—— РАДИОЭКОЛОГИЯ **——**

УЛК 539.163:59.009:59.085:574.2

СОДЕРЖАНИЕ ТОРИЯ В НАЗЕМНЫХ И ПРЕСНОВОДНЫХ ОРГАНИЗМАХ: ОБЗОР МИРОВЫХ ДАННЫХ

© 2023 г. С. В. Фесенко^{1,*}, Е. С. Емлютина¹

¹ Всероссийский научно-исследовательский институт радиологии и агроэкологии, Обнинск, Россия *e-mail: Corwin 17F@mail.ru

Поступила в редакцию 29.09.2022 г. После доработки 12.10.2022 г. Принята к публикации 09.11.2022 г.

Представлен обзор данных о концентрациях тория в тканях наземных и пресноводных организмов. Показано, что концентрации 232 Th в тканях животных изменяется в широких пределах, отражая концентрации тория в окружающей среде. Концентрации тория в тканях сельскохозяйственных животных варьируют от 0.9×10^{-4} до 2.1×10^{-2} Бк/кг для регионов с нормальным ториевым фоном и от 3.1×10^{-2} до 1.4×10^{-1} Бк/кг (сырая масса) в районах с повышенными концентрациями тория в почве. Более высокие значения отмечаются в тканях диких животных. Наибольшие значения концентрации 232 Th отмечены в скелете, за которым следовали легкие, почки, печень и, наконец, мышцы. Отмечена тенденция к большему накоплению тория в видах, занимающих более высокое положение в трофических цепях. Показано, что в условиях обычного фона концентрации 232 Th в рыбе может достигать 1.0×10^{-1} Бк/кг (сырая масса), а в районах высокого ториевого фона эта величина может быть до 100 раз выше. Полученные результаты показывают важность изучения переноса тория по пищевым цепочкам и необходимость учета изученных закономерностей при оценке последствий радиоактивного загрязнения окружающей среды.

Ключевые слова: торий, уран, обзор, животные, продукты животноводства, пресноводные рыбы **DOI:** 10.31857/S0869803123010071, **EDN:** JXETZL

Концентрации изотопов тория в тканях животных варьируют в широких пределах из-за различий в фоновых уровнях содержания этих радионуклидов в почвах, природных условиях и особенностях ведения сельского хозяйства [1-3]. Основными источниками поступления радионуклидов в организм животного являются корма, вода, а также частицы почвы. Поступив в желудочно-кишечный тракт животного (ЖКТ), часть радионуклидов всасывается в кровь, а остававшаяся доля радионуклидов выводится из организма с фекальными массами [1]. Таким образом, абсорбция радионуклидов в ЖКТ является первым этапом при поступлении радионуклидов в организм животных, а величина коэффициента всасывания определяет накопление радионуклидов в органах и тканях. Вследствие малой подвижности тория в окружающей среде обычно считается, что его всасывание в ЖКТ является достаточно низким. МКРЗ, обобщая доступные данные, относит торий к группе радионуклидов, таких как Pu, Ce, Np, Am и Cm, характеризующихся наименьшим всасыванием тория в желудке человека [2].

Вследствие этого накопление тория в органах и тканях животных в обычных условиях невели-

ко, а данные о накоплении этого радионуклида животными очень ограничены. Довольно редки и работы, посвященные накоплению тория в пресноводных экосистемах: рыбах, амфибиях, земноводных. В то же время во многих сценариях загрязнения окружающей среды торий играет важную роль в облучении населения и природных организмов [3], что и определяет необходимость обобщения данных о концентрациях тория в тканях наземных и водных организмов, а также в соответствующих продуктах. Важным является и обобщение информации о содержании тория в некоторых субпродуктах, таких как печень и почки животных, которые также являются компонентами рациона человека [3]. Учитывая, что эти субпродукты во многих случаях вносят значимый вклад в облучение населения, анализ этих данных необходим для корректной оценки риска радиоактивного загрязнения окружающей среды для человека и биоты.

Также как и в наших предыдущих публикациях [4, 5], концентрации тория в сельскохозяйственных животных и природных организмах представлены как для областей с фоновым содержанием тория в окружающей среде, так и для областей с концентрациями тория в окружающей

среде, существенно превышающими фоновые уровни, которые определяются как антропогенной деятельностью: добычей урана, угля, алюминия или редких металлов, так и высоким естественным ториевым фоном [6].

Для территорий с нормальным содержанием тория в окружающей среде значительная часть данных была получена в результате измерений его содержания в продуктах животноводства, используемых человеком.

Представленная статья, основной целью которой было обобщение данных о содержании тория в тканях животных и природных организмов, является логическим развитием публикаций, содержащих обзор мировых данных о содержании изотопов тория в почве, атмосфере, поверхностных водах и растениях [4, 5].

СОДЕРЖАНИЕ ТОРИЯ В ТКАНЯХ ЛОМАШНИХ ЖИВОТНЫХ

Существующие данные по концентрациям тория в органах и тканях домашних животных получены в основном для территорий с фоновым содержанием тория в почвах. Концентрации активности 232 Th в мясе (мышцах) животных варыровали от $(4.4 \pm 1.0) \times 10^{-4}$ в свинине [7] до $(2.4 \pm 0.2) \times 10^{-3}$ Бк/кг в говядине [9] (табл. 1). В то же время достоверных статистических различий между содержанием 232 Th в мышцах рогатого скота (KPC), свинины и кур не выявлено. Также не были выявлены статистически достоверные различия между концентрациями изотопов тория в яйце и мышцах кур [9, 10].

Из данных, представленных в табл. 1, видно, что концентрация ²³²Th в молоке KPC примерно в 4 раза меньше, чем в говядине, что практически совпадает с аналогичным отношением для изотопов цезия. Близкими к этой величине являются и отношения концентраций в молоке и мышцах и для других изотопов тория — 228 Th и 230 Th. Heoбходимо отметить, что эти соотношения справедливы только для регионов с фоновыми уровнями содержания тория в почвах, в которых концентрации тория в почвах достаточно близки. Для регионов с повышенным содержанием тория в окружающей среде отношения содержания этого радионуклида в молоке к его концентрации в мясе КРС могут существенно варьировать в зависимости от концентраций тория в почвах районов, в которых были отобраны пробы продукции.

Концентрации 232 Th в костной ткани животных варьируют в достаточно узком диапазоне $(2.0-20.0)\times 10^{-3}$ Бк/кг (сырая масса), значительно превышая концентрации этого радионуклида в мышцах (табл. 1).

