УДК 575.2:632.4+633.111

ВЛИЯНИЕ АЛЛЕЛЬНЫХ ВАРИАНТОВ АРОМАТИЧЕСКОЙ АЛКОГОЛЬДЕГИДРОГЕНАЗЫ САД^{im} НА МИКРОМОРФОЛОГИЧЕСКИЕ И ХИМИЧЕСКИЕ ПОКАЗАТЕЛИ ТКАНЕЙ У ЯРОВОЙ МЯГКОЙ ПШЕНИЦЫ *Triticum aestivum* L.

© 2021 г. А. А. Коновалов^{1, *}, Е. В. Карпова², И. К. Шундрина², Е. П. Размахнин³, И. В. Ельцов⁴, Н. П. Гончаров^{1, 5}

¹Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук, Новосибирск, 630090 Россия

²Новосибирский институт органической химии им. Н.Н. Ворожцова Сибирского отделения Российской академии наук, Новосибирск, 630090 Россия

³Сибирский научно-исследовательский институт растениеводства и селекции — филиал ИЦиГ СО РАН, Новосибирская область, Новосибирский район, пос. Краснообск, 630501 Россия

⁴Новосибирский национальный исследовательский государственный университет, Новосибирск, 630090 Россия ⁵Новосибирский государственный аграрный университет, Новосибирск, 630039 Россия

> *e-mail: konov@bionet.nsc.ru Поступила в редакцию 14.12.2020 г. После доработки 15.02.2021 г. Принята к публикации 22.02.2021 г.

В работе изучали наследование аллельных вариантов ароматической алкогольдегидрогеназы CAD^{im} (CAD intermediate) и их влияние на выраженность признаков растений яровой мягкой пшеницы: флуоресценцию срезов проростков, микроморфологию и химический состав тканей. Растения с контрастными генотипами CAD^{im} (гомозиготы +/+ и -/-) использовали для изучения автофлуоресценции тканей, микроморфологии и химического состава. Толщина стенок соломины у генотипа CAD^{im-} выше, чем у генотипа CAD^{im+}, что может влиять на устойчивость растений пшеницы к полеганию. Наблюдали различия по содержанию хлорофилла и, особенно, по соотношению хлорофиллов *A* и *B*, что вероятно влияет на фотосинтез. Обнаружено повышенное содержание карбонильных групп у генотипа CAD^{im+}, а так же различия по коричным мономерам лигнина. Из полученных результатов следует, что аллельные варианты CAD^{im+} и CAD^{im-} оказывают существенное влияние на ряд признаков растения, и, следовательно, полиморфизм по локусу CAD^{im} является функциональным, что позволяет использовать его в селекции и биотехнологии.

Ключевые слова: мягкая пшеница, дегидрогеназа коричного спирта, автофлуоресценция, микроморфология, химический состав, лигнин

DOI: 10.31857/S0555109921040085

Полиморфизм по ферментным локусам у растений влияет на многие признаки, связанные с ростом и развитием и может приводить к существенным изменениям микроморфологии тканей и их химического состава [1]. Изучение таких различий способствует лучшему пониманию механизмов формирования признаков растения и свойств растительного сырья, и может иметь прикладное значение для селекции и в биотехнологии [2].

Фенилпропаноидный путь метаболизма, присутствующий у всех сосудистых растений, приводит к синтезу лигнина и формированию склеренхимы, ткани, выполняющей механические и защитные функции [3]. Кроме лигнина, продуктами фенилпропаноидного пути являются лигнаны и ароматические гликозиды [4], также обладающие защитными функциями.

Терминальная реакция фенилпропаноидного пути — восстановление коричных альдегидов до спиртов, таких как *n*-кумаровый, конифериловый и синаповый, — контролируется семейством ферментов **CAD** (Cinnamyl alcohol dehydrogenase дегидрогеназа коричного спирта; КФ 1.1.1.195) [3, 5]. Полиморфизм по генам, кодирующим CAD обнаружен у многих видов растений, и во многих случаях это приводит к существенным изменениям свойств и признаков растений [2]. Наличие или отсутствие одного из изоферментов CAD в тканях растения вызывает изменения в спектре метаболитов, образующихся в данном участке обмена веществ, что в свою очередь может привести к изменениям других признаков, таких как устойчивость к полеганию [6–10].

У мягкой пшеницы (*Triticum aestivum* L.) описаны два набора гомеологических генов: НАДФзависимая CAD, гены которой локализованы в длинных плечах хромосом 5-й гомеологической группы, и неспецифическая НАД(Ф)-зависимая CAD, гены которой локализованы в хромосомах 6-й гомеологической группы [11–13]. Ранее было установлено, что полиморфизм CAD у пшеницы влияет на механическую прочность соломины [14], и на устойчивость к листовым инфекциям – мучнистой росе и листовой (бурой) ржавчине [15].

У сорта яровой мягкой пшеницы Новосибирская 29 в промежутке между спектрами НАДФ-САD и НАД(Ф)-САD присутствует дополнительный изофермент САD (intermediate, CAD^{im}). Было установлено, что наличие или отсутствие этого изофермента влияет на устойчивости к грибным инфекциям [15].

