УДК 577.345+57.037+57.013+57.014

НОВЫЕ FRET-ПАРЫ ФЛУОРЕСЦЕНТНЫХ БЕЛКОВ ДЛЯ ОПРЕДЕЛЕНИЯ АКТИВНОСТИ КАСПАЗ *IN VITRO*

© 2022 г. Н. К. Марынич¹, И. Э. Грановский^{1, 2}, А. П. Савицкий^{1, *}

¹Федеральный исследовательский центр "Фундаментальные основы биотехнологии" Российской академии наук, Москва, 119071 Россия ²Институт биохимии и физиологии микроорганизмов им. Г.К. Скрябина РАН, Пущино, Московской области, 142290 Россия *e-mail: apsavitsky@inbi.ras.ru Поступила в редакцию 29.04.2022 г.

После доработки 20.06.2022 г. Принята к публикации 04.07.2022 г.

Получен мономерный сенсор на эффекторную каспазу-3 TagRFP-23-Ultramarine (TR-23-U). Рассчитаны интегралы перекрывания новых пар красного флуоресцентного белка TagRFP с четырьмя хромобелками. Методами гель-фильтрации и динамического рассеяния света подтверждено мономерное состояние белка Ultramarine и сенсора TR-23-U. Инкубация с каспазой-3 показала возможность применения нового белка слияния в качестве FRET-сенсора для детекции апоптоза.

Ключевые слова: флуоресцентные белки, хромобелки, FRET-сенсоры, апоптоз, каспаза-3 **DOI:** 10.31857/S0555109922060083

Детекция процессов, происходящих в организме и отдельной клетке играет ключевую роль в создании лекарств и терапии различных заболеваний [1]. Целью многих лекарственных препаратов является инициация апоптоза. Каспаза-3 хорошо известна своей ролью в осуществлении специфического расщепления многих клеточных белков при запрограммированной гибели клеток, а также в регуляции клеточного гомеостаза [2, 3]. Явление ферстеровского резонансного переноса энергии внутри пары флуоресцентных белков широко применяется в FRET-сенсорах для определения активности каспазы-3, благодаря возможности их непосредственной экспрессии в живой клетке [4, 5].

Ферстеровский резонансный перенос энергии (Förster resonance energy transfer, FRET) – это процесс взаимодействия двух хромофоров, при котором происходит безызлучательный перенос энергии возбужденного состояния от донора к акцептору. При таком переносе происходит снижение интенсивности и уменьшение времени жизни флуоресценции донора. В случае флуоресцирующего акцептора при FRET одновременно происходит возбуждение флуоресценции акцептора. Наиболее важные параметры, определяющие эффективность резонансного переноса это:

 степень перекрывания спектров эмиссии флуоресценции донора и поглощения акцептора;

 расстояние между хромофорами во FRETпаре, поскольку эффективность переноса энергии обратно пропорциональна расстоянию в шестой степени [6].

Использование сенсоров, в которых в качестве донора выступает красный флуоресцентный белок позволяет работать в области спектра с наименьшим поглощением и автофлуоресценцией тканей животных [7]. Использование в качестве акцептора не флуоресцирующих хромобелков исключает необходимость спектрального разделения флуоресценции донора и акцептора, что облегчает детекцию изменения FRET [8, 9]. Использование таких сенсоров позволит детектировать активность каспазы 3 не только спектрофотометрически, но и на основании изменения времени жизни флуоресценции донора. Обнаружение протеолиза является одним из самых важных применений FRET-сенсоров, поскольку роль различных ферментов в молекулярной онкологии при прогрессировании опухоли находится в стадии тщательного изучения. Практическим применением таких сенсоров является скрининг новых противоопухолевых препаратов, направленных на активашию апоптоза.

Цель работы — проанализировать эффективность переноса энергии в новых FRET-парах красного флуоресцентного белка TagRFP с хромобелками путем расчета интегралов перекрывания, получить мономерный сенсор TagRFP-23хромобелок и показать возможность применения

593

нового белка слияния в качестве FRET-сенсора для детекции апоптоза.