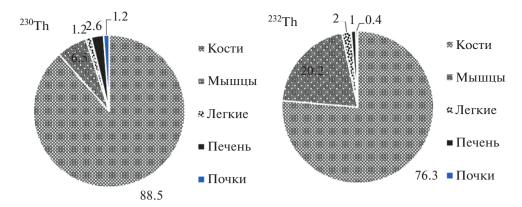
Более высокие концентрации ²³²Th отмечены в тканях животных регионов с повышенным содержанием тория в окружающей среде. Чрезвычайно высокие концентрации тория $(2.6 \pm 1.2) \times 10^{-1}$ Бк/л в молоке были отмечены в Инлии в районе с повышенным содержанием естественных тяжелых радионуклидов в почве [12]. Концентрации ²³²Th в почве этого региона варьируют от 290 до 480 Бк/кг (сухая масса) со средним значением 430 Бк/кг [12], что более чем в 10 раз выше среднемирового значения для территорий с фоновым содержанием тория в почвах $(2-30 \text{ Бк кг}^{-1}, \text{ сухой массы})$ [6]. Значительные уровни содержания ²³²Th в молоке $(2.8 \times 10^{-2} \, \text{Бк/л})$ отмечены и в регионе плато Покос де Калдас в Бразилии [11]. Для территории Польши с содержанием тория в почве близком к фоновому концентрации 232 Th в молоке (6.0–28.1) × $\times 10^{-4}$ Бк/ л были более чем на порядок величины ниже.

По данным НКДАР концентрация ²³²Th в молоке, производимом в различных странах, варьирует от 2.7×10^{-4} до 1.2×10^{-3} Бк/кг (сырая масса), при этом в качестве референтного значения для радиологических оценок предложено использовать 3.0×10^{-4} Бк/кг (сырая масса) [6]. Данные, представленные в табл. 1 для концентраций ²³²Th в молоке в регионах с естественным ториевым фоном $(6.0-12.0) \times 10^{-4}$, существенно превышают референтное значение, хотя и нахолятся в лиапазоне значений, приведенных в отчете НКДАР. В то же время средние данные по содержанию ²³²Th в мышцах животных, оцененные на основе данных табл. 1 для территорий с нормальным естественным радиационным фоном, довольно близки к референтному значению для мяса 1 мБк/кг, представленном в отчете НКДАР.

Справочные значения изотопов тория ²²⁸Th и ²³⁰Th в молоке и мясных продуктах, также представленные в публикации НКДАР [6], составляют 0.3×10^{-3} и 0.5×10^{-3} Бк/кг в молоке и 1.0×10^{-3} и 2.0×10^{-3} Бк/кг в мясе, а отношение концентраций 230 Th и 232 Th примерно равно двум [6]. Отношения концентраций ²²⁸Th, ²³⁰Th в молоке к концентрации ²³²Th, рассчитанные на основе данных табл. 1, варьировали от 1.4 до 117.8 для 228 Th/ 232 Th и от 0.2 до 7.5 для 230 Th/ 232 Th. В случае же, если чрезвычайно высокое значение ²²⁸Th в кости крупного рогатого скота 0.53 Бк/кг, представленное в работе [7], исключить из этой оценки, то диапазон отношений концентраций ²²⁸Th/²³²Th составит 1.4—13.3. Отметим, что довольно высокие значения отношения концентраций ²²⁸Th и ²³²Th были ранее получены нами для растений [5], что указывает на то, что более высокие концентрации активности ²²⁸Th у животных могут наблюдаться не только из-за прямого поступления

Таблица 1. Концентрации тория в тканях домашних животных (Бк/кг, сырая масса) **Table 1.** Thorium concentrations in tissues of domestic animals (Bg/kg, fresh mass)

Вид животных	Ткани	Страна	²²⁸ Th	²³⁰ Th	²³² Th	Ссылки	
Территории с фоновым содержанием тория в окружающей среде							
KPC	Кости	Германия	$(5.3 \pm 1.2) \times 10^{-1}$	$(9.7 \pm 1.5) \times 10^{-3}$	$(4.5 \pm 2.2) \times 10^{-3}$	[7]	
KPC	Кости	США	_	$(9.0-160.0) \times 10^{-3}$	$(2.0-23.6) \times 10^{-3}$	[8]	
KPC	Почки	США	_	$(4.2-1.5) \times 10^{-2}$	$(2.5-3.6) \times 10^{-3}$	[8]	
KPC	Печень	США	_	$(2.2-2.4) \times 10^{-3}$	$(3.4-22) \times 10^{-4}$	[8]	
KPC	Легкие	США	_	$(0.3-2.2) \times 10^{-2}$	$(5.9-88.1) \times 10^{-4}$	[8]	
KPC	Молоко	Польша	$(1.4 \pm 0.4) \times 10^{-3}$	$(0.8 \pm 0.4) \times 10^{-3}$	$(0.6 \pm 0.05) \times 10^{-3}$	[9]	
	Молоко	Польша	$(2.6 \pm 0.4) \times 10^{-3}$	$(1.2 \pm 0.2) \times 10^{-3}$	$(1.2 \pm 0.2) \times 10^{-3}$	[10]	
KPC	Мышцы	Польша	$(6.3 \pm 1.5) \times 10^{-3}$	$(2.9 \pm 0.25) \times 10^{-3}$	$(2.4 \pm 0.2) \times 10^{-3}$	[9]	
KPC	Мышцы	Германия	$(1.3 \pm 0.1) \times 10^{-3}$	$(6.0 \pm 1.0) \times 10^{-4}$	$(0.9 \pm 0.2) \times 10^{-4}$	[7]	
KPC	Мышцы	Польша	$(4.9 \pm 0.5) \times 10^{-3}$	$(3.0 \pm 0.4) \times 10^{-3}$	$(3.6 \pm 0.4) \times 10^{-3}$	[10]	
KPC	Мышцы	США	_	$(1.3 \pm 1.0) \times 10^{-3}$	$(5.6-6.7) \times 10^{-4}$	[8]	
Куры	Яйца	Польша	$(2.0 \pm 0.1) \times 10^{-2}$	$(1.5 \pm 0.15) \times 10^{-3}$	$(1.5 \pm 0.3) \times 10^{-3}$	[9]	
Куры	Яйца	Польша	$(2.3 \pm 0.3) \times 10^{-2}$	$(1.6 \pm 0.6) \times 10^{-3}$	$(2.5 \pm 0.3) \times 10^{-3}$	[10]	
Куры	Мышцы	Польша	$(3.8 \pm 0.4) \times 10^{-3}$	$(2.0 \pm 0.7) \times 10^{-3}$	$(1.3 \pm 0.3) \times 10^{-3}$	[9]	
Куры	Мышцы	Польша	$(2.5 \pm 0.8) \times 10^{-3}$	$(2.1 \pm 0.68) \times 10^{-3}$	$(1.7 \pm 0.6) \times 10^{-3}$	[10]	
Свиньи	Кости	Германия	$(5.0 \pm 0.4) \times 10^{-2}$	$(1.1 \pm 0.1) \times 10^{-2}$	_	[7]	
Свиньи	Мышцы	Германия	$(1.1 \pm 0.1) \times 10^{-3}$	$(8.0 \pm 0.1) \times 10^{-4}$	$(4.4 \pm 1.0) \times 10^{-4}$	[7]	
Свиньи	Мышцы	Польша	$(5.7 \pm 0.7) \times 10^{-3}$	$(2.7 \pm 0.3) \times 10^{-3}$	$(1.8 \pm 0.1) \times 10^{-3}$	[9]	
Свиньи	Мышцы	Польша	$(2.4 \pm 0.4) \times 10^{-3}$	$(7.3 \pm 3.0) \times 10^{-4}$	$(5.2 \pm 2.0) \times 10^{-4}$	[10]	
Территории с повышенным содержанием тория в окружающей среде							
KPC	Молоко	Бразилия		1.5×10^{-2}	2.8×10^{-2}	[11]	
KPC	Молоко	Индия			$(2.6 \pm 1.2) \times 10^{-1}$	[12]	
KPC	Мышцы	Бразилия		5.6×10^{-2}	1.1×10^{-1}	[11]	
KPC	Мышцы	Индия			$(1.2 \pm 0.4) \times 10^{-1}$	[12]	
KPC	Мышцы	Индия			1.4×10^{-1}	[13]	
Куры	Яйца	Бразилия		1.5×10^{-1}	2.8×10^{-1}	[11]	
Куры	Мышцы	Бразилия		1.6×10^{-2}	3.1×10^{-2}	[11]	