Цель работы — изучение влияния изофермента CAD^{im} на микроморфометрические характеристики и химический состав тканей пшеницы.

МЕТОДИКА

Для исследования были использованы образцы мягкой яровой пшеницы *Triticum aestivum* L., контрастные по спектрам CAD: сорт Новосибирская 29 селекции СибНИИРС, у которой присутствует изофермент CAD^{im+} (intermediate) с подвижностью, промежуточной между НАДФ-САD и НАД(Ф)-САD, и сортобразец Яровая-9 (селекционер Е.П. Размахнин), у которых этот изофермент отсутствовал.

Гибриды первого поколения имели фенотип CAD^{im+} , т.е. признак CAD^{im+} являлся доминантным. Во втором поколении наблюдалось расщепление в соотношении 3 : 1 CAD^{im+} к CAD^{im-} (образцы, не содержащие изофермент). Скрещивание и последующее выделение потомства F_3 (третьего поколения) позволило выровнять генетический фон, поскольку исходные образцы могли различаться по другим генам. Среди растений F_3 были отобраны гомозиготные потомства с контрастными фенотипами CAD^{im+} и CAD^{im-} , ставшие объектами данного исследования.

Изоферментные спектры САD определяли методом гель-электрофореза, с последующей окраской на СAD-активность тетразолиевым методом, с использованием НАДФ в качестве кофактора и коричного спирта в качестве субстрата [11].

Автофлуоресценцию изучали на поперечных срезах недельных проростков. Срезы толщиной 30 мкм получали на замораживающем микротоме

Криостат HM 550 ("Termo Scientific", Финляндия), препараты просматривали на флуоресцентном микроскопе AxioImager Z1 с приставкой АроТоте и программой AxioVision ("Carl Zeiss", Германия), при возбуждении флюоресценции излучением с длинами волн 365, 470 и 546 нм. Микроморфологические показатели стеблей зрелых растений определяли с помощью сканирующего электронного микроскопа (СЭМ) ТМ-1000 ("Hitachi", Япония). Параметры работы СЭМ — ускоряющее напряжение 15 кэВ, режим низкого вакуума. Образцы поперечных срезов стеблей без предварительной обработки фиксировались на предметном столике с помощью токопроводящего скотча.

Термогравиметрический анализ (**ТГА**) проводили на приборе NETZSCH STA 409 (Германия). Содержание золы определяли как остаток после нагревания при 600°С.

Высушенные на воздухе стебли пшеницы измельчали и экстрагировали смесью толуол/этанол (2:1 по объему) в аппарате Сокслета в течение 8 ч. Содержание целлюлозы и лигнина Комарова определяли по стандартной методике [16]. Раствор после отделения лигнина Комарова использовался для спектрофотометрического определения содержания кислоторастворимого лигнина [17]. Соотношение гидроксифенильных, гваяцильных и сирингильных звеньев в структуре лигнина определяли методом нитробензольного окисления (**НБО**), как в предыдущей работе [14].

Для определения содержания флавоноидов навеску спирто-толуольного экстракта стеблей растений растворяли в этаноле в ультразвуковой ванне (**УЗВ**), раствор центрифугировали, аликвоту раствора смешивали с раствором хлорида алюминия в этаноле, фотометрировали на спектрофотометре Cary-5000 ("Varian", США), в 1 см кювете. Содержание флавоноидов определяли по калибровочному графику в эквиваленте кверцетина на г сырья (мгQE/г).

Содержание остаточных хлорофиллов в зрелых растениях (в мг/г сухого сырья) определяли двумя способами. В первом случае навеску спирто-толуольного экстракта растворяли в ацетоне в УЗВ, раствор центрифугировали и фотометрировали в 1 см кювете. Во втором варианте навеску исходного сухого сырья экстрагировали ацетоном в УЗВ в течение часа, раствор фильтровали и фотометрировали в 1 см кювете. Содержание хлорофиллов рассчитывали по поглощению при 662 и 644 нм [18]. Для растворов пигментов в неразбавленном ацетоне использовали следующие уравнения:

$$C_A = 9.784E_{662} - 0.990E_{644};$$

$$C_B = 21.426E_{644} - 4.650E_{662},$$

где С_A и С_B – содержание соответственно хлорофилла A и B (в мг/л); E_{662} и E_{644} – величина опти-

Рис. 1. Зимограмма САD проростков пшеницы: *1–6* и *15–20*: САD^{im–}; *7–14*: САD^{im+}.

ческой плотности суммарной вытяжки пигментов при двух длинах волн, соответствующих максимумам пигментов в данном растворителе.

Выделение образцов диоксанлигнинов и их анализ ЯМР-спектроскопией проводили как описано ранее [9]. Отнесение сигналов протонного магнитного резонанса (ПМР) и магнитного резонанса по ¹³С проводили согласно [19]. Отнесение кросс-сигналов ${}^{1}H/{}^{13}C$ в HSOC-спектрах (heteronuclear single quantum coherence) диоксанлигнинов проводилось по [20, 21]. Относительное содержание основных типов связей в макромолекуле лигнина, концевых групп, молярное соотношение мономерных звеньев (H: G: S), содержание кумаратов и ферулатов определяли согласно [21]. ИК-спектры экстрактов и образцов диоксанлигнина регистрировали на ИК-Фурье спектрометре Tensor 27 ("Bruker", Германия) в диапазоне 4000-400 см⁻¹, с разрешением 4 см⁻¹ по 32 сканирования.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Изофермент САD^{im} на зимограмме располагался между спектрами НАДФ-САD (в "быстрой" зоне) и НАД(Ф)-САD (в "медленной" зоне) (рис. 1). Аллельные варианты выглядят как присутствие или отсутствие окрашенной зоны, соответственно, аллельные варианты были обозначены как САD^{im+} (наличие изофермента) и САD^{im-} (отсутствие изофермента), генотипы соответственно +/+ или -/-.