МЕТОДИКА

Молекулярное клонирование. Последовательности ДНК хромобелков (gfasCP [10], spisCP [10], anm2CP [11], Ultramarine [12]) были синтезированы компанией "Synbio Technologies" (Китай) и клонированы в вектор рЕТ29а (NdeI/SalI) (плазмида любезно предоставлена И.Э. Грановским, Пущинский научный центр биологических исследований РАН). Конструкция pTR23U-22b была получена на основе конструкции pTR23K, созданной в работе [13] (на основе вектора рЕТ-22b, плазмида любезно предоставлена И.Э. Грановским): ген акцепторного хромобелка KFP [14] замещен на ген акцепторного белка Ultramarine [12] NcoI/SalI.

Экспрессия в Escherichia coli, выделение и очистка белков из клеточного лизата. Экспрессию хромобелков и биосенсора проводили в клетках E.coli BL21(DE3). Штамм впервые получен в работе [15] и был любезно предоставлен Ивашиной Т.В. (Институт биохимии и физиологии микроорганизмов РАН). По окончании экспрессии клетки осаждали центрифугированием при 5000 g на центрифуге (Optima XPN-100 Ultracentrifuge, "Beckman Coulter", Германия), разрушали с помощью ультразвука и отеляли лизат с целевым белком центрифугированием при 15000 g (Optima XPN-100 Ultracentrifuge, "Beckman Coulter", Германия). Очистку хромобелков и биосенсора проводили хроматографическими методами, как описано для флуоресцентного белка SAASoti [16]. Для нового биосенсора подобраны время и температура инкубации клеток E. coli после добавления индуктора транскрипции изопропил-В-тиогалактозида (ИПТГ): 20 ч при 20°С и 4 ч при 37°С.

Определение олигомерного состояния. Определение олигомерного состояния проводили методом гель-фильтрации на носителе Superdex 200 100/20 GL, ("GE Healthcare", Германия), как описано ранее [17] с использованием метода динамического рассеяния света (ДРС) на анализаторе молекулярной массы и размера частиц DynaPro Titan ("Wyatt Technology Corporation", США) при 25°С в 20 мМ Tris-HCl150 мМ NaCl, рН 7.4 при лазерном освещении 800 нм в кварцевой кювете 1.5 мм ("Hellma", Германия).

Измерение спектральных характеристик. Спектры поглощения хромобелков и биосенсора регистрировали на спектрофотометре Cary 60 ("Agilent", США) при постоянной температуре 22°С в кварцевой кювете 3 мм ("Hellma", Германия) в буфере 20 мМ Tris-HCl с 150 мМ NaCl, pH 7.4.

Спектры испускания флуоресценции регистрировали на флуоресцентном спектрофотометре Cary Eclipse ("Varian", США) при комнатной температуре в кварцевой кювете диаметром 3 мм ("Hellma") в 20 мМ Tris-HCl буфере с 150 мМ NaCl, pH 7.4.

Определение эффективности гидролиза белка слияния TR-23-U каспазой-3. Гидролиз сенсора TR-23-U ферментом каспазой-3 РогсСазр3 WT (любезно предоставлен И.Э. Грановским) в 20 мМ HEPES буфере, pH 7.4, с 2 мМ ЭДТА, 0.1%-ным CHAPS, 5 мМ ДТТ, 1 мг/мл БСА при 37°С в течение ночи.

Регистрация времени жизни флуоресценции. Время жизни флуоресценции TagRFP регистрировали с помощью флуоресцентного спектрометра FluoTime 200 ("PicoQuant", Германия) и анализировали с помощью программного обеспечения FluoFit 4.2 ("PicoQuant", Германия).

Определение кинетик фотоактивации флуоресценции. Фотоактивацию флуоресценции регистрировали для растворов белков с оптической плотностью 0.1 в максимуме поглощения в буфере 20 мМ Tris-HCl (pH 7.4) с 150 мМ NaCl с помощью установки, собранной из спектрометра Spectr-Claster (Россия) и источника света Spectra X LED ("Lumencor", США) в термостатируемой (25°С) микрокювете ("Hellma", Германия), оптический путь 3 × 3 мм. Возбуждение флуоресценции проводилось на длине волны 550 ± 15 нм мощностью 0.5 мВт/см². Интенсивность флуоресценции регистрировалась для КFP при длине волны 600 нм [14], для Ultramarine – при 626 нм [12], anm2CP – при 597 нм [11], gfasCP и spisCP максимум флуоресценции не определен [10] и в эксперименте их флуоресценция полностью отсутствовала на длинах волн от 580 до 630 нм.

