——— КОМПЬЮТЕРНАЯ АЛГЕБРА —

УЛК 519.688

ПАКЕТ ПРОЦЕДУР И ФУНКЦИЙ ДЛЯ ПОСТРОЕНИЯ И ОБРАЩЕНИЯ АНАЛИТИЧЕСКИХ ОТОБРАЖЕНИЙ С ЕДИНИЧНЫМ ЯКОБИАНОМ

© 2023 г. Т. М. Садыков^{а,*} (ORCID: 0000-0003-0741-2318)

^а Российский экономический университет им. Г.В. Плеханова, 117997 Москва, Стремянный пер., 36, Россия *E-mail: Sadykov.TM@rea.ru

Поступила в редакцию 19.05.2022 г. После доработки 01.08.2022 г. Принята к публикации 22.08.2022 г.

Множество полиномиальных отображений из n-мерного комплексного пространства в себя с постоянным ненулевым определителем матрицы Якоби является необозримо обширным для любой размерности n > 1. Известная гипотеза о якобиане утверждает, что любое такое отображение является полиномиально обратимым. В то время как вычисление определителя матрицы Якоби хорошо реализовано в современных системах компьютерной алгебры, обращение полиномиального отображения представляет собой задачу весьма высокой вычислительной сложности. В работе представлен пакет процедур и функций JC на языке программирования Wolfram для алгоритмического построения и обращения полиномиальных и некоторых более общих аналитических отображений с единичным определителем матрицы Якоби для заданной размерности пространства переменных и заданной степени компонент отображения. Программный код, наборы данных для его тестирования и результаты вычислительных экспериментов размещены в свободном доступе по адресу https://www.researchgate.net/publication/358409332 JC Package and Datasets.

DOI: 10.31857/S0132347423010077, EDN: GSGRBF

1. ВВЕДЕНИЕ

Пусть $f = (f_1, ..., f_n) : \mathbb{C}^n \to \mathbb{C}^n$ — аналитическое отображение с n комплексными переменными $x = (x_1, ..., x_n) \in \mathbb{C}^n$, заданное в непустой области $D \subset \mathbb{C}^n$. Будем называть отображение f якобиевым, если определитель его матрицы Якоби есть ненулевая постоянная:

$$J(f;x)J(f_{1},...,f_{n};x_{1},...,x_{n}) := \begin{vmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{n}}{\partial x_{1}} \\ \vdots & \ddots & \ddots & \vdots \\ \frac{\partial f_{1}}{\partial x_{n}} & \cdots & \frac{\partial f_{n}}{\partial x_{n}} \end{vmatrix} \in \mathbb{C}^{*} \equiv \mathbb{C} \setminus \{0\}.$$

$$(1.1)$$

В настоящей работе этот определитель называется якобианом отображения f.

Обращением отображения f называется аналитическое отображение $f^{-1}:\mathbb{C}^n\to\mathbb{C}^n$, такое, что $f\circ f^{-1}=f^{-1}\circ f=\mathrm{Id}$ в некоторой непустой области в пространстве \mathbb{C}^n . Область, в которой имеют место данные равенства, вообще говоря, существенным и сложным образом зависит от отображения f и области D. Все рассматриваемые

в настоящей работе отображения задаются либо целыми функциями, либо функциями, допускающими аналитическое продолжение во все n-мерное комплексное пространство, за исключением некоторой особой гиперповерхности \mathcal{H} . Согласно теореме единственности для аналитических функций любое такое отображение (вообще говоря, многозначное) определяется любым своим ростком в окрестности произвольной неособой точки, который может быть аналитически продолжен в $\mathbb{C}^n \setminus \mathcal{H}$.

Разработка методов и алгоритмов для поиска решений уравнений и их систем различного типа в заданных классах функций (в частности, в кольце многочленов или в поле рациональных функций над заданными числовыми полями) представляет собой актуальную задачу современной компьютерной алгебры [1]. В настоящей работе представлен пакет процедур и функций JC на языке программирования Wolfram для алгоритмического построения и обращения полиномиальных и некоторых более общих аналитических отображений с постоянным ненулевым определителем матрицы Якоби для заданной размерности пространства переменных и заданной степени компонент отображения.

В одномерном случае (то есть, при n=1) любое отображение, удовлетворяющее равенству (1.1), является аффинным, то есть, имеет вид ax+b для некоторых $a \in \mathbb{C}^*$, $b \in \mathbb{C}$. Обратное к нему отображение также аффинно. Всюду в дальнейшем мы предполагаем, что $n \geq 2$.

