УЛК 537.2:548

АСМ-ВИЗУАЛИЗАЦИЯ СЕГНЕТОЭЛАСТИЧЕСКИХ И СЕГНЕТОЭЛЕКТРИЧЕСКИХ ДОМЕНОВ В КРИСТАЛЛАХ 2-МЕТИЛБЕНЗИМИДАЗОЛА С₈H₈N₂

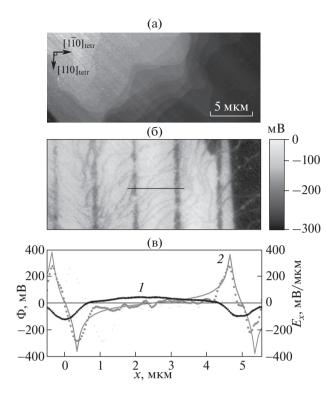
© 2021 г. Е. В. Балашова^{а, *}, Б. Б. Кричевцов^а, Т. С. Кункель^{а, b}, А. В. Анкудинов^а

 a Физико-технический институт им. А.Ф. Иоффе, Санкт-Петербург, 194021 Россия b Московский физико-технический институт (национальный исследовательский университет), Долгопрудный, 141701 Россия

*e-mail: balashova@mail.ioffe.ru Поступила в редакцию 25.04.2021 г. После доработки 07.06.2021 г. Принята к публикации 14.06.2021 г.

Исследуется доменная структура на поверхности кристаллов 2-метилбензимидазола (МВІ) с использованием различных режимов атомно-силовой микроскопии, позволяющих визуализировать распределение поверхностного потенциала. Кристаллы МВІ были выращены методом испарения из насыщенного раствора этанола. В режиме сканирующей кельвин-зондовой микроскопии на сколах (001) монокристалла визуализировано распределение потенциала на поверхности, представляющее собой периодическую структуру заряженных полос, ориентированных вдоль оси (110)_{tetr}. Подобную картину можно объяснить присутствием на поверхности системы сегнетоэластических доменов с заряженными доменными стенками, которая компенсирует деформацию в приповерхностных слоях, возникающую при сколе. На поверхности {110} микрокристалла в режиме сканирующей кельвин-зондовой микроскопии была обнаружена равновесная структура сегнетоэлектрических доменов с компонентой поляризации, перпендикулярной поверхности, а режим электростатической силовой микроскопии позволил визуализировать сегнетоэластические доменные стенки. Было показано, что в случае микрокристалла действие локально приложенного электрического импульса вызывает перемещение как сегнетоэлектрических, так и сегнетоэластических доменных стенок. Распределение потенциала по поверхности скола (001) монокристалла после внешнего воздействия оставалось неизменным.

Ключевые слова: органические сегнетоэлектрики, 2-метилбензимидазол, кристалл, атомно-силовая микроскопия, сканирующая кельвин-зондовая микроскопия, поверхностный потенциал, визуализация доменной структуры, доменные стенки, сегнетоэлектрические домены, сегнетоэластические домены, перемещение доменных стенок.


DOI: 10.31857/S1028096021110054

ВВЕДЕНИЕ

2-Метилбензимидазол (МВІ) $C_8H_8N_2$ является представителем органических молекулярных сегнетоэлектриков [1—3], повышенный интерес к которым в настоящее время связан с перспективами их применений в устройствах памяти и обработки информации, в электромеханических преобразователях, нелинейно-оптических устройствах [4—6]. Сегнетоэлектрические свойства кристаллов и пленок МВІ сохраняются вплоть до температуры плавления $T_m \cong 450$ K, причем важным свойством МВІ является возможность переключать поляризацию ($P_s \sim 5$ —7 мкК/см²) в различных направлениях небольшими полями ($E_c \sim 30$ кВ/см) [7—11]. Особенностью этого молекулярного кристалла, состоящего из гетероциклических молекул, является

эффективная генерация терагерцового излучения, позволившая исследовать трехмерное распределение спонтанной поляризации [12].