Расчет интегралов перекрывания и ферстеровских радиусов. Интегралы перекрывания были рассчитаны с использованием программного обеспечения a|e – UV-Vis-IR Spectral Software 2.2 (FluorTools, www.fluortools.com) согласно формуле (1).

$$J(\lambda) \equiv \int_{0}^{\infty} \varepsilon_{A}(\lambda) \lambda^{4} F_{D}(\lambda) d\lambda.$$
(1)

Фестеровские радиусы вычислялись по формуле (2):

$$R_0 = 0.211 \left[\frac{\kappa^2 \varphi_{\rm D} J(\lambda)}{n^4} \right]^{1/6}, \qquad (2)$$

где κ^2 — коэффициент, описывающий взаимную ориентацию дипольных моментов переходов донора и акцептора, и равный 2/3 для свободно вращающихся диполей; ϕ_D — квантовый выход флуоресценции донора в отсутствие акцептора (ϕ_D (TagRFP) = 0.48); $J(\lambda)$ — интеграл перекрывания нормированных спектров флуоресценции донора

том 58 № 6 2022

5	O	1
2	7	+

Хромобелок	Олигомерное состояние*	$\lambda_{ex}/\lambda_{em}$	$\epsilon, \mathrm{M}^{-1} \mathrm{cm}^{-1}$
Ultramarine	Мономер	586/626 (QY = 0.001)	64000
gfasCP	Тетрамер	580/н.о.	205000
anm2CP	Мономер	566/н.о.	120000
spisCP	Тетрамер	564/н.о.	61 000

Таблица 1. Спектральные и физико-химические характеристики хромобелков согласно литературным источникам

Таблица 2. Теоретические значения интегралов перекрывания $J(\lambda)$ и ферстеровских радиусов R_0 для пар TagRFPхромобелок

Параметр	FRET-пара			
	TagRFP-Ultramarine	TagRFP-gfasCP	TagRFP-anm2CP	TagRFP-spisCP
<i>J</i> (λ), нм ⁴ /М см	4.511×10^{15}	1.208×10^{16}	6.233×10^{15}	2.537×10^{15}
$R_0, Å$	59	69	62	53

и поглощения акцептора; *n* – показатель преломления растворителя (для воды он равен 1.33).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Для создания пары "красный флуоресцентный белок—хромобелок" необходимо выбрать пару с максимальным перекрыванием спектров эмиссии флуоресценции донора и поглощения акцептора. В качестве донора был выбран яркий красный флуоресцентный белок TagRFP [18] (молекулярная яркость — 48000), который уже успешно применялся в качестве донора во FRETсенсорах [13, 19]. На роль нового нефлуоресцирующего акцептора были отобраны несколько хромобелков с высокими значениями коэффициентов молярного поглощения: Ultramarine [12], anm2CP [11], gfasCP [10], spisCP [10], спектральные и физико-химические характеристики которых приведены в табл. 1.

Для выбранных хромобелков были рассчитаны значения интегралов перекрывания $J(\lambda)$ их спектров поглощения со спектром эмиссии флуоресценции красного белка TagRFP, количественно демонстрирующие потенциальную эффективность переноса энергии в этих парах. Также для полученных пар рассчитаны ферстеровские радиусы (R_0), показывающие расстояние, на котором эффективность переноса энергии будет составлять 50% (табл. 2).

Все 4 FRET-пары имели высокие значения интегралов перекрывания и ферстеровских радиусов, что делает их перспективными кандидатами для создания FRET-сенсоров. Также экспериментально показано, что выбранные хромобелки не флуоресцируют при возбуждении мощными световыми потоками на длине волны 530 нм, в отличие от ранее применявшегося во FRET-сенсоре с ТаgRFP белка KFP (рис. 1) [14]. Таким образом, еще одним преимуществом новых FRET-пар является отсутствие фоновой флуоресценции акцептора.