Во втором поколении расщепление в потомствах соответствовало моногенному соотношению 3 : 1, как у прямых, так и обратных гибридов, то есть реципрокные различия отсутствовали (табл. 1). Из этого следовало, что фермент CAD^{im} контролируется одним ядерным геном с аллелями CAD^{im+} и CAD^{im-}. Аллель CAD^{im+} является функциональным, аллель CAD^{im-} относится к так называемым нулевым аллелям, лишённым специфической активности. Растения, гомозиготные по функциональному и нулевому аллелю фермента, могли различаться по набору метаболитов и другим показателям. В следующем поколении F₃ (третье поколение гибридов) были выделены гомозиготные потомства (потомства, где все растения имели генотип +/+ или -/-, и соответствующий фенотип: наличие или отсутствие изофермента CAD^{im}), которые были использованы для изучения свойств тканей.

На срезах недельных проростков изучаемых генотипов обнаружены различия по автофлуоресценции тканей (рис. 2). Генотип САD^{im–} сильнее флуоресцирует в красной и зелёной областях, генотип САD^{im+} в синей, коротковолновой области.

Генотипы CAD^{im+} и CAD^{im-} различались по морфологии клеток в тканях стебля (табл. 2, рис. 3). Толщина стенок у клеток генотипа CAD^{im-} выше, чем у генотипа CAD^{im+}, при этом толщина скле-

Таблица 1. Расщепление в реципрокных потомствах F_2 (второе поколение гибридов) яровой мягкой пшеницы

Потомство	CAD ^{im+}	CAD ^{im-}	χ^2
(Я-9 × Н29)	132	49	0.41
(H29 × Я-9)	168	69	2.13
Всего	300	118	2.32

ВЛИЯНИЕ АЛЛЕЛЬНЫХ ВАРИАНТОВ

Возбуждающее	Основание проростка с генотипом:		
излучение	CAD ^{im-}	CAD ^{im+}	
546 нм			
470 нм			
365 нм			

Рис. 2. Автофлуоресценция тканей на срезах проростков.

ренхимного слоя и толщина стенки соломины не различались.

Анализ химического состава тканей стеблей растений показал, что содержание полимерных компонентов в образцах довольно близко (табл. 3). Различия наблюдались в зольности, соотношении гваяцильных и сирингильных мономеров в структуре лигнинов, а также в соотношении пигментов. Соотношение хлорофиллов A и B менялось в зависимости от способа экстракции, однако в обоих случаях обнаружено аномально высокое содержание хлорофилла B у генотипа CAD^{im-}, содержание флавоноидов также выше у растений этого генотипа.

На рис. 4 приведены ИК-спектры спирто-толуольных экстрактов стеблей растений сравниваемых генотипов (спектры нормированы по полосе 1597 см⁻¹ – поглошение ароматических колец). Большая интенсивность полосы 1737 см⁻¹ в спектре генотипа CAD^{im-} подтверждает данные о повышенном содержании остаточных хлорофиллов в этих растениях. Небольшое различие в интенсивности полосы 1656 см⁻¹ указывало на меньшее солержании флавоноидов в стеблях генотипа CAD^{im+}. В то же время интенсивность полосы 1100-1000 см⁻¹ выше в спектре экстракта стеблей генотипа CAD^{im+}, что могло быть связано с большим содержанием в них углеводов. Интенсивность полосы 1713 см⁻¹ (поглощение карбонильных и карбоксильных групп) выше в спектре экстракта CAD^{im-}, что связано с большим содержанием в нем альдегидов и кислот.

Показатели	Генотип		
показатель	CAD ^{im+}	CAD ^{im-}	
Толщина стенки клетки эпидермиса, мкм	1.5 ± 0.1	2.8 ± 0.2	
Толщина стенки склеренхимных клеток, мкм	2.5 ± 0.3	3.6 ± 0.1	
Толщина склеренхимного слоя, мкм	60 ± 10	60 ± 10	
Толщина стенки стебля, мкм	400 ± 20	415 ± 20	

T - C	N (1			~ · · · ·	
	Морфология	тканеи на о	спезах	стерлеи	пшеницы
таолица и	πορφοποιτικ	i Kullen nu v	opesua	CICOMONI	пшеницы

Рис. 3. СЭМ изображения срезов соломины пшениц генотипов CAD^{im+} (а) и CAD^{im-} (б) (увеличение ×200).