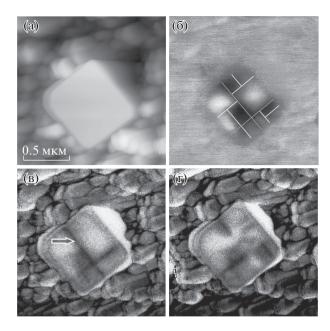
Кристаллическая структура MBI обладает псевдосимметрией и описывается тетрагональной пространственной группой $P4_2/n$ (реальная группа Pn) [7, 13]. Переключение поляризации возникает вследствие переноса протона водородных связей к тому или иному атому азота под действием внешнего поля. Присутствие сегнетоэлектрических доменов и различной ориентации поляризации в плоскости (001) показано в [7]. Потенциальный фазовый переход в MBI из центросимметричной парафазы $P4_2/n$ в сегнетоэлектрическую фазу Pn является собственным сегнетоэлектрическим и несобственным сегнетоэластическим фазовым переходом и может сопровождаться

Рис. 1. Поверхность скола кристалла MBI (001) $_{\rm tetr}$: а — ACM-топограмма; б — CK3M-изображение поверхностного потенциала; в — экспериментальное распределение (I) потенциала Ф вдоль линии профиля, перпендикулярной полосам периодической структуры (показана на рис. 16), тангенциальная составляющая (I2) электрического поля I8 (точки) и расчет тангенциального поля, создаваемого заряженными полосами (сплошная линия).

появлением сегнетоэластических доменов, ориентация которых в кристалле определяется условием минимума энергии, возникающей на доменной границе [14]. При переходе в кристалле могут образоваться домены четырех типов: сегнетоэластические домены двух типов, в каждом из которых могут быть 180°-ные сегнетоэлектрические домены [14]. Ориентация сегнетоэластических доменных стенок определяется параметром $p = 2S_6/(S_2 \times S_1)$, где S_6 , S_2 , S_1 — спонтанные деформации, возникающие после фазового перехода. При $p \ll 1$ сегнетоэластические доменные стенки должны располагаются вблизи плоскостей $(110)_{\text{tetr}}$ и $(1\overline{1}0)_{\text{tetr}}$. На поверхности $(001)_{\text{tetr}}$ направление сегнетоэластических стенок должно быть близко к осям $[110]_{\text{tetr}}$ и $[1\overline{1}0]_{\text{tetr}}$. При ненулевых значениях р из-за отклонения от плоскостей $(110)_{\text{tetr}}$ и $(1\overline{1}0)_{\text{tetr}}$ стенки могут нести нескомпенсированный связанный заряд 90°-ных сегнетоэлектрических доменов. Присутствие доменов не проявляется на рентгеновских дифрактограммах и изображениях поляризационной микроскопии из-за слишком слабых изменений кристаллической

структуры. Целью настоящей работы была визуализация доменной структуры на поверхностях и сколах кристаллов MBI с использованием различных режимов атомно-силовой микроскопии.

МЕТОДИКА


Монокристаллы MBI с размерами $\sim 4 \times 1 \times 0.4$ мм и микрокристаллы с размерами $\sim 0.7 \times 0.7$ мкм выращивали методом испарения из этанола. Для получения более совершенных кристаллов проводилась их многократная перекристаллизация. Данные рентгеновской дифракции и спектры комбинационного рассеяния полученных кристаллов совпадают с литературными данными [9, 15].

Морфологию поверхности кристаллов изучали с помощью атомно-силового микроскопа (АСМ) "Интегра Аура" (НТ-МДТ, Зеленоград, Москва). Для исследования распределения поверхностного потенциала использовали бесконтактные режимы АСМ: вариант сканирующей кельвин-зондовой микроскопии (СКЗМ) с компенсацией амплитуды осцилляций кантилевера, возбужденных переменным напряжением зондобразец, и вариант электростатической силовой микроскопии (ЭСМ) с регистрацией фазы осцилляций кантилевера, возбужденных механически пьезоактю атором держателя кантилевера. Использовался мягкий кантилевер CSG10 с резонансной частотой 29.9 кГц и амплитудой свободных/рабочих осцилляций ~9/5 нм.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. 1а, 1б представлены топограмма поверхности (АСМ-режим прерывистого контакта) и изображение поверхностного потенциала (режим СЗКМ) на сколе МВІ (001) $_{\rm tetr}$ В режиме СЗКМ наблюдается периодическая структура полос, направленных близко к оси $\langle 110 \rangle_{\rm tetr}$ Длина полос составляет ~ 20 мкм, период структуры ~ 5 мкм, ширина темной полосы ~ 1 мкм. На таких сколах наблюдались также периодические структуры и с меньшим периодом ~ 1 мкм.

