= МЕХАНИКА МАШИН =

УЛК 621.01

О СТРУКТУРНЫХ ГРАФАХ ТЕОРИИ МЕХАНИЗМОВ

© 2023 г. М. Д. Ковалёв

Московский государственный университет им. М.В. Ломоносова, Москва, Россия e-mail: mdkovalev@mtu-net.ru

Поступила в редакцию 24.08.2022 г. После доработки 10.10.2022 г. Принята к публикации 20.10.2022 г.

На примере плоских механизмов с вращательными парами проводится сравнение двух типов графов, которыми описывают их строение. Графы ${\bf G}$ первого типа, сопоставляющиеся шарнирно-рычажным механизмам, состоят из вершин, отвечающих шарнирам механизма, и из ребер, отвечающих его рычагам. Вершины графов ${\bf G}$ второго типа отвечают звеньям механизма, а ребра — кинематическим парам. Оказывается, что при отсутствии совмещенных шарниров, графы ${\bf G}$ и ${\bf G}$ равноценны для описания структуры механизмов. При наличии совмещенных шарниров граф ${\bf G}$ и получаемый его модификацией в теории механизмов граф ${\bf G}$ в отличие от графа ${\bf G}$ не дают полной информации о структуре механизма.

Ключевые слова: математическая модель, структура механизмов, шарнирный механизм, структурный граф механизма

DOI: 10.31857/S023571192301008X, EDN: ASFXPT

Широко известно, что так называемые структурные формулы теории механизмов не всегда дают верный результат. Это относится и к простейшей и исторически первой из них, формуле Чебышева, выражающей число степеней свободы (степень подвижности) плоского шарнирно-рычажного механизма через число его звеньев и число вращательных пар. Причиной этого является сложность геометрической природы механизмов. Степень подвижности определяется не только числом кинематических пар и звеньев, но и порядком их соединения, т.е. строением механизма. Подходящий язык для описания строения механизмов доставляет математическая теория графов. Она все больше начинает применяться при изучении структуры механизмов [1-3]. С ее использованием автор [4, 5] предложил формализацию основных понятий теории механизмов на основе кинематической модели плоских шарнирно-рычажных устройств. Эта формализация позволяет дать критерий применимости к типичным¹ устройствам данной структуры формул для числа степеней подвижности. В ней строение шарнирно-рычажного механизма задается графом \mathbf{G} , вершины которого отвечают шарнирам, а ребра отвечают звеньям, в качестве которых выступают несущие на своих концах шарниры прямолинейные стержни.

В теории же механизмов [1, 2] в качестве структурного графа принято брать граф \mathfrak{G} , вершины которого отвечают звеньям, а ребра — кинематическим парам. В статье будет выяснено, равносильны ли описания строения плоских шарнирно-рычажных устройств графами \mathbf{G} и \mathfrak{G} . А также приведен критерий применимости структурной

¹ С математической точки зрения нетипичные устройства такого строения образуют множество неполной размерности в множестве всех устройств этого строения.

формулы к типичным плоским шарнирно-рычажным устройствам, строение которых задано графом G.

Кинематическая модель шарнирно-рычажных механизмов и граф G. Мы рассматриваем плоские шарнирно-рычажные устройства, составленные из прямолинейных абсолютно твердых стержней (рычагов), соединенных на своих концах шарнирами. Каждый рычаг несет по шарниру на своих концах, внутри рычагов шарниров нет². Если в шарнире соединены лишь два рычага, то этому шарниру отвечает обычная вращательная пара, допускающая произвольное проворачивание в плоскости одного из рычагов относительно другого. Мы называем такой шарнир 1-шарниром. Если в шарнире соединены k > 2 рычагов, то это так называемый совмещенный или сложный шарнир с одним общим центром вращения для всех k рычагов. Его мы называем (k-1)-шарниром. В этом шарнире каждый из k рычагов допускает проворачивание, независимо от остальных рычагов. Если же конец рычага не соединен ни с каким другим рычагом, то в нем нет кинематической пары, но мы считаем его шарниром, и называем 0-шарниром. В теории механизмов принято рассматривать закрепленные в стойке конструкции. Мы будем проводить закрепление устройства в плоскости также допускающими полное проворачивание шарнирами, которые назовем закрепленными, и на рисунках будем обозначать крестиками в отличие от кружочков, отвечающих незакрепленным (свободным) шарнирам. В закрепленном шарнире имеется хотя бы одна кинематическая пара, и он не может быть 0-шарниром.

Нашему шарнирно-рычажному устройству естественно сопоставить гра ϕ^3 **G**, вершины которого отвечают шарнирам, а ребра, понимаемые как соединяющие пары вершин отрезки прямых, отвечают рычагам. Граф ${f G}$ мы считаем связным 4 без петель и кратных ребер. Более того, при наличии закрепленных шарниров, порожденный свободными шарнирами подграф графа ${f G}$ также считаем связным. Это условие налагается, чтобы не считать одним механизмом кинематически не связанные между собой устройства. И, естественно, в \mathbf{G} нет ребер, соединяющих вершины, отвечающие закрепленным шарнирам.