 228 Th в продукцию, но и накопления в продукции 228 Ac и его последующего распада с переходом по цепочке в 228 Th во время ее хранения.

Это позволяет сделать вывод об отсутствии равновесия между изотопами тория в тканях животных и продукции животноводства и показывает необходимость прямых измерений всех изотопов этого радионуклида при оценке риска загрязнения окружающей среды тяжелыми естественными радионуклидами.

Вариабельность между концентрациями ²³⁰Th и ²³²Th в тканях животных является ожидаемой и определяется как различием между концентраци-

ями 238 U и 232 Th в почвах, так и отличиями в накоплении урана и тория растениями. Среднее значение отношений концентраций 230 Th к 232 Th в продуктах животного происхождения по данным табл. 1 равно 2.0 ± 1.7 , что достаточно хорошо согласуется с аналогичным отношением концентраций 230 Th/ 232 Th в растениях [5] и соответствует данным НКДАР [6].

Как и уран, торий в значительной степени удерживается в скелете. Согласно данным работы [7], концентрации 232 Th в костях крупного рогатого скота равны $(4.5 \pm 2.2) \times 10^{-3}$ Бк/кг (сырая масса). Это значение было примерно в 5 раз вы-

Рис. 1. Распределение изотопов тория между органами бычков. По данным работы, % от содержания в организме [14]. **Fig. 1.** Thorium isotope distribution between steers organs, % of the total content in the body. According to [14].

ше, чем средняя концентрация тория в мягких тканях животных ($(0.9 \pm 0.2) \times 10^{-4}$ Бк/кг сырой массы) [7].

Несколько меньшие значения содержания изотопов тория в тканях КРС были получены на основе изучения поступления тяжелых естественных радионуклидов в ткани крупного рогатого скота, проведенного в районе повышенного содержания тория в почве штата Нью-Йорк [14]. Концентрации изотопов тория в почве региона исследований составляли 37.6, 43.0 и 38.4 Бк/кг (сухая масса) для 232 Th, 230 Th и 228 Th соответственно. Средние концентрации ²³²Th и ²³⁰Th в тканях животных варьировали от 0.6×10^{-3} до 2.4×10^{-2} Бк/кг (сырая масса) и от 1.3×10^{-3} до 0.9 Бк/кг (сырая масса) соответственно. Наибольшие значения концентрации 232 Th отмечены в костях (20^1), за которыми следовали легкие (7), почки (5), печень (3) и, наконец, мышцы (1).

Основываясь на этих данных, Линсалата оценил распределение ²³⁰Th и ²³²Th между органами бычков [14] (рис. 1). Из данных рис. 1 видно, что изотопы тория накапливаются в основном в костях, затем в мышцах, в то время как накопление тория в легких, почках и печени является низким.

СОДЕРЖАНИЕ ТОРИЯ В ТКАНЯХ ДИКИХ ЖИВОТНЫХ

В последние годы количество данных о концентрациях тория в диких видах животных значительно увеличилось. Следуя подходу, предложенному в публикации 108 МКРЗ [15] для референтных организмов, такая информация часто предоставляется на основе содержания радионуклидов в организме в целом, без дифференциации между различными тканями (табл. 2). В первую очередь это

связано с тем, что целью использования этой информации является оценка доз облучения биоты. В то же время в литературе имеются и работы, в которых проводится дифференция содержания тория между отдельными органами и тканями (табл. 2) [7, 16]. Важным выводом, следующим из этих исследований, является то, что общие закономерности распределения тория в тканях диких млекопитающих аналогичны закономерностям, отмеченным для домашних животных. Так, данные по содержанию 232 Th в копытах, рогах, костях и мясе оленей в Сербии составили 4.0×10^{-2} , 3.3×10^{-2} \times 10⁻², (3.1–8.3) \times 10⁻³ и 1.6 \times 10⁻³ Бк/кг (сырая масса) соответственно, и они достаточно близки к содержанию тория в аналогичных тканях у крупного рогатого скота [16].

Наименьшие концентрации тория отмечены у млекопитающих, довольно низкие концентрации тория характерны для холоднокровных организмов — амфибий и рептилий, более высокие концентрации этого радионуклида отмечены в насекомых, птицах и дождевых червях (рис. 2).

Представленные выше данные для природных организмов даны для зоны умеренного климата, для районов с фоновым содержанием тория в почве. В работе [25] приведены данные о концентрации естественных радионуклидов в тканях животных, составляющих традиционную пишу аборигенов в районе реки Аллигатор в северной Австралии (рис. 3). Район исследований относится к тропической зоне Австралии с повышенным естественным радиоактивным фоном; району, в котором проводятся работы по добыче урана. Данные по концентрациям изотопов урана и тория были предоставлены для традиционных продуктов питания аборигенов (рыба, буйвол, свинья, гусь, полевая змея, гоанна², черепаха и прес-

¹ Концентрации ²³²Th в органах животных нормированы на концентрацию этого элемента в мышцах.

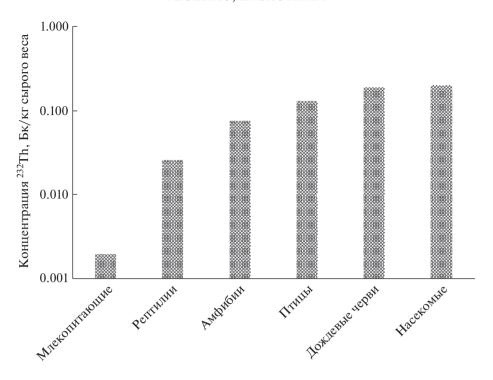
² Один из видов ящериц рода Varanus, обитающих в Австралии.