На рис. 1в показано распределение потенциала Φ и тангенциальной составляющей электрического поля E_x вдоль линии, перпендикулярной полосам периодической структуры. Там же приведены результаты расчета поля E_x для системы бесконечных заряженных полосок с периодом 5 мкм и шириной полоски 1 мкм. Поскольку вектор спонтанной поляризации лежит в плоскости скола, она может приводить к появлению заряда на поверхности только на границах между доменами, толщина которых значительно меньше 1 мкм. Однородное распределение заряда в полосках микронной ширины может быть обусловлено флексоэлектрическим эффектом, связан-

Рис. 2. АСМ-топограмма поверхности микрокристалла МВІ, выращенного на Рt подложке (а). Распределение поверхностного потенциала, данные СКЗМ (б). ЭСМ-изображения до (в) и после (г) приложения импульса напряжения ($\tau = 6$ с, U = 3 В). Стрелка показывает место приложения поля. Темные и белые линии на рис. 26 показывают сегнетоэластические и сегнетоэлектрические доменные стенки соответственно.

ным с неоднородными деформациями в приповерхностном слое, возникающими при сколе кристалла. Поскольку ориентация полос близка к направлению $\langle 110 \rangle_{\text{tetr}}$, такую периодическую структуру следует связать с сегнетоэластическими доменами, компенсирующими деформацию.

На рис. 2а, б показана топограмма и измеренная в режиме СКЗМ карта поверхностного потенциала области микрокристалла MBI размером 0.7×0.7 мкм. Шероховатость рельефа не превышала 3 нм, что позволило зарегистрировать вариации поверхностного потенциала с высоким разрешением. Темные и светлые области на карте потенциального рельефа соответствуют разным знакам потенциала. Оценки показывают, что плотность заряда в этих областях на порядок больше, чем в периодических полосковых структурах (рис. 1б). Площадь темных и светлых областей примерно одинакова, что указывает на установление равновесной 180°-ной доменной конфигурации сегнетоэлектрических доменов в микрокристалле, в которой одна из компонент вектора поляризации P направлена нормально к поверхности {110}. На рис. 2б линиями схематически обозначены границы между доменами.

На рис. 2в, г показаны ЭСМ-изображения той же области кристалла до и после приложения прямоугольного импульса напряжения амплиту-

дой U = 3 В и длительностью $\tau = 6$ с. В отличие от изображения потенциального рельефа (рис. 26) на ЭСМ-изображении (рис. 2в) четко проявляются лишь границы между доменами, схематически обозначенные темными линиями. Важно отметить, что сегентоэлектрические доменные границы (белые линии на рис. 26) не проявляются на ЭСМ-изображении. Четкие крестообразные полосы (рис. 2в) могут принадлежать сегнетоэластическим доменным стенкам, поскольку на плоскости {110} они должны быть направлены вдоль оси [001]. Небольшие отклонения поверхности кристаллита в его нижней части от плоскости {110}, например в сторону {111}, приведет к появлению сегнетоэластической стенки, перпендикулярной оси [001]. На рис. 2г видно, что после подачи импульса напряжения конфигурация доменов изменяется, и трансформация доменной структуры происходит вследствие перемещения доменных границ, причем как 180°-ных сегнетоэлектрических, так и сегнетоэластических. Изменения сегнетоэластических доменов (рис. 16) под действием импульса электрического напряжения не наблюдались.

ЗАКЛЮЧЕНИЕ

Таким образом, АСМ-измерения в режимах СКЗМ и ЭСМ позволили впервые визуализировать в кристаллах МВІ сегнетоэластичекие домены и доменные стенки, показать присутствие плоских доменных стенок между сегнтоэлектрическими и сегнетоэластическими доменами, а также изменение положения сегнетоэластических доменов под действием электрического поля. Важным представляется наблюдение изменений сегнетоэластической доменной структуры под действием электрического поля, поскольку оно может отражаться на движении сегнтоэлектрических доменных стенок и влиять на процесс переключения поляризации.

БЛАГОДАРНОСТИ

Работа выполнена по бюджетной теме № 0040-2019-0031.

Конфликт интересов: Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Horiuchi S., Kobayashi K., Kumai R., Ishibashi S. // Nature Commun. 2017. V. 8. P. 14426. https://doi.org/10.1038/ncomms14426
- 2. Horiuchi S., Tokunaga Y., Giovannetti G., Picozzi S., Itoh H., Shimano R., Kumai R., Tokura Y. // Nature. 2010. V. 463. P. 789.