После задания в плоскости положений закрепленных шарниров исследование кинематики шарнирно-рычажных устройств с заданным графом ${f G}$ сводится к исследованию множества решений системы квадратичных уравнений. А именно, уравнений, накладывающих условия на расстояния между шарнирами

$$(x_i - x_j)^2 + (y_i - y_j)^2 = d_{ij},$$

где (x_i, y_i) — координаты i-го шарнира p_i ; d_{ij} — квадрат длины рычага, несущего на концах шарниры p_i и p_j . Число уравнений равно числу рычагов в конструкции. Конфигурационное пространство механизма есть компонента связности положительной размерности множества решений этой системы. Компонентам связности нулевой размерности, т.е. состоящим из одной точки, отвечают шарнирные фермы.

В нашей идеализированной модели допускается пересечение различных рычагов и совпадение положений различных несмежных, т.е. не принадлежащих одному рычагу, шарниров.

 $^{^{2}}$ Если мы хотим поместить шарнир внутри рычага, то придется его закрепить там двумя рычагами, исходяз щими из концевых шарниров этого рычага. ³ Его мы считаем абстрактным графом, т.е. совокупностью вершин и их неупорядоченных пар, называемых

⁴ ребрами. Связность означает возможность перейти из любой вершины графа в любую другую его вершину по реб-

То есть, состоящий из отвечающих свободным шарнирам вершин, и ребер, соединяющих эти вершины между собой.

46 КОВАЛЁВ

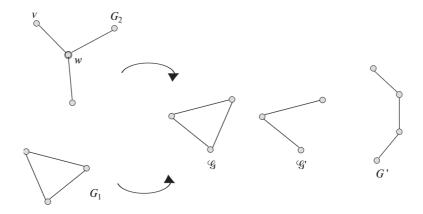


Рис. 1. Связь между графами и их реберными графами.

Сравнение графов G и У. Граф **У** для нашего шарнирно-рычажного устройства мы получим, сопоставив каждому рычагу и стойке по вершине, а каждому k-шарниру при k > 0 ребро, соединяющее вершины, отвечающие соединенным этим шарниром звеньям (либо двум рычагам, либо рычагу и стойке в случае закрепленного шарнира). 0-шарнирам ничего не сопоставляется.

Возникает вопрос: равносильно ли описание структуры шарнирно-рычажной конструкции с помощью графа $\mathcal G$ ее описанию графом $\mathbf G$. На самом деле, нет, как показывает пример рис. 1. Для незакрепленных шарнирно-рычажных конструкций, для которых графом $\mathbf G$ являются полный граф $G_1 = K_3$ и полный двудольный граф $G_2 = K_{1,3}$, граф $\mathcal G$ один и тот же, а именно K_3 . Эти конструкции существенно различны: одна из них ферма, а другая — механизм с двумя степенями подвижности $\mathcal G$. Итак, в этом случае по графу $\mathcal G$ строение конструкции однозначно не восстанавливается. Граф $\mathbf G$ несет все сведения о нем.

Однако если откинуть этот случай, то описания становятся равносильными.

Рассмотрим отвечающий незакрепленной шарнирно-рычажной конструкции граф $G(V, E) = \mathbf{G}$. Для него граф \mathcal{G} называют реберным или смежностным по отношению к графу \mathbf{G} . Известна следующая теорема [6].

Теорема. Пусть **G** и **G**₁ — связные графы, у которых реберные графы изоморфны¹⁰. Графы **G** и **G**₁ изоморфны всегда, кроме случая, когда один из них K_3 , а другой $K_{1,3}$.

 $^{^{6}}$ Полным называют граф, содержащий все возможные ребра между данными вершинами.

⁷ Полным двудольным $K_{n,m}$ называют граф, вершины которого разделены на две доли: одна из n вершин,

⁸ другая из *m* вершин, и каждая вершина одной доли соединена ребром с каждой вершиной другой доли. Если закрепить один из рычагов конструкции в плоскости, то размерность ее конфигурационного пространства будет развид прум

⁹ странства будет равна двум. Реберный граф для графа G в теории графов обычно обозначают как L(G). Чтобы его получить, каждому ребру графа G сопоставляют вершину графа L(G), и если два ребра в G имеют общую вершину, или, как говорят, смежны в этой вершине, то вводят в граф L(G) ребро между вершинами, отвечающими смежным ребрам.

¹⁰Изоморфные означает одинаково устроенные. Подробнее: графы имеют одно и то же число вершин, и их вершины можно занумеровать так, чтобы получились одинаковые списки ребер.

Из этой теоремы непосредственно вытекают следующие утверждения.

Утверждение 1. Если в графе G связной незакрепленной шарнирно-рычажной конструкции более четырех вершин, то он восстанавливается по графу $\mathcal G$ с точностью до переобозначения вершин.