Известная гипотеза о якобиане, остающаяся открытой на протяжении длительного времени (см. [7]), утверждает, что отображение f = $=(f_1,\ldots,f_n)$, заданное многочленами $f_j\in\mathbb{C}[x_1,\ldots,x_n]$ x_n], является якобиевым в том и только том случае, когда обратное к нему отображение также является полиномиальным. В любой размерности $n \ge 2$ семейство всех полиномиальных отображений $f:\mathbb{C}^n \to \mathbb{C}^n$ с единичным якобианом чрезвычайно обширно и обладает весьма сложной структурой (см. [3], главы 3.5, [8] и ссылки на литературу в этих работах). Построение полиномиальных автоморфизмов заданного пространства – важное направление исследований, которому посвящены многочисленные работы, в частности, [4-6, 10].

Многочисленность безрезультатных попыток доказать гипотезу о якобиане или построить контрпример к ней, предпринимавшихся на протяжении более чем восьми десятилетий, обуславливает необходимость систематического изучения множества отображений с единичным якобианом в произвольной размерности с помощью методов и технических средств современной компьютерной алгебры. В настоящей работе представлен один из возможных подходов к разработке программного обеспечения для решения этой задачи на основе алгоритмического поиска параметризаций семейств якобиевых отображений.

Согласно фундаментальной теореме Дружковского [2] для обоснования или опровержения гипотезы о якобиане достаточно изучить ее истинность в весьма частном случае кубических отображений вида

$$\left\{ (f_1, \dots, f_n) : \mathbb{C}^n \to \mathbb{C}^n, \right.$$

$$\left. f_j(x) = x_j + \left(\sum_{k=1}^n a_{jk} x_k \right)^3, \ j = 1, \dots, n \right\}.$$
(1.2)

Здесь (a_{jk}) — квадратная матрица размера n с комплексными элементами.

В настоящей работе изучается более широкое семейство аналитических отображений, каждое из которых задается выбором квадратной матрицы $A = (a_{jk})$ размера $n \ge 2$ и функции одного комплексного переменного $\varphi(\zeta) \in \mathbb{O}(\Omega)$, аналитической в непустой области $\Omega \subset \mathbb{C}$. Данное семейство состоит из отображений вида

$$f = (f_1, ..., f_n) : \mathbb{C}^n \to \mathbb{C}^n,$$

$$f[A, \varphi](x) := x + \varphi(Ax)$$
(1.3)

с координатами

$$f_j: x \mapsto x_j + \varphi\left(\sum_{k=1}^n a_{jk} x_k\right), \quad j = 1, \dots, n,$$

якобиан которых тождественно равен ненулевой постоянной для всех x из пересечения областей определения функций $f_j(x)$. В частном случае, когда $\varphi(\zeta) = \zeta^3$, отображение (1.3) является отображением Дружковского (1.2).

При изучении отображений вида (1.3) достаточно ограничиться рассмотрением случая, когда линейная часть функции $\varphi(\cdot)$ равна нулю. В этом случае линейная часть отображения (1.3) задается единичной матрицей и оно может быть якобиевым лишь в том случае, если его якобиан тождественно равен единице. Всюду в дальнейшем мы будем говорить, что матрица A и аналитическая функция $\varphi(\zeta)$, определяющие в совокупности отображение (1.3) с единичным якобианом, образуют хорошую пару. Процедуры и функции пакета ЈС позволяют вычислять хорошие пары матриц и функций, исследовать их свойства и, при некоторых дополнительных условиях, обращать определяемые ими аналитические отображения вида (1.3).

Пусть U — квадратная матрица, такая, что якобиан отображения $f[U,\varphi](x)$ есть ненулевая постоянная для любого x из области определения и, вдобавок, для произвольной аналитической функции $\varphi \in \mathbb{O}(\Omega)$. Всюду в дальнейшем матрицы, обладающие данным свойством, будут называться универсальными.

Многочисленные компьютерные эксперименты с помощью процедур и функций пакета JC позволяют предполагать, что универсальная матрица размера n задается выбором целочисленного разбиения $p=(p_1,\ldots,p_m)$ размерности n на m слагаемых и перестановкой длины m однозначно с точностью до перестановочного подобия матриц и выбора значений алгебраически независимых комплексных параметров.