- Horiuchi S., Ishibashi S. // J. Phys. Soc. Jpn. 2020. V. 89. P. 051009. https://doi.org/10.7566/JPSJ.89.051009
- Heremans P., Gelinck G.H., Müller R., Baeg K.-J., Kim D.-Y., Noh Y.-Y. // Chem. Mater. 2011. V. 23. № 3.
 P. 341
 - https://doi.org/10.1021/cm102006v
- 5. Horiuchi S., Tokura Y. // Nat. Mater. 2008. V. 7. P. 357.
- 6. Tayi A.S., Kaeser A., Matsumoto M., Aida T., Stupp S.I. // Nature Chem. 2015. V. 7. P. 281.
- 7. Horiuchi S., Kagawa F., Hatahara K., Kobayashi K., Kumai R., Murakami Y., Tokura Y. // Nature Commun. 2012. V. 3. P. 1308. https://doi.org/10.1038/ncomms2322
- 8. Балашова Е.В., Кричевцов Б.Б., Свинарев Ф.Б., Зайцева Н.В., Панкова Г.А. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2018. Т. 3. С. 52.
- Balashova E.V., Svinarev F.B., Ankudinov A.V., Pankova G.A., Lityagin G.A., Kunkel T.S., Krichevtsov B.B. // Ferroelectrics, 2019. V. 538. P. 74.

- Noda Y., Yamada T., Kobayashi K., Kumai R., Horiuchi S., Kagawa F., Hasegawa T. // Adv. Mater. 2015. V. 27. P. 6475. https://doi.org/10.1002/adma.201502357
- Svinarev F.B., Balashova E.V., Krichevtsov B.B. // Ferroelectrics. 2019. V. 543. P. 167. https://doi.org/10.1080/00150193.2019.1592430
- 12. Kinoshita Y., Sotome M., Miyamoto T., Uemura Y., Arai S., Horiuchi S., Hasegawa T., Okamoto H., Kida N. // Phys. Rev. Appl. 2020. V. 14. P. 054002. https://doi.org/10.1103/PhysRevApplied.14.054002
- 13. *Obodovskaya A.E., Starikova Z.A., Belous S.N., Pokrovskaya I.E.* // J. Struct. Chem. 1991. V. 32. P.421.
- Tagantsev A.K., Cross L.E., Fousek J. // Domains in Ferroic Crystals and Thin Films. NY: Springer, 2010. P. 753.
- Balashova E.V., Svinarev F.B., Zolotarev A.A., Levin A.A., Brunkov P.N., Davydov V.Yu., Smirnov A.N., Redkov A.V., Pankova G.A, Krichevtsov B.B. // Crystals. 2019. V. 9. P. 573. https://doi.org/10.3390/cryst9110573

2021

AFM Visualization of Ferroelastic and Feroelectric Domains in 2-Methylbenzimidazole $C_8H_8N_2$ Crystals

E. V. Balashova^{1,*}, B. B. Krichevtsov¹, T. S. Kunkel^{1,2}, and A. V. Ankudinov¹

¹Ioffe Institute, Saint-Petersburg, 194021 Russia ²Moscow Institute of Physics and Technology, Dolgoprudny, 141701 Russia *e-mail: balashova@mail.ioffe.ru

The domain structure on the surface of 2-methylbenzimidazole (MBI) crystals was studied using various modes of atomic force microscopy, which made it possible to visualize the surface potential distribution. MBI crystals were grown by evaporation from a saturated ethanol solution. Using the scanning Kelvin probe microscopy mode, the potential distribution was visualized on the (001) cleavages of a single-crystal, which is a periodic structure of charged stripes oriented along the $\langle 110 \rangle_{\text{tetr}}$ axis. This pattern can be explained by the presence on the surface of a system of ferroelastic domains with charged domain walls, which compensates for the deformation in the near-surface layers that occurs during cleavage. An equilibrium structure of ferroelectric domains with a polarization component perpendicular to the surface was found on the {110} microcrystal surface using the scanning Kelvin probe microscopy mode. The electrostatic force microscopy mode made it possible to visualize ferroelastic domain walls. It was shown that, in the case of a microcrystal, the influence of a locally applied electric pulse caused displacement of both ferroelectric and ferroelastic domain walls. The potential distribution over the (001) cleavage surface of the single crystal after external action remained unchanged.

Keywords: organic ferroelectrics, 2-methylbenzimidazole, crystal, atomic force microscopy, scanning Kelvin probe microscopy, surface potential, domain structure visualization, domain walls, ferroelectric domains, ferroelastic domains, displacement of domain walls.