Метод термогравиметрии использовался для оценки содержания лигнина и целлюлозы без их выделения из тканей растений с помощью химических методов. Анализ основан на том, что лигнин и целлюлоза разлагаются в разных температурных диапазонах. Целлюлоза разлагается при более низкой температуре по сравнению с лигнином. На рис. 5 приведены термограммы разложения образцов с CAD^{im+} и CAD^{im-}. Потери массы для них на первой и второй ступенях разложения одинаковы, что указывает на отсутствие различий в содержании целлюлозы и лигнина. Этот результат согласуется с данными табл. 3.

Различия в структуре лигнинов сравниваемых генотипов изучались методами ИК- и ЯМР-спектроскопии на препаратах диоксанлигнинов, выделенных из стеблей растений. По данным ИК-спектроскопии (рис. 6), в препарате диоксанлигнина из пшеницы генотипа CAD^{im+} выше содержание карбонильных групп (полоса 1707 см $^{-1}$), в препарате диоксанлигнина из пшеницы генотипа CAD^{im-} выше содержание алифатических гидроксильных групп (полоса 1031 см⁻¹).

Спектры ПМР препаратов диоксанлигнинов показывают несколько большее содержание аль-

Генотип	CAD ^{im+}	CAD ^{im-}
Зольность 600°С, %	5.20	6.12
Экстрактивные вещества, %	4.59	4.13
Лигнин, %	21.60	21.53
Кислоторастворимый лигнин, %	1.50	1.51
H : G : S	0:1:0.97	0:1:1.10
Целлюлоза, %	47.48	49.17
Хлорофиллы (1 способ):		
ChlA, мг/г	0.101 ± 0.005	0.106 ± 0.006
ChlB, мг/г	0.029 ± 0.001	0.123 ± 0.005
ChlA/ChlB	3.48	0.86
Хлорофиллы (2 способ):		
ChlA, мг/г	0.013	0.013
ChlB, мг/г	0.007	0.011
ChlA/ChlB	1.86	1.18
Содержание флавоноидов	0.65 ± 0.01	0.72 ± 0.02

Таблица 3. Химический анализ состава стеблей генотипов CAD^{im +} и CAD^{im –}

Рис. 4. ИК-спектры спирто-толуольных экстрактов стеблей растений генотипов CAD^{im+} (1) и CAD^{im-} (2).

Рис. 5. ТГ и dTГ диаграммы для соломы генотипов CAD^{im+} (1, 1') и CAD^{im-} (2, 2').

дегидных групп в препарате диоксанлигнина из стеблей пшеницы генотипа CAD^{im+} (табл. 4).

Содержание структурных фрагментов (рис. 7, 8) в препаратах диоксанлигнинов, оценивалось по спектрам ¹³С-ЯМР (табл. 5) и 2Д-ЯМР (табл. 6).

До недавнего времени солома злаков (стебли и листья), а также отходы обмолота (мякина) считались малоценным продуктом растениеводства и использовались нерационально. В настоящее время активно разрабатываются химические и микробиологические методы рационального использования возобновляемого растительного сырья [22, 23]. Основное влияние на свойства растительных тканей оказывают генотипы растений по генам, кон-

ПРИКЛАДНАЯ БИОХИМИЯ И МИКРОБИОЛОГИЯ

тролирующим соответствующие участки метаболизма.

Влияние генотипов CAD на микроморфологию тканей стебля было обнаружено ранее в работе на диплоидной пшенице [14]. В данном исследовании отсутствие изофермента CAD^{im} сказывалось на толщине клеточных стенок растения, при этом общая толщина стенок соломины оставалась неизменной. Можно предположить, что такой полиморфизм может влиять на механическую прочность соломины, как это было на диплоидной пшенице, что, в свою очередь, влияет на такой важный производственный показатель как полегаемость посевов. Влияние гена пшеницы TaCAD1 на полегание пшеницы (lodging) об-

Рис. 6. ИК-спектры препаратов диоксанлигнинов стеблей растений генотипов CAD^{im+} (1) и CAD^{im-} (2).

наружено в работе [24], однако соответствует ли ген TaCAD1 гену CAD^{im}, пока не установлено. В настоящее время селекция на устойчивость к полеганию основана в основном на генах короткостебельности [25], использование полиморфизма CAD может быть дополнительным фактором устойчивости.

Флуоресцентные методы исследования хотя и не позволяют идентифицировать конкретный метаболит, но дают общую картину содержания и локализации флуоресцирующих веществ в тканях и широко используются при изучении микроморфологии растений [26]. Обнаруженная несколько более сильная флуоресценция в красной области у генотипа CAD^{im-} могла быть вызвана избытком хлорофилла *B* (табл. 3). Хлорофилл *B* флуоресцирует в более дальней (более "красной") области, чем хлорофилл *A*. Более сильная флуоресценция генотипа CAD^{im-} в зеленой области, по-видимому, вызвана повышенным содержанием флавоноидов (табл. 3), дающих максимум флуоресценции в диапазоне 530–560 нм. Более сильная флуоресценция генотипа CAD^{im+} в "синей" коротковолновой области (рис. 1) могла быть связана с несколько по-

Таблица 4. Относительное содержание структурных фрагментов препаратов диоксанлигнинов по данным ПМР $(q_x = I_x/I_{\text{общ}})$