В настоящей работе действие аналитической функции одного переменного $\varphi(\cdot) \in \mathbb{O}(\Omega)$ на векторе комплексных переменных $\xi = (\xi_1, ..., \xi_n) \in \Omega \times ... \times \Omega \subset \mathbb{C}^n$ определяется покоординатным образом: $\varphi(\xi_1, ..., \xi_n) := (\varphi(\xi_1), ..., \varphi(\xi_n))$. Для всех d = 2, 3, ... существует n-параметрическое семейство квадратных матриц $H(s), s \in \mathbb{C}^n$, таких, что для произвольной универсальной матрицы U отображение $x + ((U \odot H(s))x)^d$, определенное произведением Адамара (то есть, поэлементным произведением) $U \odot H(s)$, является якобиевым.

Любое такое отображение является полиномиально обратимым, а обратное к нему отображение может быть построено с помощью рекуррентного процесса. В настоящей работе якобиевы отображения исследуются с помощью алгоритмов, реализованных в пакете процедур и функций JC.

Все рассмотренные в настоящей работе полиномиальные отображения являются полиномиально обратимыми. Более того, для любой универсальной матрицы U и произвольной аналитической функции $\varphi(\zeta)$ обращение отображения $f[U,\varphi]$ есть конечная суперпозиция $\varphi(\zeta)$ и арифметических операций с аргументами $x=(x_1,...,$

 x_n) $\in \mathbb{C}^n$ (ср. с основным результатом работы [9]). Однако, обращение якобиева отображения $x+\varphi(Ax)$, заданного аналитической функцией $\varphi(\zeta)$ и не универсальной матрицей A, не обладает, вообще говоря, этим свойством. С помощью функций пакета JC в настоящей работе построен пример якобиева отображения вида $f[A, \ln](x) := x + \ln(Ax)$, заданного матрицей Тёплица A, для которого обратное отображение $f[A, \ln]^{-1}$ не допускает представления в виде конечной суперпозиции логарифмической функции и арифметических операций (см. раздел 4.3).

2. ЯКОБИЕВЫ УРАВНЕНИЯ И ИХ ОДНОРОДНОСТИ

В свете фундаментального результата Дружковского [2] важный класс якобиевых отображений вида (1.3) образуют отображения, заданные мономиальной функцией $\varphi(\zeta) = \zeta^d$. Этот класс состоит из полиномиальных отображений вида $x + (Ax)^d$, где $d \in \mathbb{N}$, $x = (x_1, ..., x_n) \in \mathbb{C}^n$, $A = (a_{jk}) -$ квадратная матрица размера n. Координаты данного отображения имеют вид

$$x_j + \left(\sum_{k=1}^n a_{jk} x_k\right)^d, \quad j = 1, ..., n.$$
 (2.1)

При d=0 или d=1 отображение (2.1) является (аффинно) линейным, а его якобиан равен определителю соответствующей матрицы. В дальнейшем мы не рассматриваем эти тривиальные частные случаи.

Отображение (2.1) имеет единичный якобиан в том и только том случае, когда элементы матрицы A удовлетворяют некоторой системе алгебраических уравнений, зависящей от размерности n пространства переменных и степени d определяющих его многочленов. Всюду в дальнейшем мы будем использовать следующее определение.

Определение 1. Под системой якобиевых уравнений в размерности $n \ge 2$ для степени $d, d \in \mathbb{N}$ понимается система алгебраических уравнений с

переменными a_{jk} , чьи решения определяют матрицы $A = (a_{jk}), j, k = 1,...,n$, для которых якобиан отображения $x + (Ax)^d$ тождественно равен 1.

Например, система якобиевых уравнений в размерности 2 для степени 3 имеет вид

$$\begin{cases} a_{11}^{3} + a_{21}^{2}a_{22} = 0, \\ a_{11}a_{12}^{2} + a_{22}^{3} = 0, \\ a_{12}a_{11}^{2} + a_{21}a_{22}^{2} = 0, \\ a_{12}^{2}a_{22}^{2} \det A = 0, \\ a_{12}^{2}a_{21}^{2} \det A = 0, \\ a_{12}a_{21}^{2} \det A = 0, \\ a_{11}a_{21} \det A \cdot \operatorname{perm} A = 0, \\ a_{11}a_{21} \det A \cdot \operatorname{perm} A = 0, \\ \det A(a_{12}^{2}a_{21}^{2} + 4a_{11}a_{12}a_{22}a_{21} + a_{11}^{2}a_{22}^{2}) = 0. \end{cases}$$

$$(2.2)$$

Здесь $\operatorname{perm} A = a_{11}a_{22} + a_{12}a_{21} - \operatorname{перманент}$ матрицы $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$.

