч	глубинный показатель коррозии, мм/год	скорость коррозии, мг/м ² · ч	глубинный показатель коррозии, мм/год
Al ₈₆ Ni ₄ Co ₄ Nd ₆	0.635 ± 0.031	0.0021 ± 0.0001	0.695 ± 0.032	0.0025 ± 0.0001
$Al_{86}Ni_6Co_2Nd_6$	2.100 ± 0.105	0.0065 ± 0.0003	2.271 ± 0.113	0.0073 ± 0.0004

Таблица 1. Скорость коррозии исследуемых сплавов системы Al-Ni-Co-Nd

Таблица 2. Данные атомно-абсорбционного анализа коррозионных растворов после эксперимента


Среднее содержание	Сплав		
компонента в пробе, мас. %	Al ₈₆ Ni ₄ Co ₄ Nd ₆	Al ₈₆ Ni ₆ Co ₂ Nd ₆	
Al	0.143	0.372	
Ni	0.039	0.117	
Co	<0.006	<0.007	
Nd	0.016	0.022	

30%, кобальта и P3M менее 10% для сплава $Al_{86}Ni_4Co_4Nd_6$ и 5 мас. % для сплава $Al_{86}Ni_6Co_2Nd_6$ (табл. 2).

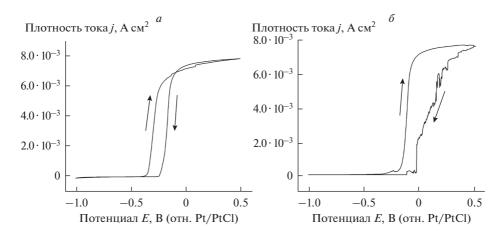

Данные результаты могут свидетельствовать о том, что наряду с переходом в раствор алюминия, также активно взаимодействует с коррозионной средой и никель, а увеличение содержания никеля в сплаве снижает антикоррозионные показатели исследуемых сплавов.

На рис. 1, 2 и в табл. 3 приведены данные металлографического и микрорентгеноспектрального анализа аморфных сплавов после коррозионных испытаний.

Установлено, что исследованные образцы подвержены язвенной коррозии, и локализация процесса коррозии становится более ярко выраженной при увеличении кон-

Рис. 1. Морфология поверхности сплава $Al_{86}Ni_4Co_4Nd_6$: a — исходный образец, δ — образец после коррозионных испытаний.

Рис. 2. Морфология поверхности сплава $Al_{86}Ni_6Co_2Nd_6$: a — исходный образец, δ — образец после коррозионных испытаний.


центрации никеля в исходном сплаве. В результате взаимодействия с коррозионной средой на образцах формируется устойчивый слой оксида алюминия.

На рис. 3 представлены вольтамперные кривые, полученные по результатам электрохимических испытаний.

Отметим широкую область пассивации у исследуемых сплавов. При этом ширина данных зон для исследованных составов приблизительно одинакова, как и их предельные токи коррозии. Также на данных вольтамперных зависимостях виден резкий рост плотности тока при потенциале —0.33 и —0.20 В, для сплавов с большим и меньшим содержанием кобальта, соответственно. Подобный феномен связан с выделением газообразного кислорода при смещении потенциала в анодную область. Дальнейшие установление предельной плотности тока связано с затруднением диффузии на границе раствор/сплав, за счет образования большого числа пузырьков кислорода на поверхности рабочего электрода.

Таблица 3. Состав поверхности исследуемых сплавов

		, •			
	Среднее содержание по поверхности образцов, мол. %				
Элемент	сплав Al ₈₆ Ni ₄ Co ₄ Nd ₆		сплав Al ₈₆ Ni ₆ Co ₂ Nd ₆		
	исходный	после испытаний	исходный	после испытаний	
О	4.54	67.87	4.08	55.10	
Al	83.96	25.56	84.87	37.20	
Nd	5.11	1.89	4.88	2.36	
Ni	3.04	1.55	4.57	1.95	
Co	3.35	0.79	1.61	0.69	
C	_	1.28	_	1.49	
Na	_	0.85	_	1.09	
Cl	_	0.11	_	0.12	

Рис. 3. Циклические вольтамперные кривые для исследуемых сплавов в водном растворе 5% NaCl: a-Al $_{86}$ Ni $_{4}$ Co $_{4}$ Nd $_{6}$; $\delta-$ Al $_{86}$ Ni $_{6}$ Co $_{2}$ Nd $_{6}$.

В табл. 4 представлены значения потенциалов коррозии исследуемых материалов относительного платинового электрода сравнения, а также рассчитанная плотность тока коррозии.