Таблица 2. Концентрации тория в тканях диких животных в районах фонового содержания тория в окружающей среде, Бк/кг (сырая масса)

Table 2	. Thorium	concentrations	s in wildlife tissues	s in background thorium	areas. Bg/kg (fresh mass)

Вид	Ткани	Страна	²³⁰ Th	²³² Th	Ссылки
Амфибия	Организм в целом	Россия		0.03	[17]
Амфибия (Лягушка)	Организм в целом	Англия		0.18	[18]
Амфибия	Организм в целом	Общее		0.018	[18]
Медведь	Кости	Сербия		$(3-10) \times 10^{-3}$	[16]
Медведь	Мышцы	Сербия		1.6×10^{-3}	[16]
Птицы	Организм в целом	Сербия	0.03	0.2	[19]
Птицы	Организм в целом	Англия		0.069	[18]
Птицы (Хищные)	Организм в целом	Россия		0.21 ± 0.06	[21]
Птицы (Насекомоядные)	Организм в целом	Россия		0.15 ± 0.09	[21]
Олень	Мышцы	Сербия		1.6×10^{-3}	[16]
Дождевые черви	Организм в целом	Финляндия		0.34	[22]
Дождевые черви	Организм в целом	Норвегия		0.155	[23]
Дождевые черви	Организм в целом	Англия		0.068	[18]
Насекомые	Организм в целом	Сербия	0.36	0.075	[20]
Млекопитающие	Организм в целом	Сербия	0.01	3.2×10^{-3}	[20]
Млекопитающие	Организм в целом	Англия	2.9×10^{-3}	2.7×10^{-3}	[18]
Млекопитающие (Хищные)	Организм в целом	Россия		0.51 ± 0.11	[24]
Млекопитающие (Травоядные)	Организм в целом	Россия		0.31 ± 0.2	[24]
Рептилии	Организм в целом	Сербия	0.15	0.026	[20]
Грызуны	Организм в целом	Россия		0.6 ± 0.19	[20]
Косуля	Мышцы	Германия	$(1.2 \pm 0.1) \times 10^{-3}$	$(6 \pm 1) \times 10^{-4}$	[7]

новодный крокодил), обитающих на этой территории.


Концентрации 230 Th и 232 Th в мышцах изучаемых видов биоты варьировали от $(2.0\pm3.0)\times10^{-3}$ Бк/кг (сырая масса, водяной буйвол) до $(1.6\pm1.0)\times10^{-2}$ Бк кг $^{-1}$ (сырая масса, бородавчатая змея). Концентрации тория в мышцах черепахи, гуся, гоанны и дикой свиньи занимают промежуточное значение, тогда как концентрации 232 Th в печени черепахи $((3.8\pm4.0)\times10^{-2}$ Бк/кг (сырая масса)) и костях и печени крокодила $((3.0\pm13.0)\times10^{-2}$ Бк/кг (сырая масса)) были выше, чем в мышцах животных (рис. 3). В большинстве случаев концентрация 230 Th в тканях животных была выше, чем 232 Th, что связано с повышенным содержанием в поверхностных водах 238 U, являющегося материнским радионуклидом для 230 Th.

В работе [25] также представлена информация о концентрации тория в отдельных органах водяного буйвола, отобранных в районе реки Аллигатор (рис. 4). Наибольшие концентрации как ²³⁰Th, так и ²³²Th были обнаружены в языке животных, довольно высокие концентрации тория

были обнаружены в печени, сердце и почках, в то время как самые низкие значения были в мышцах животных.

Еще одним примером территорий с повышенным содержанием тория в природных организмах является Республика Коми Российской Федерации. Этот район хорошо известен благодаря радиоэкологическим исследованиям, направленным на изучение действия изотопов урана, тория и радия на окружающую среду. Вариабельность концентраций тория в почве этого региона довольно высока (от 60 до 1500 Бк/кг, сухой массы), что позволяет сравнить концентрации тория в организме животных в областях, близких к нормальному фону, с концентрациями тория в животных, обитающих в районах с повышенным содержанием тория (табл. 3) [21, 24]. В результате многолетних исследований, проведенных в этом регионе, получен большой массив данных о накоплении ²³²Th v 43 видов дикой биоты [17, 21, 24].

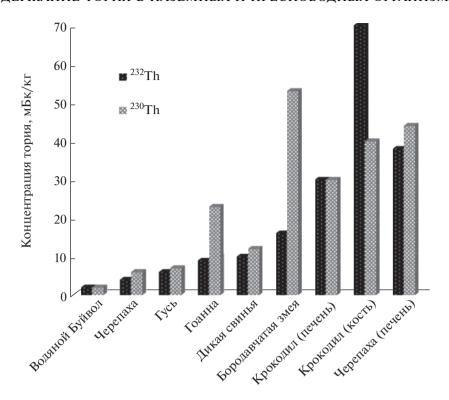
Отмечено, что самые высокие концентрации активности тория наблюдались у насекомоядных (*Eulipotyphla*) и мелких грызунов, таких как крот, землеройка, тундровая полевка, а наиболее низ-

Рис. 2. Средние концентрации ²³²Th в природных организмах, Бк/кг, сырая масса.

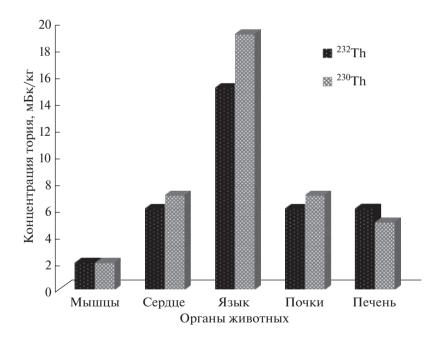
Fig. 2. Mean ²³²Th concentrations in biota species, Bq/kg, fresh mass.

кие концентрации $(0.4-1.6) \times 10^{-1}$ Бк/кг, наблюдались у холоднокровных видов — лягушек и живородящих ящериц. Концентрации ²³²Th в грызунах и мелких хищниках изменялась в пределах $(0.8-8.6) \times 10^{-1}$ Бк/кг в зоне с фоновым содержанием тория в почве, и от 1.2 до 5.0 в зоне с повышенным содержанием тория в почве.

Содержание 232 Th в птицах варьирует в диапазоне $(0.5-3.4) \times 10^{-1}$ Бк/кг (сырая масса) при среднем 1.6×10^{-1} Бк/кг. Наибольшие концентрации 232 Th были отмечены у сов (филин, уральская сова), за которыми следуют водоплавающие птицы (евразийский чирок, свиязь, большой крохаль), тетеревиные (глухарь, тетерев-косач, рябчик, белая куропатка) и, наконец, воробьиные [24].