Все 4 хромобелка были экспрессированы в клетках *E. coli*, очищены, и их олигомерное состояние охарактеризовано методами гель-фильтрации (ГФ) и динамического рассеяния света (ДРС). Полученные результаты отличались от данных, приведенных в литературных источниках: anm2CP присутствовал в растворе в димерной форме с примесью тетрамерной фракции, белки gfasCP и spisCP имели только димерную форму, Ultramarine – мономерную (табл. 3). При очистке хромобелков хроматографическими методами было замечено, что их связывание с носителями отличалось

Рис. 1. Кинетические кривые фотоактивации флуоресценции (усл. ед.) хромобелков при облучении их светом с длиной волны 530 нм (мощность 0.5 BT/см²): 1 - Ultramarine, 2 - anm2CP, 3 - gfasCP, 4 - spisCP, 5 - KFP.

Белок	$V_{_{\mathrm{ЭЛ}}},$ мл	Мм (ГФ), кДа	<i>R</i> , нм	Мм (ДРС), кДа
Ultramarine	17.35	11	2.2	20
gfasCP	15.04	42	3.4	58
spisCP	15.40	34	3.1	47
anm2CP	15.04	42	4.0	89
	12.94	144		

Таблица 3. Результаты характеристики олигомерного состояния хромобелков методами ГФ на носителе Superdex 200 и ДРС

от других GFP-подобных белков: с гидрофобным носителем связывание слабее, в то время как с анионообменным сильнее. Поскольку при гельфильтрации могут быть слабые ионные и гидрофобные взаимодействия, то при определении молекулярной массы такие данные представляются менее достоверными, чем результаты, полученные методом ДРС. Однако данные ДРС в достаточной степени согласовывались с результатами гель-фильтрации, указывая на одинаковое олигомерное состояние выделенных хромобелков. Отличие полученных результатов от литературных данных может быть связано с различием методов, использованных для определения олигомерного состояния и концентраций белковых растворов. Для gfasCP и spisCP в работе [10] олигомерность была определена методом электрофореза в полунативных условиях [20]. Для anm2CP использовалась гель-фильтрация, однако, отличался носитель.

В первую очередь, был получен FRET-сенсор на основе мономерных белков TagRFP-23-Ultramarine (TR-23-U), в котором 23 обозначает гибкий линкер из 23 аминокислот, содержащий сайт распознавания каспазы-3 DEVD [13].

Подобраны условия оптимальной экспрессии и созревания (фолдинга и формирования хромофора) обоих белков в сенсоре. После добавления индуктора ИПТГ клетки E. coli, экспрессирующие сенсор, инкубировали в среде LB при 20°C в течение 20 ч для созревания TagRFP, а затем при 37°С в течение 4 ч для созревания Ultramarine. Сенсор был выделен и очищен последовательно проведенными гидрофобной и анионообменной хроматографиями, как описано ранее [16]. На этапе гидрофобной хроматографии было отмечено разделение образца на две фракции (рис. 2а), при элюировании которых обнаружено, что в первой фракции отсутствовало поглошение, соответствующее белку Ultramarine (586 нм). На спектрах поглощения фракций также видно, что у фракции 2 присутствовало плечо на 586 нм, а у фракции 1 оно отсутствовало (рис. 2б). Таким образом, метод гидрофобной хроматографии позволил отделить сенсор с созревшим белком Ultramarine от его фракций с незрелым.

Методами гель-фильтрации и ДРС показано, что химерный белок ведет себя в растворе как димер (ГФ: $V_{3\pi}$ = 15.5 мл, Мм = 32 кДа, ДРС: R = 2.8 ± ± 0.2 нм, Мм = 37 ± 8 кДа), следовательно оба белка в сенсоре находятся в мономерном состоянии и сам сенсор можно охарактеризовать как мономерный.

Свойства нового белка слияния в качестве FRET-сенсора были подтверждены на основании измерений времени жизни и интенсивности флуоресценции TagRFP до и после инкубации сенсора с каспазой-3 *in vitro*. Сенсор инкубировали с каспазой-3 в буфере (20 мМ HEPES, pH 7.4, 2 мМ ЭДТА, 0.1%-ный CHAPS, 5 мМ дитиотреитол; 1 мг/мл БСА) в течение ночи для измерения максимального динамического диапазона флуоресцентного ответа сенсора при 37°С. После инкубации интенсивность флуоресценции TagRFP возросла более чем в 2 раза (рис. 3), что свидетельствовало об эффективном гидролизе сенсора каспазой-3.