Диапазон хим. сдвигов ¹ Н (м.д.)	Фрагменты и группы	Отнесение	CAD ^{im+}	CAD ^{im-}
14.0-12.0	H _{(C=O)OH}	ОН карбоксильных групп	0.008	0.007
9.7–9.0	$H_{(C=O)H}$	Н альдегидных групп	0.014	0.010
12.4–9.3	Н _{ОНфен(1)}	ОН при C-4 в гваяцильных фрагментах (G)	0.009	0.007
9.3-8.4	Н _{ОНфен(1)}	ОН при C-4 в сирингильных звеньях (S), гва- яцильных звеньях с 5-5 (C) и β-5 (B) связями	0.016	0.013
8.4-6.3	H _{ap}	Атомы водорода ароматических колец	0.201	0.189
6.3–2.9	Н _{О-ал}	СH=CH-, CHO-, CH ₂ O-, CH ₃ O-группы в α , β , γ -положениях к ароматическому кольцу, CHO углеводов	0.721	0.737
2.3-0.3	$H_{\alpha,\beta,\gamma}$	CH-, CH ₂ -, CH ₃ -группы в α, β, γ-положениях к ароматическому кольцу, CHO углеводов	0.040	0.039

ВЛИЯНИЕ АЛЛЕЛЬНЫХ ВАРИАНТОВ

Рис. 7. Структурные фрагменты макромолекулы лигнина: G – гваяцил, S – сирингил, A/A' – β-O-4' арилэфир, B – фенилкумаран, C – резинол, E – α-O-4' арилэфир, F – спиродиенон, I – концевые группы коричного спирта, J – концевые группы коричного альдегида, PCA – *n*-кумараты, FA – ферулаты, T – трицин.

вышенным содержанием экстрактивных веществ, среди которых присутствовали ароматические кислоты, которые флуоресцируют в этой области. Покровные ткани флуоресцируют преимущественно синим, тогда как зеленым и красным — ткани паренхимы. Вероятно, фенольные соединения, которые флуоресцируют в более коротковолновой области, локализуются во внешних слоях, в паренхиме локализованы хлорофиллы, и, возможно, флавоноидные пигменты, флуоресценция которых сдвинута в длинноволновую область [26, 27].

Химический анализ стеблей растений (табл. 3) и ТГА (рис. 4) не выявил различий по содержанию полимерных компонентов клеточной стенки в сравниваемых генотипах. Различия наблюда-

ПРИКЛАДНАЯ БИОХИМИЯ И МИКРОБИОЛОГИЯ

лись в содержании экстрактивных веществ, особенно хлорофиллов.

У растений с полным набором хлорофиллов соотношение ChlA/ChlB варьирует у разных видов растений от 1.7 до 5–6, т.е. концентрация хлорофилла *B* не превышает 60% от хлорофилла *A*, обычно 15–25% от общего содержания хлорофиллов [28]. У трансгенного арабидопсиса со сверхэкспрессией хлорофиллид-а-оксигеназы, при которой синтезируется повышенное количество хлорофилла *B*, соотношение составляло 0.92–1.13 в зависимости от световых условий [29], но у обычных нетрансгенных растений такое соотношение не описано. Следует подчеркнуть, что в данной работе изучено содержание остаточных хлорофиллов в сухом

Рис. 8. Области HSQC-спектров препаратов диоксанлигнинов стеблей растений генотипов CAD^{im+} (а, в) и CAD^{im-} (б, г): области 50–90 ppm (а, б), области 90–155 ppm (в, г).

материале, которое различается в зависимости от метода выделения. Полученные генотипы в дальнейшем могут быть использованы для изучения прижизненных показателей содержания фотосинтетических пигментов, и их влияния на продуктивность. Несмотря на то, что содержание лигнина в стеблях обоих генотипов практически одинаково, соотношение мономерных единиц, определенное методом нитробензольного окисления, показало различия в содержании сирингильных звеньев. Полное отсутствие *n*-гидроксифенилпропановых

Диапазон	Отнесение	CAD ^{im+}	CAD ^{im-}
220-190	С=О кетонов	0.515	0.268
210-185	(С=О)Н альдегидов	0.556	0.279
185-163.5	С=О(О) карбоксильные и сложноэфирные	0.391	0.285
156-120	СН=СН в связях Ar-CH=CH-R	3.331	3.212
156-150	C-3, C-5 в сирингильных звеньях (S), C-4 в гваяцильных (G) (в том числе при кето-группе в α-положении к AK)	0.455	0.744
150-141	С-3/С-4 в гваяцильных звеньях (G), С-3/С-5 в незамещенных сирингильных звеньях (S)	1.145	0.852
141-123	С-1 в гваяцильных (G) и сирингильных (S) звеньях	1.552	1.433
138.8-133.3	С-4 в сирингильных звеньях (S)	0.482	0.580
124.5-117	С-6 в гваяцильных звеньях (G)	0.522	0.556
117-112.8	С-5 в гваяцильных звеньях (G)	0.700	0.750
112.8–95	С-1/С-3 в окисленных β-О-4 структурах (А')	1.731	1.596
112.8-108	С-2 в гваяцильных звеньях (G)	0.530	0.472
108-104	C-2/C-6 в сирингильных звеньях (S) (в том числе при кето-группе в α-положении к AK)	0.651	0.789
104-102.5	C-2/C-6 в сирингильных звеньях (S)	0.372	0.259
104–95	С-5 β-О-4 структур (А и А')	0.551	0.334
90-78	С _{а, β} в (A) и фенилкумарановых (B) структурах	0.504	0.920
80-67	C _{α,β} -OH	0.626	1.116
74–64	C_{γ} B CH ₂ -O-R, CH ₂ -OH	0.562	0.935
64–58	Ar-OCH ₃ β-O-4 структурах A '	0.552	0.869
58-54	метоксильные группы	2.038	2.342
54-52	С _β в структуре резинола (C)	0.115	0.116
54-50	С _в в фенилкумарановых структурах (B)	0.135	0.126
35-5	СН, СН ₂ , СН ₃ алифатические	0.131	0.405
102.6-95	Углеводы	0.184	0.077