Общая система якобиевых уравнений имеет труднообозримую структуру. Число образующих ее уравнений и их степень быстро растут с увеличением размерности пространства переменных и степени полиномиального отображения (2.1). Несмотря на это, любая система якобиевых уравнений содержит некоторую подсистему, образованную уравнениями, структура которых весьма прозрачным образом зависит от n и d. А именно, пусть $A = (a_{jk})$ — квадратная матрица размера $n \ge 2$. Для любого d = 2,3,... система якобиевых уравнений в размерности n для степени d содержит подсистему n простых якобиевых уравнений:

$$(A^T)^{\odot(d-1)} \operatorname{diag} A = 0.$$
 (2.3)

Здесь A^T обозначает транспонированную матрицу, diag A — вектор диагональных элементов матрицы A. Например, в двумерном случае для степени 2 подсистема простых якобиевых уравнений образована первыми двумя уравнениями в системе (2.2).

Под однородностями якобиева отображения $x + (Ax)^d$ мы будем всюду в дальнейшем понимать произвольную квадратную матрицу H того же размера, что и матрица A, такую, что отображение $x + (A \odot H)^d$ также является якобиевым. Здесь через $A \odot H$ обозначается произведение Адамара (то есть, поэлементное произведение) матриц A и H.

3. ОБЗОР ФУНКЦИОНАЛЬНЫХ ВОЗМОЖНОСТЕЙ ПАКЕТА JC

Пакет JC для системы компьютерной алгебры Mathematica содержит функции для построе-

Таблица 1. Время вычисление якобиана отображения $x + (U_1)^d$

x + (ox)					
d	10	11	12	13	14
Время, с.	1.67	2.57	4.07	5.51	7.54

ния, параметризации, обращения и изучения свойств аналитических отображений с единичным якобианом. Исходный код этих функций, а также библиотека наборов данных для их тестирования и данных, полученных в результате многочисленных компьютерных экспериментов, размещены в репозитории https://www.researchgate.net/publication/358409332_JC_Package_and_Datasets.

Пакет состоит из трех основных блоков процедур и функций. Первый из них образуют функции, реализующие операции и объекты линейной алгебры, не поддержанные стандартными функциями ядра системы: функции выявления перестановочного подобия числовых и символьных матриц, вычисления главных миноров квадратной матрицы и сумм этих миноров, функции для построения матриц Вандермонда и циркулянтов, умножения матриц по Адамару и подобные им.

Функции из второго блока обеспечивают алгоритмическое построение полиномиальных и аналитических отображений с единичным якобианом. Одна из центральных функций данного блока позволяет строить общую универсальную матрицу в заданной размерности, определенную целочисленным разбиением этой размерности и перестановкой, чья длина равна мощности разбиения. Второй блок содержит также функции для вычисления системы якобиевых уравнений для заданных размерности и степени, построения матриц, определяющих однородности данной системы, построения подсистемы простых якобиевых уравнений, а также уравнений, чьи решения образуют хорошие пары с логарифмической функцией.

Третий блок функций пакета позволяет обращать полиномиальные и аналитические отображения вида $f(x) = x + \varphi(Ax)$ с единичным якобианом, заданные квадратной матрицей A и аналитической функцией одного переменного $\varphi(\zeta)$.

4. ВЫЧИСЛЕНИЕ СИСТЕМЫ ЯКОБИЕВЫХ УРАВНЕНИЙ, ПОИСК ХОРОШИХ ПАР И ОБРАЩЕНИЕ ЯКОБИЕВЫХ ОТОБРАЖЕНИЙ

Настоящий раздел иллюстрирует возможности процедур и функций пакета JC для построения якобиевых отображений в различных размерностях. Разработанный программный код позволяет строить как полиномиальные, так и более общие якобиевы отображения, заданные анали-

Таблица 2. Время обращения отображения (4.4) с помощью функции Solve CKA Mathematica

d	3	4	5	6	7
Время, с.	1.65	13.26	71.1	287.67	991.23

тическими функциями. Сложность структуры множества полиномиальных якобиевых отображений весьма быстро растет как с увеличением размерности пространства переменных, так и с ростом степени определяющих их многочленов. Результаты расчетов могут быть представлены в статье лишь в случае достаточно низкой размерности, так как с ее ростом они становятся необозримо громоздкими. По этой причине мы в первую очередь рассматриваем здесь кубические отображения четырех независимых комплексных переменных и отсылаем читателя к процедурам и функциям пакета, а также библиотеке наборов данных и результатов компьютерных экспериментов в более высоких размерностях.