Для характеристики активности каспазы-3 на клетках млекопитающих более показательным параметром является время жизни флуоресценции донора, поскольку этот параметр не зависит от концентрации белка. Время жизни TagRFP в сенсоре TR-23-U описывается биэкспоненциальной зависимостью (3):

$$I = I_1 \exp(-t/\tau_1) - I_2 \exp(-t/\tau_2) + c, \qquad (3)$$

где I_1 , I_2 – предэкспоненциальные коэффициенты, характеризующие соотношение фракций сенсора с τ_1 и τ_2 ; $\tau_1 = 2.4$ нс соответствует времени жизни флуоресценции свободного TagRFP, $\tau_2 = 1.1$ нс характеризует TagRFP в паре с акцептором Ultramarine, поскольку наличие FRET снижает время жизни [19]; c – фоновый сигнал, включающий остаточную флуоресценцию.

Наличие долгоживущей компоненты для TR-23-U может свидетельствовать о наличии белковой конформации сенсора с минимальным FRET. Значения параметров, измеренные до и после инкубации с каспазой-3 представлены в табл. 4. Соотношение времени жизни свободного TagRFP и TagRFP-23-Ultramarine, в котором есть FRET, после ночной инкубации с каспазой-3 изменилось более чем в 5.8 раза (табл. 4), а значение

том 58 № 6 2022

Рис. 2. Профили элюирования сенсора TR-23-U при гидрофобной хроматографии (а): *1* – профиль элюирования при 586 нм, *2* – при длине волны 556 нм. Спектры поглощения, соответствующие собранным фракциям (б): I и II.

Рис. 3. Спектры эмиссии флуоресценции TagRFP (интенсивность флуоресценции, усл. ед.) в сенсоре TR-23-U до и после инкубации с каспазой-3 в течение ночи: *1* – спектр флуоресценции TagRFP до инкубации с каспазой-3, *2* – после инкубации.

 I_2 до и после, что соответствует фракции с высоким FRET, уменьшилось в 7 раз.

Таким образом, были экспрессированы и выделены четыре хромобелка: Ultramarine, gfasCP, anm2CP, spisCP, имеющие высокие значения интегралов перекрывания и ферстеровских радиусов с красным флуоресцентным белком TagRFP. Методами ГФ и ДРС показано, что Ultramarine является мономерным белком, gfasCP и spisCP – димерными, а anm2CP димерным с примесью более крупных агрегатов. На основе белков TagRFP и Ultramarine создан FRET-сенсор TagRFP-23-Ul-

Таблица 4. Параметры времени жизни флуоресценции белка TagRFP в сенсоре TR-23-U до и после инкубации с каспазой-3

Условия	I_1	τ ₁ , нс	<i>I</i> ₂	τ ₂ , нс	I_{1}/I_{2}
До инкубации	17200	2.4	30200	1.1	0.57
После инкубации	14400	2.4	4300	1.1	3.35

tramarine, содержащий в линкере сайт узнавания каспазы-3. Показано, что сенсор является мономерным. Также новый сенсор является субстратом каспазы-3. После инкубации интенсивность флуоресценции TagRFP увеличилась более чем в 2 раза, а соотношение времен жизни флуоресценции свободного и связанного TagRFP изменялось в 5.8 раз в сторону свободного TagRFP. Возрастание этих двух показателей говорит о нарушении FRET между TagRFP и Ultramarine, то есть об эффективном расщеплении сенсора каспазой-3, что позволит применить новый белок слияния TR-23-U в качестве FRET-сенсора на каспазу-3 для детекции ранних стадий апоптоза.

Работа выполнена при поддержке Российского Фонда Фундаментальных Исследований (Грант № 19-54-06008 МНТИ а)