По накоплению ²³²Th виды биоты могут быть представлены в виде ряда: насекомоядные грызуны > хищные млекопитающие > мелкие грызуны > травоядные животные > хищные птицы > насекомоядные птицы > рептилии > амфибии (рис. 5), что в целом согласуется с данными табл. 2. Концентрации ²³²Th в видах биоты в районах, богатых торием, были выше, чем в аналогичных видах в областях с низким уровнем тория. Наблюдаемые различия между концентрациями ²³²Th, отмеченные у одних и тех же видов животных, обитающих в районах с повышенным и естественным торие-

вым фоном, варьировали от 1.2^3 (европейская норка) до 45 (болотная лягушка).

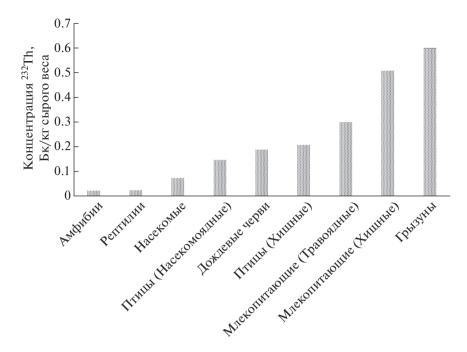

В то же время следует отметить отсутствие пропорциональности между концентрациями тория в животных и почве. Так, при отличии концентрации ²³²Th в почвах районов нормального и повышенного фона более, чем в 10 раз, различие между средними концентрациями у млекопитающих грызунов составляет 2.7 ± 1.7 раза, тогда как у наземных хищных животных эта величина была 2.4 ± 1.4. Для насекомоядных птиц отношение концентраций ²³²Th, измеренных для района естественного фона к концентрациям тория, характерных для зоны повышенного фона, было равно 2.4 ± 1.4 , тогда как для хищных птиц -8.1 ± 2.0 . Отмеченное отсутствие пропорциональности между концентрацией тория в биоте и почве связано, возможно, с пониженным накоплением тория растениями в зоне высоких концентраций тория в почве и особенностями питания различных видов животных.

Как для нормального ториевого фона, так и для территорий повышенного содержания тория в почвах отмечался эффект трофического накопления в пищевых цепочках, определяющий тен-

³ Отношение средней концентрации тория в организме животных в районах с повышенным ториевым фоном к средней концентрации тория в организме животных, отобранных в районах с естественным ториевым фоном.

Рис. 3. Содержание 232 Th и 230 Th в тканях животных, обитающих в районе р. Аллигатор, Австралия. **Fig. 3.** Concentrations of 232 Th and 230 Th in tissues of animals inhabiting the Alligator River area, Australia.

Рис. 4. Распределение 230 Th и 232 Th по органам водяного буйвола. **Fig. 4.** Distribution of 230 Th and 232 Th among water buffalo organs.


денцию более высокого накопления тория у хищных видов [24].

Данные по концентрациям 232 Th в мышцах диких животных колебались от 0.6×10^{-3} Бк/кг для

мяса косули и от 1.7×10^{-1} до 2.3 Бк/кг для уральской неясыти. Таким образом концентрации активности ²³²Th в мясе животных, приведенные в настоящей работе, довольно близки к справочно-

Таблица 3. Концентрации тория в некоторых видах диких животных и птиц, обитающих в Республике Коми (Россия) (Бк/кг) [Маслов, 1973; Маслов, Маслова, 1972] (сырая масса) **Table 3.** Thorium concentrations in some wildlife species in the Komi region (Russia) with different levels of radiation background (Bq/kg) [17, 21, 24] (fresh mass)

D 6	Фоновы	ій район	Область высокого фона		
Вид биоты	Nº	²³² Th	Nº	²³² Th	
Крот	36	0.86	49	1.97	
Землеройка	94	0.82	56	1.56	
Тундровая полевка	491	0.7	38	1.68	
Тёмная полевка	68	0.62	7	0.86	
Рыжая полевка	46	0.41	74	1.56	
Водяная полевка	39	0.33	11	1.64	
Белки	15	0.08	36	0.29	
Бурундуки	18	0.45	5	0.74	
Зайцы	12	0.41	14	1.1	
Лось	2	0.33	0.53		
Северный олень	2	0.33	0.57		
Куница	12	0.49	8	1.15	
Горностай	13	0.62	9	1.72	
Ласка	5	0.66	10	1.97	
Европейская норка	5	0.41	5	0.49	
Выдра	6	0.49	9	0.66	
Лиса	3	0.37	3	0.49	
Живородящая ящерица	57	0.04			
Болотная лягушка	31	0.016	19	0.72	
Западный глухарь	17	0.17	205	0.9	
Тетерев	15	0.23	184	1.97	
Рябчик	25	0.05	208	0.71	
Глухарь	15	0.21	61	0.77	
Евразийский чирок	7	0.34	5	1.23	
Большой крохаль	4	0.27	4	1.6	
Клёст-сосновик	18	0.08	41	0.26	
Большая синица	15	0.06	19	0.28	
Белая трясогузка	12	0.06	21	0.26	
Снегирь	6	0.06	17		
Большой пёстрый дятел	12	0.12	6	0.33	
Дятел	4	0.1	10	0.44	
Тетеревятник	2	0.18	3	1.15	
Ястреб-перепелятник	3	0.14	4	1.44	
Филин	2	0.28	3	1.85	

Рис. 5. Средние концентрации ²³²Th в природных организмах, обитающих на территории Республики Коми (Россия), Бк/кг, сырой вес.

Fig. 5. Mean concentrations in natural organisms inhabiting the territory of the Komi Republic (Russia), Bq/kg, fresh mass weight.

му значению для референтной концентрации 232 Th в мясе, представленному в публикации НКДАР 1.0×10^{-3} Бк/кг [6].

В работе [23] приводятся данные о концентрациях ²³²Th у дождевых червей, отобранных в области высокого природного ториевого фона в Норвегии, в которой концентрации тория в почве варьировали от 410 Бк/кг (ненарушеные земли) до 3870 Бк кг в местах добычи тория. В районах расположения заброшенных шахт (участки техногенно-измененного естественного радиоактивного фона) эти значения составляли 2260 и 1765 Бк/кг (сухая масса).

Установлено, что наиболее высокие концентрации 232 Th, а именно – $(1.9 \pm 1.5) \times 10^2$ и $(4.5 \pm 3.7) \times$ × 10² Бк/кг наблюдаются у эндогенных дождевых червей (A. caliginosa и A. rosea), отобранных на участках техногенно-измененного естественного радиоактивного фона, где ранее осуществлялась добыча тория. Проводимые работы привели к нарушению структуры почвенных профилей и появлению большего количества частиц, обогащенных тяжелыми естественными радионуклидами, что способствовало их повышенному поступлению в организм эндогенных дождевых червей. Среди эпигамных видов (D. rubidus и L. rubellus) максимальные уровни 232 Th $- (1.5 \pm 0.9) \times 10^2$ и $(2.3 \pm 1.1) \times 10^{2}$ Бк/кг наблюдались у червей, отобранных за пределами антропогенно-нарушенных областей, где высокая концентрация 232 Th была обнаружена как в поверхностном слое почвы, так и в корнях и опавших листьях (880—1700 Бк/ кг).