Установлено, что с увеличением концентрации никеля в составе исходного сплава потенциал коррозии сдвигается в электроотрицательную область. Кроме того, на основе данных о значении плотностей тока коррозии, могут быть рассчитаны скорости деградации сплавов. Таким образом, скорость коррозии для сплава $Al_{86}Ni_6Co_2Nd_6-2.53~\text{мг/м}^2\cdot\text{ч}$, для сплава $Al_{86}Ni_4Co_4Nd_6-1.82~\text{мг/m}^2\cdot\text{ч}$. Для сплава с большим содержанием никеля значение скорости деградации близко к значениям, полученными по данным гравиметрического и химического анализа, в то время как для сплава $Al_{86}Ni_4Co_4Nd_6$ подобные показатели заметно отличаются (табл. 1). С точки зрения коррозионных исследований, гравиметрический и химический анализ являются более точными и объективными при определении скорости разрушения материала. С электрохимической точки зрения, чем более электроотрицателен сплав, тем более активно он будет подвержен разрушениям и тем менее пригоден в качестве антикоррозионного покрытия.

По результатам опытов установлено, что сплав, содержащий 4 ат. % никеля и 4 ат. % кобальта, является наиболее предпочтительным с точки зрения коррозионных характеристик. Исследованные аморфные сплавы могут рассматриваться как перспективные составы для изготовления защитных покрытий на основе алюминия.

Таблица 4. Потенциалы коррозии сплавов относительно платинового электрода сравнения

Сплав	Потенциал коррозии, В	Плотность тока коррозии, $A/cm^2 \cdot 10^5$	
Al ₈₆ Ni ₄ Co ₄ Nd ₆	-0.49	0.122	
$\mathrm{Al}_{86}\mathrm{Ni}_{6}\mathrm{Co}_{2}\mathrm{Nd}_{6}$	-0.70	0.170	

ЗАКЛЮЧЕНИЕ

В работе проведены коррозионные исследования аморфных сплавов Al—Ni—Co—Nd с различным соотношением Ni/Co. По результатам гравиметрического и химического анализа установлено, что аморфный сплав $Al_{86}Ni_4Co_4Nd_6$ демонстрирует большую коррозионную стойкость в исследуемых условиях, чем $Al_{86}Ni_6Co_2Nd_6$ (скорость коррозии 0.635 и 2.1 мг/м² · ч соответственно). С помощью анализа водных растворов 5% NaCl после коррозионных испытаний выявлено, что селективность выделения в раствор алюминия составляет — 70—75%, Ni — 20—30%, кобальта и P3M менее 10% для сплава $Al_{86}Ni_4Co_4Nd_6$ и 5 мас. % для сплава $Al_{86}Ni_6Co_2Nd_6$. Показано, что исследуемые сплавы обладают широкой областью пассивации за счет формирования на поверхности устойчивого слоя оксида алюминия, что обуславливает их стойкость в исследуемых условиях.

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 20-32-80001.

СПИСОК ЛИТЕРАТУРЫ

- 1. Inoue A., Ohtera K., Tsai A.P., Masumoto T. Aluminum-based amorphous alloys with tensile strength above 980 MPa (100 kg/mm²) // Jpn. J. Appl. Phys. 1988. 27. P. L479–L482.
- 2. Duwez P. Metallic glasses Historical background // Glassy Metals. 1981. № 1. P. 19–23.
- 3. Jones H., Suryanarayana C. Rapid quenching from the melt // J. Mater. Sci. 1973. 72. № 8. P. 705–753.
- 4. Gloriant T., Greer A.L. Al-based nanocrystalline composites by rapid solidification of Al−Ni−Sm alloys // Nanostruct.Mater. 1998. № 10. P. 389–396.
- 5. Li C.L., Wang P., Sun S.Q., Voisey K.T., McCartney D.G. Corrosion behaviour of Al_{86.0}Co_{7.6}Ce_{6.4} glass forming alloy with different microstructures // App. Surf. Sci. 2016. **384**. P. 116–124.
- 6. Triveco Rios C., Suricach S., Bary M.D., Bolfarini C., Botta W.J., Kiminami C.S. Glass forming ability of the Al–Ce–Ni system // J. NonCryst. Solids. 2008. **354**. P. 4874–4877.
- Tailleart N.R., Huang R., Aburada T., Horton D.J., Scully J.R. Effect of thermally induced relaxation on passivity and corrosion of an amorphous Al–Co–Ce alloy // Corr. Sci. 2012. 59. P. 238–248.
- 8. Gao M.H., Zhang S.D., Yang B.J., Qiu S., Wang H.W., Wang J.Q. Prominent inhibition efficiency of sodium nitrate to corrosion of Al-based amorphous alloy // Appl. Surf. Sci. 2020. **530.** P. 147211.
- 9. Zhang L.M., Zhang S.D., Ma A.L., Umoh A.J., Hu H.X., Zheng Y.G., Yang B.J., Wang J.Q. Influence of cerium content on the corrosion behavior of Al—Co—Ce amorphous alloys in 0.6 M NaCl solution // J. Mat. Sci. & Tech. 2019. 35. № 7. P. 1378—1387.
- 10. Jin L., Zhang L., Liu K., Che Z., Li K., Zhang M., Zhang B. Preparation of Al-based amorphous coatings and their properties // J. Rare Earths. 2021. 39. № 3. P. 340–347.