СПИСОК ЛИТЕРАТУРЫ

- 1. *Turk B.* // Nature Reviews Drug Discovery. 2006. V. 5. № 9. P. 785–799.
- Mcintosh A., Meikle L.M., Ormsby M.J., Mccormick B.A., Christie J.M., Brewer J.M., Roberts M., Wall D.M. // Infect. Immun. 2017. V. 85. P. e00393-17.
- Suresh K., Carino K., Johnston L., Servinsky L., Machamer C.E., Todd K. et al. // Am. J. Physiol. Lung Cell Mol. Physiol. 2019. V. 316. P. 1118–1126.
- *Piston D.W.* // Trends in Biochemical Sciences, 2007. V. 32. № 9. P. 407–414.
- Rajoria S., Zhao L., Intes X., Barroso M. // Curr. Mol. Imaging. Bentham Science Publishers Ltd. 2014. V. 3. № 2. P. 144–161.
- 6. Förster T. // Annalen der Physik. 1948. V. 6. P. 55-75.
- Lin M.Z., McKeown M.R., Ng H., Leung A., Todd A., Shaner N.C. et al. // Chem. Biol. Cell Press, 2009. V. 16. № 11. P. 1169–1179.

- 8. *Bastiaens P.I.H., Squire A.* // Trends Cell Biol. Elsevier Current Trends, 1999. V. 9. № 2. P. 48–52.
- 9. Goryashchenko A.S., Khrenova M.G., Savitsky A.P. // Methods Appl. Fluoresc. 2017. V. 6. № 2. P. 022001.
- Alieva N., Konzen K., Field S., Meleshkevitch E., Hunt M., Beltran-Ramirez V. et al. // PLoS One. 2008. V. 3. № 7. https://doi.org/10.1371/journal.pone.0002680
- Shagin D., Barsova E., Yanushevich Y., Fradkov A., Lukyanov K., Labas Y. et al. // Mol. Biol. Evol. 2004. V. 21. № 5. https://doi.org/10.1093/molbev/msh079
- Pettikiriarachchi A., Gong L., Perugini M.A., Devenish R.J., Prescott M. // PLoS One. 2012. V. 7. № 7. https://doi.org/10.1371/journal.pone.0041028
- Savitsky A.P., Rusanov A.L., Zherdeva V.V., Gorodnicheva T.V., Khrenova M.G., Nemukhin A.V. // Theranostics. 2012. V. 2. № 2. P. 215–226.
- Grigorenko B., Savitsky A., Topol I., Burt S., Nemukhin A. // J. Phys. Chem. B. 2006. V. 110. P. 18635–18640.
- 15. *Studier W.F., Moffat B.A.* // J. Molecular Biology, 1986. V. 1. № 189. P. 113–130.
- Gavshina A.V., Marynich N.K., Khrenova M.G., Solovyev I.D., Savitsky A.P. // Sci. Rep. Nature Publishing Group UK, 2021. V. 11. № 1. P. 1–11.
- Solovyev I.D., Gavshina A.V., Katti A.S., Chizhik A.I., Vinokurov L.M., Lapshin et al. // Sci. Rep. 2018. V. 8. № 1. P. 1–14.
- Merzlyak E., Goedhart J., Shcherbo D., Bulina M., Shcheglov A., Fradkov A. et al. // Nat. Methods. 2007. V. 4. № 7. P. 555–557.
- Rusanov A., Ivashina T., Vinokurov L., Fiks I., Orlova A., Turchin I., Meerovich I., Zherdeva V., Savitsky A. // J. Biophotonics. 2010. V. 3. № 12. P. 774–783.
- 20. Baird G.S., Zacharias D.A., Tsien R.Y. // Proc. Natl. Acad. Sci. 2000. V. 97. P. 11984–11989.

New Fret-pairs of Fluorescent Proteins for *in vitro* Caspase Activity Determination

N. K. Marynich^a, I. E. Granovsky^{a, b}, and A. P. Savitsky^{a, *}

^a Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071 Russia

^b Scriabin Institute of Biochemistry and Physiology of Microorganisms RAS, Puschino Moscow region, 142290 Russia

*e-mail: apsavitsky@inbi.ras.ru

In this work, the overlap integrals of new pairs of the red fluorescent protein TagRFP with chromoproteins were calculated. Monomeric sensor TagRFP-23-Ultramarine (TR-23-U) was obtained. Gel filtration and dynamic light scattering methods confirmed the monomeric state of the Ultramarine protein and the TR-23-U sensor. Incubation with caspase-3 showed the possibility of using a new fusion protein as a FRET sensor for apoptosis detection.

Keywords: fluorescent proteins, chromoproteins, FRET-sensors, apoptosis, caspase-3

ПРИКЛАДНАЯ БИОХИМИЯ И МИКРОБИОЛОГИЯ том 58 № 6 2022