СОДЕРЖАНИЕ ТОРИЯ В ПРЕСНОВОДНОЙ БИОТЕ

Данные по содержанию ²³²Th в пресноводной биоте приведены в табл. 4. Информация о накоплении ²³²Th в водной биоте водоемов, расположенных в регионах, обогащенных торием, выделена курсивом.

Большая часть доступных данных содержат информацию о содержании изотопов тория в рыбе, хотя некоторая ограниченная информация доступна для водных растений [26, 27]. Содержание тория в водной растительности (водоросли, водный мох) существенно выше, чем в рыбе и достигает 5.7 ± 9.3 Бк/кг (сырая масса) [26].

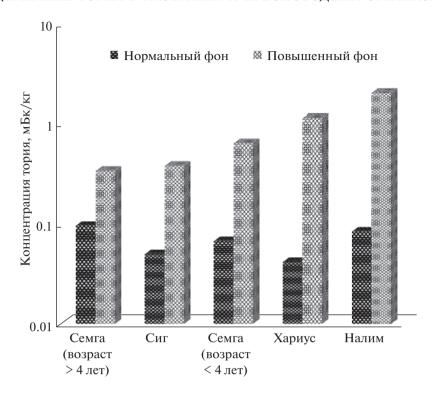
Концентрация 232 Th в рыбе в областях с фоновым содержанием тория в природной среде варьирует в диапазоне 1.3×10^{-3} — 9.4×10^{-2} Бк/кг (сырая масса). Среднее значение составляет 2.1×10^{-2} Бк/кг, что примерно в 2 раза выше референтного значения предложенного НКДАР [6]. Существенно более высокие значения (0.21–5.8) Бк/кг (сырая масса) отмечены в районах с высоким содержанием тория в окружающей среде, в частности, в районах, где ведутся открытые разработки

Таблица 4. Концентрации ²³²Th в пресноводной биоте, Бк/кг (сырая масса) **Table 4.** Concentrations of ²³²Th in freshwater biota species, Bq/kg (fresh mass)

Виды	Страна	Комментарий	²³² Th	Ссылки			
Территории с фоновым содержанием тория в окружающей среде							
Водные растения	Франция	Средние данные	5.7 ± 9.3	[26]			
Бурые водоросли	Англия	Средние данные	4.3×10^{-2}	[27]			
Рыба	Португалия	р. Тавора, Вуга, Дао	$(8.0 \pm 3.0) \times 10^{-3}$	[28]			
Рыба	Россия	Средние данные	$(4.1-9.4) \times 10^{-2}$	[24]			
Рыба	США	Озеро Мичиган	$(2.4 \pm 0.5) \times 10^{-2}$	[29]			
Рыба	США	Озеро Мичиган	$(4.9 \pm 1.6) \times 10^{-2}$	[29]			
Рыба	США	Озеро Эри	2.8×10^{-2}	[29]			
Рыба (форель)	Англия	Средние данные	1.8×10^{-2}	[27]			
Рыба (окунь)	США	Озеро Мичиган	$(1.3 \pm 0.3) \times 10^{-3}$	[29]			
Форель	Канада	Средние данные	$(9.0 \pm 14) \times 10^{-2}$	[29]			
Территории с повышенным содержанием тория в окружающей среде							
Водный мох (сухая масса)	Португалия	Средние данные	1.7 ± 0.1	[30]			
Рыба	Португалия	р. Мондего	$(2.1 \pm 1.4) \times 10^{-2}$	[28]			
Рыба	Австралия	р. Аллигатор	$(1.0-45.0) \times 10^{-3}$	[25]			
Мидии	Австралия	р. Аллигатор	$(2.0 \pm 0.8) \times 10^{-1}$	[31]			
Рыба	Нигерия ²	р. Бисичи	$(5.8 \pm 0.2) \times 10^{-1}$	[32]			
Рыба	Индия	р. Кунши	$(4.0 \pm 3.1) \times 10^{-2}$	[13]			
Рыба	СССР	Республика Коми	0.3-1.97	[25]			

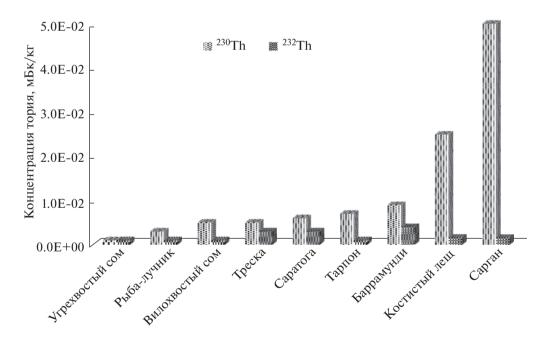
по добыче тория, урана, редкоземельных металлов и олова.

Концентрации ²³²Th в различных видах рыбы существенно варьируют, отражая особенности поведения и пищевые привычки рыбы, а также особенности загрязнения водоемов изотопами тория. В качестве примера, иллюстрирующего вариабельность содержания тория в рыбе водоемов зоны умеренного климата (Республика Коми) северного полушария и тропической зоны Австралии (район р. Аллигатор) Южного полушария, на рис. 6 и 7 приведены данные о содержании тория в рыбе, специфичной для этих районов.


Из рис. 6 видно, что средние значения содержания 232 Th в рыбе водоемов зоны фонового содержания тория в окружающей среде варьируют в достаточно узком диапазоне от 4.1×10^{-2} в хари-

усе до 9.4×10^{-2} Бк/кг (сырая масса) во взрослых особях семги. Концентрации тория в пробах рыбы, отобранных в зоне с высоким ториевым фоном (Республика Коми), были примерно на два порядка величины выше и находились в диапазоне от 0.3-2.0 Бк/кг (сырая масса).

Как уже отмечалось, Республика Коми является примером региона повышенного ториевого фона, тогда как р. Аллигатор иллюстрирует особенности загрязнения водных стоков выбросами уранового производства.


Сравнительные данные о содержании двух изотопов тория, которые принадлежат цепочкам распада ²³⁸U и ²³²Th в мягких тканях рыб р. Аллигатор (Северная Австралия), приведены на рис. 7.

Концентрация изотопов тория в нефильтрованной воде в районе исследований варьирует от

Рис. 6. Содержание ²³²Th в рыбе водоемов районов нормального и повышенного содержания тория в окружающей среде.

Fig. 6. Concentrations of ²³²Th in fish of water bodies located in areas with normal and elevated environmental thorium levels.

Рис. 7. Содержание 230 Th и 232 Th в мягких тканях рыбы реки Аллигатор, Австралия. **Fig. 7.** Concentrations of 230 Th and 232 Th in soft tissues of the Alligator River fish, Australia.