том 57

Nº 4

2021

Таблица 5. Содержание структурных элементов на одно ароматическое кольцо n_x в препаратах диоксанлигнинов по данным ¹³С-ЯМР

звеньев в лигнинах указывало на то, что в обоих генотипах не накапливался *n*-кумаральдегид, т.е. активность HCT (Hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyl transferase) и/или C3H (4-coumarate 3-hydroxylase) выше активности CCR (Cinnamoyl-CoA reductase) [30]. Пониженное соотношение сирингил/гваяцил в лигнине стеблей генотипа CAD^{im+} может быть связано с повышенной активностью CAD над CAld5H (Coniferaldehyde 5-hydroxylase или F5H) в этих растениях [31].

По данным спектроскопии ЯМР содержание кето-, альдегидных и карбоксильных групп на одно ароматическое кольцо выше в лигнине пшени-

цы генотипа CAD^{im+} (почти в два раза для карбонильных групп, табл. 4). Эти данные подтверждают ИК-спектры препаратов диоксанлигнинов. Относительное содержание атомов водорода ароматических колец по данным ПМР выше в диоксанлигнине генотипа CAD^{im+}, что согласовывалось с данными НБО по содержанию гваяцильных/сирингильных фрагментов в структурах.

Двойные связи в лигнине однодольных растений в основном содержат концевые группы конифериловых и синаповых спиртов и альдегидов. Часто в структуру лигнина внедряются концевые группы коричного спирта (I), коричного альдеги-

Структурный фрагмент	CAD ^{im+}	CAD ^{im-}
β-O-4' арилэфир (A / A ')	74.2	77.3
В том числе окисленный в α-положении β-О-4' арилэфир	1.3	1.0
Фенилкумараны (В)	14.3	11.6
Резинолы (С)	10.9	10.7
α-О-4' арилэфир (E)	0.2	0.1
Спиродиеноны (F)	0.4	0.3
Концевые группы	I	I
Концевые группы коричного спирта (I)	_	_
Концевые группы коричного альдегида (Ј)	_	_
<i>п</i> -кумараты (рСА)	3.7	3.3
Ферулаты (FA)	5.8	5.2
Трицин (Т)	0.08	0.08

Таблица 6. Структурные характеристики препаратов диоксанлигнинов по данным 2D-ЯМР

да (**J**), а также *n*-кумараты (**PCA**) и ферулаты (**FA**), образующие сложноэфирные связи с гидроксилом при С γ [32]. Содержание концевых групп оценивали по 2D-ЯМР-спектрам выделенных препаратов диоксанлигнинов. На рис. 8 в соответствии с цветом структурных фрагментов из рис. 7 показаны кросс-сигналы ¹H–¹³С в HSQC-спектрах. Эти спектры показывают, какие фрагменты и в каком количестве присутствуют в выделенных препаратах лигнина каждого генотипа. В препаратах диоксанлигнинов обоих изучаемых генотипов отсутствуют концевые группы коричных альдегида и спирта (пустые области спектров J α , J β , I α , I β) (рис. 8).

Как показывают 2D-ЯМР спектры основным типом связывания структурных единиц лигнина в растениях обоих генотипов является β -O-4' ариловый эфир (структурные фрагменты A). Содержание окисленных структур β -O-4' арилэфира выше в лигнине растений генотипа CAD^{im+}. Количество резинольных структур (C) и α -O-4' связей арилэфира (E) примерно одинаково в лигнинах обоих генотипов. Содержание фенилкумарановых структур (B) и спиродиенонов (F) выше в лигнине растений генотипа CAD^{im+}, так же как и содержание *n*-кумаратов (**pCA**) и ферулатов (FA). Трицин (T) присутствует в лигнинах растений обоих генотипов в одинаковом количестве.

Полученные данные по строению лигнина показали, что наличие дополнительного варианта САD способствует накоплению карбонильных групп в структуре лигнина.

Ранее было установлено влияние полиморфизма CAD на многие признаки, не связанные напрямую с фенилпропаноидным путем метаболизма, в частности, на хлорофилл-связывающий белок хлоропластов (chlorophyll a/b binding protein) [33–35]. К тому же фенилпропаноидный путь метаболизма является продолжением шикиматного пути, который локализован в хлоропластах [3]. В дальнейших исследованиях предстоит выяснить, есть ли функциональная связь между синтезом хлорофилла и фенилпропаноидным метаболизмом или это случайное совпадение.