Обозначим через $A=(a_{jk}),\ j,k=1,...,4$ произвольную квадратную матрицу размера 4×4 и через d=3 — степень многочленов, определяющих отображение

$$f = (f_1, ..., f_4) : \mathbb{C}^4 \to \mathbb{C}^4,$$

$$f(x) := x + (Ax)^3.$$
(4.1)

С помощью функции JEquations [A, d] вычисляем систему якобиевых уравнений, которой элементы матрицы A удовлетворяют в том и только том случае, когда якобиан отображения (4.1) тождественно равен 1. Вычисление данной системы однородных алгебраических уравнений с неизвестными a_{jk} занимает 268.43 секунды. Система содержит 294 уравнения и не может быть полностью помещена в настоящей статье. Наибольшая из степеней входящих в нее уравнений по совокупности переменных a_{jk} равна 48.

4.1. Подсистема простых якобиевых уравнений

Используя функцию simpleJEquations [A, d], находим следующую подсистему простых якобиевых уравнений в размерности 4 для степени 3:

$$\begin{cases} a_{11}^{3} + a_{21}^{2} a_{22} + a_{31}^{2} a_{33} + a_{41}^{2} a_{44} = 0, \\ a_{11} a_{12}^{2} + a_{22}^{3} + a_{32}^{2} a_{33} + a_{42}^{2} a_{44} = 0, \\ a_{11} a_{13}^{2} + a_{22} a_{23}^{2} + a_{33}^{3} + a_{43}^{2} a_{44} = 0, \\ a_{11} a_{14}^{2} + a_{22} a_{24}^{2} + a_{33} a_{34}^{2} + a_{44}^{3} = 0. \end{cases}$$

$$(4.2)$$

В то время как структура множества решений полной системы якобиевых уравнений является, судя по имеющимся в настоящий момент дан-

ным, весьма сложной в любой размерности, превосходящей 2, многочисленные компьютерные эксперименты с использованием алгоритмов, реализованных в пакете JC, позволяют предполагать, что антидиагональные элементы матрицы (a_{jk}) могут быть выражены через остальные ее элементы. Результаты этих экспериментов являются частными случаями следующего утверждения.

Гипотеза 1. Множество решений простых якобиевых уравнений в размерности п для степени d имеет размерность $n^2 - n$ и допускает алгебраическую параметризацию, в которой независимыми параметрами являются элементы матрицы (a_{jk}) , не лежащие на ее антидиагонали. Для четных размерностей n при d=2 данная параметризация является рациональной.

Например, множество решений простых якобиевых уравнений (4.2) в размерности 4 для степени 3 допускает следующую алгебраическую параметризацию:

$$a_{14} = -i \frac{\sqrt{a_{44}^3 + a_{22}a_{24}^2 + a_{33}a_{34}^2}}{\sqrt{a_{11}}},$$

$$a_{23} = -i \frac{\sqrt{a_{33}^3 + a_{11}a_{13}^2 + a_{43}^2 a_{44}}}{\sqrt{a_{22}}},$$

$$a_{32} = -i \frac{\sqrt{a_{22}^3 + a_{11}a_{12}^2 + a_{42}^2 a_{44}}}{\sqrt{a_{33}}},$$

$$a_{41} = -i \frac{\sqrt{a_{11}^3 + a_{21}^2 a_{22} + a_{31}^2 a_{33}}}{\sqrt{a_{44}}},$$

$$(4.3)$$

в которой все элементы матрицы A, за исключением антидиагональных (то есть, те элементы a_{jk} , для которых $j+k\neq 5$), играют роль алгебраически независимых параметров, $i=\sqrt{-1}$. Непосредственная проверка показывает, что элементы любой квадратной матрицы размера 4, заданные в виде (4.3), удовлетворяют соответствующей системе простых якобиевых уравнений (4.2).

Гипотеза 1 проверена с помощью функций пакета JC для всех значений размерности пространства переменных и степени определяющих отображение многочленов $n,d \le 10$. Решая простые якобиевы уравнения (2.3) относительно антидиагональных элементов матрицы A, можно построить семейства алгебраических или рациональных решений полной системы якобиевых уравнений. Например, утверждение гипотезы в размерности 4 позволяет сделать вывод о том, что матрица

$$M = \begin{pmatrix} 1 & 0 & t & -t-1 \\ 0 & 1 & -t-1 & t \\ -\frac{t}{2t+1} & -\frac{t+1}{2t+1} & 1 & 0 \\ -\frac{t+1}{2t+1} & -\frac{t}{2t+1} & 0 & 1 \end{pmatrix},$$

зависящая от параметра $t \in \mathbb{C}$, образует хорошую пару с функцией $\varphi(\zeta) = \zeta^2$. Непосредственная проверка с помощью функции JMatrDeg [M, 2] показывает, что это на самом деле так.