CORROSION-ELECTROCHEMICAL BEHAVIOR OF Al-Ni-Co-Nd AMORPHOUS ALLOYS

E. A. Karfidov^{1, 2}, B. A. Rusanov³, V. E. Sidorov^{2, 3}, E. V. Nikitina^{1, 2}, D. Janickovic⁴, P. Svec Sr.⁴

¹Institute of High Temperature Electrochemistry UB RAS, Yekaterinburg, Russia
²Ural Federal University, Yekaterinburg, Russia
³Ural State Pedagogical University, Yekaterinburg, Russia
⁴Institute of Physics SAS, Bratislava, Slovakia

Amorphous and nanocrystalline aluminum-based alloys especially compositions with transition and rare-earth metals have improved mechanical characteristics and high chemical resistance. The influence of transition metals ratio on corrosion-electrochemical behavior of aluminum-nickel-cobalt-neodymium amorphous compositions was studied in present work. It was found that $Al_{86}Ni_4Co_4Nd_6$ amorphous alloy demonstrates greater corrosion resistance than $Al_{86}Ni_6Co_2Nd_6$ composition according to the data of gravimetric and chemical analysis (corrosion rates 0.635 and 2.1 $mg/m^2 \cdot h$, respectively). Corrosion potential

shifts to the electronegative region with increase in concentration of nickel in composition of the initial alloy. The investigated amorphous compositions have a wide passivation area due to the formation of stable layer of aluminum oxide on surface, which determines their resistance under the conditions under study. Al-Ni-Co-Nd amorphous alloys can be considered as promising compositions for the manufacture of aluminum-based protective coatings.

Keywords: crystallization, corrosion, aluminum alloys, amorphous alloys

REFERENCES

- 1. Inoue A., Ohtera K., Tsai A.P., Maşumoto T. Aluminum-based amorphous alloys with tensile strength above 980 MPa (100 kg/mm²) // Jpn. J. Appl. Phys. 1988. **27**. P. L479–L482.
- 2. Duwez P. Metallic glasses Historical background // Glassy Metals. 1981. № 1. P. 19–23. 3. Jones H., Suryanarayana C. Rapid quenching from the melt // J. Mater. Sci. 1973. 72. № 8. P. 705–
- 4. Gloriant T., Greer A.L. Al-based nanocrystalline composites by rapid solidification of Al-Ni-Sm alloys // Nanostruct.Mater. 1998. № 10. P. 389–396.
- 5. Li C.L., Wang P., Sun S.Q., Voisey K.T., McCartney D.G. Corrosion behaviour of Al_{86.0}Co_{7.6}Ce_{6.4} glass forming alloy with different microstructures // App. Surf. Sci. 2016. 384. P. 116–124.
- Triveco Rios C., Suricach S., Bary M.D., Bolfarini C., Botta W.J., Kiminami C.S. Glass forming ability of the Al–Ce–Ni system // J. NonCryst. Solids. 2008. 354. P. 4874–4877.
- 7. Tailleart N.R., Huang R., Aburada T., Horton D.J., Scully J.R. Effect of thermally induced relaxation on passivity and corrosion of an amorphous Al-Co-Ce alloy // Corr. Sci. 2012. 59. P. 238-
- 8. Gao M.H., Zhang S.D., Yang B.J., Qiu S., Wang H.W., Wang J.Q. Prominent inhibition efficiency of sodium nitrate to corrosion of Al-based amorphous alloy // Appl. Surf. Sci. 2020. 530. P. 147211.
- 9. Zhang L.M., Zhang S.D., Ma A.L., Umoh A.J., Hu H.X., Zheng Y.G., Yang B.J., Wang J.O. Influence of cerium content on the corrosion behavior of Al-Co-Ce amorphous alloys in 0.6 M NaCl solution // J. Mat. Sci. & Tech. 2019. 35. № 7. P. 1378–1387.
- 10. Jin L., Zhang L., Liu K., Che Z., Li K., Zhang M., Zhang B. Preparation of Al-based amorphous coatings and their properties // J. Rare Earths. 2021. 39. № 3. P. 340–347.