Из полученных результатов следует, что аллельные варианты CAD^{im+} и CAD^{im–} оказывают существенное влияние на ряд признаков растения, и, следовательно, полиморфизм по локусу CAD^{im} является функциональным. Изученные в данном исследовании генотипы дают возможность оценить вклад данного полиморфизма в селекционно значимые признаки у сортообразцов яровой мягкой пшеницы. Кроме того, результаты могут быть использованы при разработке технологических методов рационального использования соломы.

Автофлуоресценцию изучали на поперечных срезах недельных проростков в ЦКП микроскопического анализа биологических объектов СО РАН. Спектральные и аналитические измерения проведены в Химическом исследовательском центре коллективного пользования СО РАН.

Работа поддержана бюджетными проектами № 0259-2021-0012 (ИЦИГ СО РАН) и 0302-2020-0005 (НИОХ СО РАН), а также региональным проектом РФФИ 19-44-540003 р а.

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Yoon J., Choi H., An G. // J. Integr. Plant Biol. 2015. V. 57. P. 902–912.
- Коновалов А.А., Шундрина И.К., Карпова Е.В. // Успехи современной биологии. 2015. Т. 135. № 5. С. 496-513.
- 3. *Гудвин Т., Мерсер Э.* Введение в биохимию растений. 2 Изд. М.: Мир, 1986. Т. 1. 393 с. Т. 2. 312 с.
- Himi E., Maekawa M., Noda K. // International J. Plant Genomics. 2011. V. 374: 369460. https://doi.org/10.1155/2011/369460
- Dixon R. A., Chen F., Guo D., Parvathi K. // Phytochemistry. 2001. V. 57. P. 1069–1084. https://doi.org/10.1016/S0031-9422(01)00092-9
- 6. *Hepworth D.G., Vincent J.F.V.* // Annals of Botany. 1998. V. 81. № 6. P. 751–759.
- 7. *Li X, Yang Y, Yao J, Chen G, Li X, Zhang Q, Wu C.* // Plant Mol. Biol. 2009. V. 69. № 6. P. 685–697.
- Ookawa T., Inoue K., Matsuoka M., Ebitani T., Takarada T., Yamamoto T., Ueda T., Yokoyama T., Sugiyama C., Nakaba S., Funada R., Kato H., Kanekatsu M., Toyota K., Motobayashi T., Vazirzanjani M., Tojo S., Hirasawa T. // Sci. Rep. 2014. V. 4: 6567 https://doi.org/10.1038/srep06567
- Коновалов А.А., Шундрина И.К., Карпова Е.В., Ельцов И.В., Орлова Е.А., Гончаров Н.П. // Вавиловский журн. генетики и селекции. 2017. Т. 21. № 6. С. 686-693.

https://doi.org/10.18699/VJ17.286

 Карпова Е.В., Шундрина И.К., Орлова Е.А., Коновалов А.А. // Химия растительного сырья. 2019. №4. С. 87–95.

https://doi.org/10.14258/jcprm.2019045238

- Jaaska V. // Theoretical and Applied Genetics. 1978.
 V. 53. № 5. P. 209–217.
- Hart G.E., Gale M.D., McIntosh R.A. Linkage Maps of Triticum aestivum (Hexaploid wheat, 2n = 42, Genomes A, B & D) and T. tauschii (2n = 14, Genome D) // Genetic maps. 6 ed. Cold Spring Harbor Lab. Pres, 1993. P. 6.204–6.219.
- Коновалов А.А., Шундрина И.К., Карпова Е.В., Гончаров Н.П., Кондратенко Е.Я. // Генетика. 2016. Т. 52. № 10. С. 1222–1228. https://doi.org/10.7868/S0016675816080051
- Коновалов А.А., Шундрина И.К., Карпова Е.В., Нефедов А.А., Гончаров Н.П. // Генетика. 2014. Т. 50. № 11. С. 1310–1318.
- Коновалов А.А., Орлова Е.А., Карпова Е.В., Шундрина И.К. Генофонд и селекция растений. Новосибирск: ИЦиГ СО РАН, 2020. С. 147–150. https://doi.org/10.18699/GPB2020-38
- Оболенская А.В., Щёголев В.П., Аким Г.Л., Аким Э.Л. Практические работы по химии древесины и целлюлозы. М.: Лесн. промышленность, 1965. 412 с.
- Swan B. // Svensk Papperstidn. 1965. V. 68. № 22. P. 791–795.