4.2. Универсальные матрицы, однородности и вычисление обратных отображений

Вычисление однородностей якобиевых уравнений в размерности 4 для степени 3 с помощью команды HomogeneitiesOfJEquations [4, 3] пакета JC дает матрицу

$$H_{4,3}(s_1,\ldots,s_4) = \begin{pmatrix} s_1^3 s_2 s_3 s_4 & s_2^4 s_3 s_4 & s_2 s_3^4 s_4 & s_2 s_3 s_4^4 \\ s_1^4 s_3 s_4 & s_1 s_2^3 s_3 s_4 & s_1 s_3^4 s_4 & s_1 s_3 s_4^4 \\ s_1^4 s_2 s_4 & s_1 s_2^2 s_4 & s_1 s_2 s_3^3 s_4 & s_1 s_2 s_4^4 \\ s_1^4 s_2 s_3 & s_1 s_2^4 s_3 & s_1 s_2 s_3^4 & s_1 s_2 s_3 s_4^3 \end{pmatrix}.$$

Используя функцию allUniversalMatrices пакета JC, находим, что существует 49 различных (для параметров общего положения) универсальных матриц размера 4 (см. таблицу 3). Обозначим через p целочисленное разбиение (2, 2) размерности n=4 и через $\varepsilon=(1,2)$ тривиальную перестановку на множестве из двух элементов. С помощью функции universalMatrix [p, ε] вычисляем соответствующую универсальную матрицу, которую, переобозначая ее элементы для исключения громоздких индексов, можно представить в следующем виде:

$$U = \begin{pmatrix} a - a & b & c \\ a - a & b & c \\ u - u & v - v \\ u - u & v - v \end{pmatrix}.$$

Данная матрица нильпотентна: $U^3 = 0$. Непосредственная проверка показывает, что ее элементы удовлетворяют системе якобиевых уравнений в размерности 4 для степени 3 и, в частности, ее подсистеме (4.2).

С помощью команды allSumsOfPrincipalMinors [U] мы убеждаемся в том, что сумма главных миноров любого порядка $k=1,\dots,4$ матрицы U равна нулю. Команда universalMatrixQ[U] позволяет проверить, что матрица U действительно является универсальной, то есть, что якобиан отображения

$$f = (f_1, \dots, f_4) : \mathbb{C}^4 \to \mathbb{C}^4,$$

$$f(x) := x + \varphi(Ux)$$
 (4.4)

тождественно равен 1 для произвольной аналитической функции одного переменного $\varphi(\zeta)$, такой, что координаты отображения (4.4) корректно определены. Отметим, что время непосредственного вычисления якобиана отображения $x+(Ux)^d$ быстро растет с увеличением степени d, см. таблицу 1.

Hecmotpя на это, запуск функции NewtonInverseGeneral позволяет заключить, что обращение отображения (4.4) может быть представлено в виде

$$x(f) = f - \varphi(f - \varphi(Uf)). \tag{4.5}$$

Заметим, что непосредственное обращение отображения (4.4) с помощью стандартной функции Solve в системе компьютерной алгебры Mathematica является задачей высокой вычислительной сложности, см. таблицу 2.

4.3. Случай аналитических отображений

Процедуры и функции пакета JC позволяют вычислять матрицы, образующие хорошие пары с заданными неполиномиальными аналитическими функциями, а также с произвольными аналитическими функциями одного переменного. Например, результатом работы команды JEquationsLOG[A] является следующая система из 35 однородных алгебраических уравнений с неизвестными a_{jk} , решения которой определяют всевозможные матрицы A, образующие хорошие пары с логарифмической функцией, то есть, такие, для которых отображение $x + \ln(Ax)$ имеет единичный якобиан. Одно из семейств решений данной системы уравнений состоит из нильпотентных матриц вида

$$\begin{pmatrix} 1 & a_{12} & a_{13} & -1 \\ a_{21} & 1 & -1 & -a_{21} \\ a_{21} & 1 & -1 & -a_{21} \\ 1 & a_{12} & a_{13} & -1 \end{pmatrix},$$

где a_{12} , a_{13} и a_{21} — произвольные комплексные параметры.