0.29 до 22 мБк/л и от 0.11 до 7.9 мБк/л для 230 Th и 232 Th соответственно, в зависимости от места расположения поступления в реку сточных вод ура-

нового производства. Концентрации 232 Th в мягких тканях рыбы варьировали от 1.0×10^{-3} до 4.0×10^{-3} Бк/кг (сырая масса), тогда как содержа-

ние ²³⁰Th в рыбе было примерно в 10 раз больше, отражая более высокие концентрации это радионуклида в водной среде.

Представленные результаты измерения изотопов тория в рыбе (Республика Коми, Россия) и мягких тканях рыбы в целом согласуются с данными табл. 4, показывающими, что в условиях нормального фона концентрация 232 Th в рыбе может достигать 1.0×10^{-1} Бк/кг (сырая масса), а в районах высокого ториевого фона эта величина может быть до 100 раз выше.

ЗАКЛЮЧЕНИЕ

Концентрации ²³²Th как в наземных, так и пресноводных организмах изменяются в широких пределах, отражая концентрации тория в окружающей среде. Концентрации тория в тканях наземных животных варьируют от 0.9×10^{-4} до 0.86 Бк/кг (сырая масса) для регионов с нормальным ториевым фоном и от 3.1×10^{-2} до 1.97 Бк/кг для районов с высокими концентрациями тория в почве (ториевые провинции) или антропогеннонарушенных территорий. Торий в основном накапливается в костной ткани животных. У млекопитающих наибольшие значения концентрации ²³²Th отмечены в скелете, за которыми следовали легкие, почки, печень и, наконец, мышцы. Содержание тория в тканях диких животных варьирует от 0.016 до 0.86 Бк/кг в зонах нормального техногенного фона и от 0.2 до 2.3 Бк/кг на территориях, обогащенных торием. Отмечена тенденция к более высокому накоплению тория в видах, занимающих более высокое положение в трофических цепях. Концентрации тория в рыбе несколько выше, чем тканях наземных животных. В условиях нормального фона концентрация 232 Th в рыбе может достигать 1.0×10^{-1} Бк/кг (сырая масса), а в районах высокого ториевого фона эта величина может быть до 100 раз выше. В целом полученные результаты показывают важность изучения переноса тория по пищевым цепочкам и необходимость учета изученных закономерностей при оценке последствий радиоактивного загрязнения окружающей среды.

БЛАГОДАРНОСТИ

Авторы статьи выражают свою признательность анонимным рецензентам за тщательное прочтение рукописи и ценные советы.

СПИСОК ЛИТЕРАТУРЫ

1. *Исамов Н.Н.*, *Фесенко С.В*. Анализ закономерностей всасывания радионуклидов в желудочно-кишечном тракте сельскохозяйственных животных // Радиац. биология. Радиоэкология. 2021. Т. 61. № 1.

- C. 87–104. [*Isamov N.N., Fesenko S.V.* Analysis of Data on the Radionuclide Adsorption in the Gastrointestinal Tract of Farm Animals // Radiacionnaya biologiya. Radiojekologiya. 2021. V. 61. № 1. P. 87–104. (In Russ.)]
- 2. International Commission on Radiological Protection. Age-dependent doses to members of the public from intake of radionuclides, part 2 ingestion dose coefficients. Annals of the ICRP. ICRP Publication 67. Annals of the ICRP 23, (3/4). Oxford: Pergamon Press, 1993.
- 3. Алексахин Р.М., Архипов Н.П., Бархударов Р.М. и др. Тяжелые естественные радионуклиды в биосфере: Миграция и биологическое действие на популяции и биогеоценозы. М.: Наука, 1990. 368 с. [Alexakhin R.M., Arkhipov N.P., Barkhudarov R.M. et al. Heavy Natural Radionuclides in Biosphere: Migration and Biological Effects on Population and Biogeocenoses. M.:Nauka, 1990. 368 p. (In Russ.)].
- 4. Фесенко С.В., Емлютина Е.С. Концентрация тория в природных средах: обзор мировых данных // Радиац. биология. Радиоэкология. 2020. Т.60. № 5. С. 542—555. [Fesenko S.V., Emlutina E.S. Thorium concentrations in the environment: a review of the world data // Radiacionnaya biologiya. Radiojekologiya. 2020. V. 60. № 5. Р. 542—555. (In Russ.)]
- 5. Фесенко С.В., Емлютина Е.С. Концентрация тория в растениях: обзор мировых данных // Радиац. биология. Радиоэкология. 2022. Т. 62. № 4. С. 441—452 [Fesenko S.V., Emlutina E.S. Thorium concentrations in the environment: a review of the world data // Radiacionnaya biologiya. Radiojekologiya. 2022. V. 62. № 5. Р. 441—452 (In Russ.)]
- United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Sources and effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation. UNSCEAR 2000 Report to the General Assembly, with scientific annexes, Annex B. New York: UNCEAR, 2000. P. 84– 156.
- 7. *Haas G., Schuppfner R., Muller A.* Transfer of natural and manmade radionuclides from plants to roe deer and farm animals // J. Radioanal. Nucl. Chem. 1995. V. 194. P. 269–276.
- 8. *Linsalata P.l., Morse R., Ford H., Eiesenbud M.* Transport pathways of Th, U, R and La from soil to cattle tissues // J. Environ. Radioact. 1989. V. 10. P. 115–140.
- 9. *Pietrzak-Flis Z., Rosiak L., Suplinska M.M. et al.* Dietary intake of ²³⁸U, ²³⁴U, ²³⁰Th, ²³²Th, ²²⁸Th and ²²⁶Ra in the adult population of central Poland // Sci. Total. Environ. 2001. V. 273. P. 163–169.
- 10. *Pietrzak-Flis Z.*, *Suplinska M.M.*, *Rosiak L*. The dietary intake of ²³⁸U, ²³⁴U, ²³⁰Th, ²³²Th, ²²⁸Th and ²²⁶Ra from food and drinking water by inhabitants of the Waibrzych region // J. Radioanal. Nucl. Chem. 1997. V. 222. P. 189–193.
- 11. Amaral E.C.S., Rochedo E.R.R., Paretzke H.G., Franca E.P. The radiological impact of agricultural activities