ПРИКЛАДНАЯ БИОХИМИЯ И МИКРОБИОЛОГИЯ

- Гавриленко В.Ф., Ладыгина М.Е., Хандовина Л.М. Большой практикум по физиологии растений. М.: "Высшая школа". 1975. 392 с
- Калабин Г.А., Каницкая Л.В., Кушнарев Д.Ф. Количественная спектроскопия ЯМР природного органического сырья и продуктов его переработки. М.: Химия, 2000. 408 с.
- 20. *Белый В.А., Алексеев И.Н., Садыков Р.А.* // Изв. Коми науч. центра УрО РАН. 2012. Т. З. № 11. С. 20–26.
- del Río J.C., Lino A.G., Colodette J.L., Lima C.F., Gutiérrez A., Martínez Á.T., Lu F., Ralph J., Rencoret J. // Biomass and Bioenergy. 2015. V. 81. P. 322–338.
- 22. *Моисеев И.И.* // Вестник Российской Академии наук. 201. Т. 81. № 5. С. 405–413.
- 23. Онищенко Д.В., Рева В.П., Воронов Б.А. // Доклады Российской Академии Сельскохозяйственных наук. 2013. № 4. С. 58–60.
- 24. *Ma Q.-H.* // J. Exp. Bot. 2010. V. 61. № 10. P. 2735– 2744. https://doi.org/10.1093/jxb/erg107
- 25. Сухих И.С., Вавилова В.Ю., Блинов А.Г., Гончаров Н.П. // Генетика. 2021. Т. 57. № 2. С. 127–139. https://doi.org/10.31857/S0016675821020107
- Talamond P., Verdeil J.L., Conéjéro G. // Molecules. 2015. V. 20. № 3. P. 5024–5037. https://doi.org/10.3390/molecules20035024
- Donaldson L. // Molecules. 2020. V. 25. № 10. 2393. doi.org/ https://doi.org/10.3390/molecules25102393
- Тютерева Е.В., Дмитриева В.А., Войцеховская О.В. // Сельскохозяйственная биология. 2017. Т. 52. № 5. С. 843–855. https://doi.org/10.15389/agrobiology.2017.5.843rus

29. Sakuraba Y., Balazadeh S., Tanaka R., Mueller-Roeber B., Tanaka A. // Plant Cell Physiol. 2012. V. 53. № 3. P. 505-517. https://doi.org/10.1093/pcp/pcs006

- Ralph J., Akiyama T., Kim H., Lu F., Schatz P.F., Marita J.M., Ralph S.A., Reddy M.S.S., Chen F., Dixon R.A. // J. Biol. Chem. 2006. V. 281. P. 8843– 8853.
- Takeda Y., Koshiba T., Tobimatsu Y., Suzuki S., Murakami S., Yamamura M., Rahman M.M., Takano T., Hattori T., Sakamoto M., Umezawa T. // Planta. 2017. V. 246. № 2. P. 337–349. https://doi.org/10.1007/s00425-017-2692-x
- Ralph J., Lapierre C., Boerjan W. // Curr. Opin. Biotechnol. 2019. V. 56. P. 240–249. https://doi.org/10.1016/j.copbio.2019.02.019
- Dauwe R., Morreel K., Goeminne G., Gielen B., Rohde A., Van Beeumen J., Ralph J., Boudet A.M., Kopka J., Rochange S.F., Halpin C., Messens E., Boerjan W. // Plant J. 2007. V. 52. № 2. P. 263–285.
- Yan L., Liu S., Zhao S., Kang Y., Wang D., Gu T., Xin Z., Xia G., Huang Y. // Physiol. Plant. 2012. V. 146. № 4. P. 375–387.
- 35. *Yan L., Xia G.-M., Huang Y.-H., Zhao Sh.-Y.* // Plant Physiol. J. 2013. V. 49. № 12. P. 1433–1441.

Inheritance and Properties of Allelic Variants of CAD^{im} (Aromatic Alcohol Dehydrogenase) in Spring Bread Wheat *Triticum aestivum* L.

A. A. Konovalov^{*a*, *}, E. V. Karpova^{*b*}, I. K. Shundrina^{*b*}, E. P. Razmakhnin^{*c*}, I. V. Eltsov^{*d*}, and N. P. Goncharov^{*a*, *e*}

^aInstitute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090 Russia ^bVorozhtsov Novosibirsk Institute of Organic Chemistry of the Siberian Branch of Russian Academy of Science, Novosibirsk, 630090 Russia

> ^cSiberian Research Institute of Crop Production and Selection – branch of ICG SB RAS, Krasnoobsk, Novosibirsk region, 630501 Russia

> > ^dNovosibirsk State University, Novosibirsk, 630090 Russia

^eNovosibirsk State Agrarian University, Novosibirsk, 630039 Russia

*e-mail: konov@bionet.nsc.ru

In this study, we determined the inheritance of allelic variants of CAD^{im} (**CAD** intermediate) and their influence on expressiveness of spring bread wheat plants traits: fluorescence of seedlings slices, micromorphology and the chemical composition of tissues. Plants with contrast CAD^{im} genotypes (homozygotes +/+ and -/-) were used to study tissue autofluorescence, micromorphology and chemical composition. The thickness of the straw walls in CAD^{im-} genotype cells is higher than in CAD^{im+} genotype, which can affect the resistance of wheat plants to lodging. There are differences in the content of chlorophyll and, especially, in the ratio of chlorophylls A and B, which probably affects photosynthesis. An increased content of carbonyl groups was found in the CAD^{im+} genotype, as well as differences in the cinnamon monomers of lignin. From the obtained data, it follows that the allelic variants CAD^{im+} and CAD^{im-} have a significant effect on a number of plant traits, and, therefore, the polymorphism on the CAD^{im} locus is functional. This allows the use of this polymorphism in plant breeding and biotechnology.

Keywords: bread wheat, cinnamyl alcohol dehydrogenase, autofluorescence, micromorphology, chemical composition, lignin