Многочисленные компьютерные эксперименты показывают, что другое важное семейство матриц, образующих хорошие пары с логарифмической функцией, состоит из матриц Тёплица некоторого специального вида. Сужая систему уравнений, построенную с помощью команды JEquation-sLOG[A], на случай матриц Тёплица (то есть, предполагая, что $a_{jk}=a_{pq}$ для всех j,k,p и q, таких, что j-k=p-q) и дополнительно предполагая, что $a_{11}=0$, мы приходим к выводу, что лю-

Таблица 3. Количество и время вычисления всех универсальных матриц размера $2 \le n \le 10$

Размерность <i>п</i> пространства переменных	Число всех унив. матриц размера <i>n</i>	Время расчета, с.
2	3	< 0.01
3	11	< 0.01
4	49	< 0.01
5	261	0.06
6	1631	0.45
7	11743	4.67
8	95901	52.37
9	876809	610.57
10	8877691	9551.02

бая матрица в данном семействе, образующая хорошую пару с логарифмической функцией, пропорциональна матрице

$$T_{\ln} = \begin{pmatrix} 0 & 1 & -1+i & -i \\ -i & 0 & 1 & -1+i \\ -1+i & -i & 0 & 1 \\ 1 & -1+i & -i & 0 \end{pmatrix}$$

или же комплексно сопряженной с ней матрице. Здесь $i = \sqrt{-1}$.

Соответствующее якобиево отображение $x+\ln(T_{\ln}x)$ не допускает элементарного обращения. В частности, в отличие от всех рассмотренных выше случаев, обратное отображение не является конечной суперпозицией логарифмической функции и арифметических операций. Отметим, что $T_{\ln}^3 + 8iT_{\ln} = 0$. Применение функции permuteRowsAndColumns позволяет заключить, что любая матрица, перестановочно подобная матрице T_{\ln} , также образует хорошую пару с логарифмической функцией. Вопрос об алгоритмическом описании множества всех матриц Тёплица, образующих хорошую пару с заданной аналитической функцией, является, по-видимому, открытым.

Отметим, что в трехмерном случае матрица

$$\begin{pmatrix}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0
\end{pmatrix}$$

образует хорошую пару с логарифмической функцией. Обращение соответствующего якобиева отображения требует решения трансцендентной системы уравнений

$$\left(\frac{\eta}{\zeta}\right)^{\xi} = s, \quad \left(\frac{\zeta}{\xi}\right)^{\eta} = t, \quad \left(\frac{\xi}{\eta}\right)^{\zeta} = u$$

относительно переменных ξ , η , ζ .

4.4. Многомерный случай: семейство матриц ранга 2, образующих хорошие пары с функцией возведения в квадрат

Параметризация множества всех якобиевых отображений вида $x + (Ax)^d$ в произвольной размерности n и для произвольной степени d (здесь, как и ранее, $x = (x_1, ..., x_n) \in \mathbb{C}^n$ — вектор комплексных переменных, A — квадратная матрица размера n) находится, по-видимому, далеко за пределами современных возможностей компьютерной алгебры. Несмотря на это, процедуры и функции пакета ЈС позволяют строить и изучать свойства семейств якобиевых отображений в произвольной размерности, удовлетворяющих ряду дополнительных предположений.

Для целого положительного ℓ введем обозначения $\overline{s}=(s_1,\ldots,s_\ell)\in\mathbb{C}^\ell$, $\overline{t}=(t_1,\ldots,t_\ell)\in\mathbb{C}^\ell$ и положим $|\overline{s}|:=s_1+\ldots+s_\ell$. С помощью функций JacobianEquations и allPrincipalMinors, входящий в пакет JC, сформируем следующую квадратную матрицу размера $\ell+2$:

$$M(\overline{s}, \overline{t}) := \begin{pmatrix} -|\overline{s}| - |\overline{t}| & -\frac{|\overline{s}|(|\overline{s}| + |\overline{t}|)}{|\overline{t}|} & \overline{s} \\ -\frac{|\overline{t}|(|\overline{s}| + |\overline{t}|)}{|\overline{s}|} & -|\overline{s}| - |\overline{t}| & \overline{t} \\ -\frac{(|\overline{s}| + |\overline{t}|)^2}{|\overline{s}|} & -\frac{(|\overline{s}| + |\overline{t}|)^2}{|\overline{t}|} & \overline{s} + \overline{t} \\ & \dots & \dots \\ -\frac{(|\overline{s}| + |\overline{t}|)^2}{|\overline{s}|} & -\frac{(|\overline{s}| + |\overline{t}|)^2}{|\overline{t}|} & \overline{s} + \overline{t} \end{pmatrix}.$$

Последние ℓ строк матрицы $M(\overline{s},\overline{t})$ одинаковы и равны сумме первых двух ее строк. Команда $\mathsf{JMatrDeg}$ позволяет осуществить непосредственную проверку того факта, что матрица $M(\overline{s},\overline{t})$ образует хорошую пару с функцией $\varphi(\zeta) = \zeta^2$. Соответствующее якобиево отображение $x + (M(\overline{s},\overline{t})x)^2$ может быть обращено с помощью функции $\mathsf{NewtonInverse}$, однако результат ее работы слишком громоздок для включения в текст статьи. Мы отсылаем читателя к результатам компьютерных экспериментов, представленных на сайте пакета JC .