- in an area of high natural radioactivity // Radiat. Prot. Dosim. 1992. V. 45. P. 289–292.
- 12. *Giri S., Singh G., Jha V.N., Tripathi R.M.* Risk assessment due to ingestion of natural radionuclides and heavy metals in the milk samples: a case study from a proposed uranium mining area, Jharkhand // Environ. Monit. Assess. 2011. V. 175. P. 157–166.
- 13. *Jha S.K.*, *Gothankar S.*, *Longwai P.S. et al.* Intake of ²³⁸U and ²³²Th through the consumption of foodstuffs by tribal populations practicing slash and burn agriculture in an extremely high rainfall area // J. Environ. Radioact. 2012. V. 103. P. 1–6.
- 14. Linsalata P. Uranium and Thorium Decay Series Radionuclides in Human and Animal Foodchains—A Review // J. Environ. Quality. 1994. V. 23. № 4. P. 633—642.
- International Commission on Radiological Protection. Environmental Protection – the Concept and Use of Reference Animals and Plants. ICRP Publication 108. Ann. ICRP. 38. Oxford, UK: Elsevier Science Ltd.,
- 16. *Milošević Z., Kljajic R., Bauman A., Kljajic R.* Radiochemical studies of U, Ra-226 and Th in lichens, moss, and wildlife in central Yugoslavia. Second special symposium on natural radiation in the environment, Bombay, 1981 (Conference proceedings). Bombay: Bhabha Atomic Research Centre, 1982; P. 36–37.
- 17. *Маслов В.И.*, *Маслова К.И*. Радиоэкологические группы млекопитающих и птиц биогеоценозов районов повышенной естественной радиоактивности // Радиоэкологические исследования в природных биогеоценозах. М.: Наука, 1972. С. 100—101 [*Maslov V.I.*, *Maslova K.I.* Radiojekologicheskie gruppy mlekopitajushhih i ptic biogeocenozov rajonov povyshennoy estestvennoy radioaktivnosti // Radiojekologicheskie issledovanija v prirodnyh biogeocenozah. M.: Nauka, 1972. P. 100—101 (In Russ.)]
- 18. Beresford N.A., Barnett C.L., Jones D.G. et al. Background exposure rates of terrestrial wildlife in England and Wales // J. Environ. Radioact. 2008. V. 99. P. 1430–1439.
- 19. Hosseini A., Beresford N.A., Brown J.E. et al. Background dose-rates to reference animals and plants arising from exposure to naturally occurring radionuclides in aquatic environments // J. Radiol. Prot. 2010. V. 30. P. 235.
- Ćujić M., Dragović S. Assessment of dose rate to terrestrial biota in the area around coal fired power plant applying ERICA tool and RESRAD BIOTA code // J. Environ. Radioact. 2017. V. 188. P. 1–7.
- 21. *Маслов В.И.*, *Маслова К.И*. Накопление урана, тория и радия животными радиоэкологической группы тесного контакта с радиоактивностью в местах их обитания // Теоретические и практические аспекты воздействия малых доз ионизирующего излучения. Сыктывкар: Коми филиал АН СССР, 1973. С. 100—101 [*Maslov V.I.*, *Maslova K.I.* Accumulation of uranium, thorium and radium by animals of radioecological group of close contact with ra-

- dioactivity in their habitats // Theoretical and practical aspects of effects of low doses of ionizing radiation. Syktyvkar: Komi Branch of Academy of Science of USSR, 1973. P. 100–101.
- 22. Tuovinen T., Kasurinen A., Häikiö E. et al. Transfer of elements relevant to nuclear fuel cycle from soil to boreal plants and animals in experimental meso- and microcosms // Sci. Total. Environ. 2016. V. 539. P. 252–261.
- 23. *Popic J.M., Salbu B., Skipperud L.* Ecological transfer of radionuclides and metals to free-living earthworm species in natural habitats rich in NORM // Sci. Total Environ. 2012. V. 414. P. 167–176.
- 24. Таскаев А.И., Титаева Н.А., Алексахин Р.М., Поликарпов Г.Г. Распределение и миграция естественных радионуклидов в природных биогеоценозах // Тяжелые естественные радионуклиды в биосфере / Алексахин Р.М. (ред.). М.: Наука, 1990. С. 15—73. [Taskaev A.I., Titaeva N.A., Alexakhin R.M., Polikarpov G.G. Raspredelenie i migracija estestvennyh radionuklidov v prirodnyh biogeocenozah // Tyazhelye estestvennye radionuklidy v biosfere / Alexakhin R.M. (Ed.). М.: Nauka, 1990. Р. 15—73. (In Russ.)].
- Martin P., Hancock G.J., Johnston A., Murray A.S. Natural-series radionuclides in traditional north Australian Aboriginal foods // J. Environ. Radioact.1998. V. 40. P. 37–58.
- 26. Lambrechts A., Foulquier L., Garnier-Laplace J. Natural radioactivity in the aquatic components of the main French rivers // Radiat. Prot. Dosim. 1992. V. 45. P. 253–256.
- 27. *Beresford N.A.* Assessment of naturally occurring radionuclides around England and Wales, Science Report: SC030283/SR, U.K. Environment Agency (2007).
- Carvalho F.P., Oliveira J.M., Lopes I., Batista A. Radionuclides from past uranium mining in rivers of Portugal // J. Environ. Radioact. 2007. V. 98. P. 298–314.
- 29. Lucas H.F. jur., Edgington D., Colby P.J. Concentrations of Trace Elements in Great Lakes Fishes // J. Fisher. Res. Board Canada. 1970. V. 27. № 4. P. 677–684.
- 30. *Pratas J., Favas P.J.C., Varun M. et al.* Distribution of rare earth elements, thorium and uranium in streams and aquatic mosses of Central Portugal // Environ. Earth. Sci. 2017. V. 76. P. 156.
- 31. *Ryan B., Bollhofer A., Martin P.* Radionuclides and metals in freshwater mussels of the upper South Alligator River, Australia // J. Environ. Radioact. 2008. V. 99. P. 509–526.
- 32. *Arogunjo A.M. et al.* Uranium and thorium in soils, mineral sands, water and food samples in a tin mining area in Nigeria with elevated activity // J. Environ. Radioact. 2009. V. 100. P. 232–240.

Thorium Concentrations in Terrestrial and Freshwater Organisms: A Review of the World Data

S. V. Fesenko^{a,#} and E. S. Emlyutina^a

^aRussian Institute of Radiology and Agroecology, Obninsk, Russia [#]e-mail: Corwin 17F@mail.ru

An overview of data on thorium concentrations in terrestrial animals, as well as freshwater organisms is presented. Concentrations of 232 Th in both animals and fish vary widely, reflecting environmental thorium concentrations. Thorium concentrations in the regions with a normal thorium background in animal tissues were in a range from 0.9×10^{-4} to 2.1×10^{-2} Bq/kg, and from 3.1×10^{-2} to 1.4×10^{-1} Bq/kg in the areas with high thorium concentrations in the soil. Significantly higher values were observed in wild animals' tissues. The highest 232 Th concentrations were found to be in the skeleton, followed by lungs, kidneys, liver and finally muscles. It has been shown that thorium accumulation is higher in species occupying a higher position in the trophic chains. In areas with normal thorium background, the concentration of 232 Th in fish can reach 1.0×10^{-1} Bq/kg (fresh mass), and in areas of high thorium background this value can be up to 100 times higher. The obtained results show the importance of study on the thorium transfer along the food chains and the need to consider observed regularities when assessing the consequences of radioactive contamination of the environment.

Keywords: thorium, uranium, review, animals, animal products, freshwater fish