Таблица 4. Время обращения якобиева отображения с помощью функций Solve и NewtonInverse

Разбиение <i>p</i>	Время работы функции Solve, c.	Время работы функции NewtonInverse, c.
{1, 2}	0.04	0.01
{1, 3}	0.23	0.04
{1, 4}	1.48	0.31
{2, 2}	0.26	0.10
{2, 3}	1.34	0.07
$\{2, 4\}$	7.48	0.35
{2, 5}	21.56	1.21
{3, 5}	68.23	4.34
$\{1, 1, 2\}$	0.28	0.01
{1, 1, 3}	9.68	0.10
$\{1, 1, 4\}$	184.28	1.04
$\{1, 2, 2\}$	12.68	0.09
$\{1, 2, 3\}$	322.23	1.00
{2, 2, 2}	182.17	3.64

5. ОБОРУДОВАНИЕ, ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ И ОЦЕНКА СКОРОСТИ РАБОТЫ ПРОГРАММНОГО КОДА

Представленные в настоящей работе расчеты выполнены в системе компьютерной алгебры Wolfram Mathematica 11.3 на рабочей станции HP Z Workstation с центральным процессором Intel Xeon Gold 6146 с тактовой частотой $3.20~\Gamma\Gamma$ ц и $128~\Gamma$ б оперативной памяти.

Число различных универсальных матриц быстро растет с увеличением размерности. В таблице 3 приведены результаты компьютерных экспериментов с функцией allUniversalMatrices для всех $n \le 10$. Каждая из найденных универсальных матриц определяет *п*-параметрическое семейство якобиевых отображений вида (2.1), полученных путем взятия произведения Адамара с матрицей однородностей, которая может построена с помощью команды HomogeneitiesOfJEquations. В следующей таблице время обращения якобиева отображения, заданного универсальной матрицей в степени d = 2, с помощью функции NewtonInverse пакета JC сравнивается с временем, которое требуется стандартной функции Solve системы компьютерной алгебры Mathematica 11.3 для решения этой же задачи. Универсальная матрица здесь определяется целочисленным разбиением р размерности пространства переменных и тождественной перестановкой. Время работы узкоспециализированного алгоритма, учитывающего ключевые свойства якобиева отображения, ожидаемо значительно меньше времени, которое требуется для решения

этой задачи с помощью функции общего назначения.

6. БЛАГОДАРНОСТИ

Данное исследование выполнено в рамках государственного задания в сфере научной деятельности Министерства науки и высшего образования Российской Федерации, номер проекта FSSW-2020-0008.

СПИСОК ЛИТЕРАТУРЫ

- Абрамов С.А. Поиск рациональных решений дифференциальных и разностных систем с помощью формальных рядов // Программирование. 2015. № 2. С. 69–80.
- Drużkowski L.M. An effective approach to Keller's Jacobian Conjecture // Math. Ann. 1983. № 264. P. 303–313.
- 3. *van den Essen A*. Polynomial Automorphisms and the Jacobian Conjecture. Birkhäuser, 2000.

- 4. *van den Essen A. and Washburn S.* The Jacobian Conjecture for symmetric Jacobian matrices // Journal of Pure and Applied Algebra. 2004. № 189. P. 123–133.
- 5. Fernandes F. A new class of non-injective polynomial local diffeomorphisms on the plane // Journal of Mathematical Analysis and Applications. 2022. № 507. 125736.
- Grigoriev D. and Radchenko D. On a tropical version of the Jacobian Conjecture // Journal of Symbolic Computation. 2022. № 109. P. 399–403.
- Keller O.H. Ganze Cremona-Transformationen // Monatshefte für Mathematik und Physik. 1939. № 47. P. 299–306.
- Peretz R. The 2-dimensional Jacobian Conjecture: A computational approach // Algorithmic Algebraic Combinatorics and Gröbner Bases. 2009. P. 151–203.
- 9. *Stepanova M.A.* Jacobian conjecture for mappings of a special type in \mathbb{C}^2 // Journal of Siberian Federal University. Mathematics & Physics. 2018. № 11(2.3). P. 776–780.
- 10. *Truong T.T.* Some new theoretical and computational results around the Jacobian Conjecture // International Journal of Mathematics. 2020. № 31(4.1). 2050050.