Утверждение 2. При отсутствии совмещенных шарниров описание структуры незакрепленной шарнирно-рычажной конструкции графом $\mathcal G$ равносильно ее описанию графом $\mathbf G$.

Отметим, что в теории механизмов в случае наличия в устройстве совмещенных шарниров ему принято [1, 7] сопоставлять не граф \mathfrak{G} , а модифицированный граф \mathfrak{G} '. Граф \mathfrak{G} ' получается из графа \mathfrak{G} удалением некоторых ребер. А именно, если \mathfrak{G} содержит s-шарнир (s > 1), то из полного подграфа K_{s+1} , отвечающего в \mathfrak{G} этому шарниру, выкидывают часть ребер, чтобы получить включающее все вершины дерево 11 . Это можно сделать многими способами. В случае 2-шарнира (рис. 1) из подграфа K_3 выкидывается одно из ребер. Однако такое действие ведет к потере информации о строении конструкции. Действительно, по полученному графу \mathfrak{G} ' невозможно восстановить граф \mathfrak{G} нашей конструкции. Граф \mathfrak{G} ' (рис. 1) является реберным для графа \mathfrak{G} ' неизоморфного ни графу \mathfrak{G}_1 , ни графу \mathfrak{G}_2 . Если взять в качестве \mathfrak{G} граф $K_{1,4}$, то для него реберный граф \mathfrak{G} есть полный граф K_4 , а в качестве графа \mathfrak{G} ' можно выбрать, например, граф $K_{1,3}$, который, как легко понять, не является реберным графом ни для какого графа. Итак, в приведенных примерах по графу \mathfrak{G} ' граф \mathfrak{G} не восстанавливается. Из этого следует вывод о том, что граф \mathfrak{G} несет больше информации о строении шарнирно-рычажной конструкции, чем граф \mathfrak{G} '.

О структурных формулах. Аналогом структурной формулы Чебышева для закрепленных устройств в нашей модели является формула

$$W = 2m - r. (1)$$

где W — число степеней свободы; m — число свободных шарниров; r — число рычагов. В ней учитываются все свободные шарниры, в том числе и 0-шарниры. Смысл ее прозрачен: из числа степеней свободы всех незакрепленных шарниров вычитается число условий на их положения, налагаемых рычагами. Эти условия считаются независимыми. В отличие от формулы Чебышева эта формула справедлива и при наличии совмещенных шарниров.

Возможно такое строение механизма, что эта формула будет нарушаться в типичном случае, как это имеет место для механизма на рис. 2.

Хотя наша структурная формула дает нулевое число степеней свободы, типичное устройство такого строения есть механизм — шарнирный четырехзвенник с избыточной связью в шатунном звене. В этом случае независимо от выбора длин рычагов, налагаемые ими условия зависимы.

В комбинаторной теории жесткости [8, 9] найдены условия, необходимые и достаточные для независимости накладываемых рычагами условий в плоском случае. Опишем их. Для произвольного подграфа графа ${\bf G}$ с m вершинами, отвечающими свободным шарнирам, n вершинами, отвечающими закрепленным шарнирам, и e ребрами (отвечающими рычагам конструкции) должны выполняться условия: 1) при n=0, $e \le 2m-3$; 2) при n=1, $e \le 2m-1$; 3) при $n \ge 2$, $e \le 2m$. Эти условия необходимы и достаточны для справедливости подсчета числа степеней свободы типичных шарнир-

¹¹Деревом называют не содержащий циклов связный граф.

48 КОВАЛЁВ

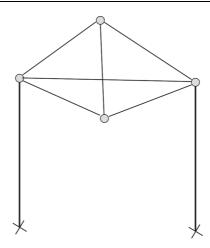


Рис. 2. Пример нарушения структурной формулы в типичном случае.

но-рычажных устройств по формуле (1). Отметим, что первое из них не выполняется для полного подграфа K_4 , ребра которого нарисованы тонкими линиями на рис. 2.

Заключение. Строение механизмов может быть весьма сложным. Это сказывается уже при исследовании плоских механизмов с вращательными парами, структуре которых посвящены недавние работы [10, 11], выполненные в рамках традиционных понятий. Однако для анализа структуры даже шарнирно-рычажных устройств недостаточно оставаться в рамках традиционных понятий теории механизмов, таких как звенья, кинематические пары и кинематические цепи. Структуру механизмов естественно описывать графами. Одному механизму можно сопоставлять различные графы. Хотя описание графом У носит общий, не зависящий от типа кинематических пар, характер, но в случае плоских шарнирно-рычажных механизмов предпочтительнее использовать граф G. Особенно это заметно при изучении механизмов с совмещенными шарнирами. Использование графа G позволяет на современном уровне решить вопрос о применимости аналога структурной формулы Чебышева к типичным плоским шарнирно-рычажным механизмам.

ФИНАНСИРОВАНИЕ

Статья опубликована при финансовой поддержке Минобрнауки России в рамках реализации программы Московского центра фундаментальной и прикладной математики по соглашению № 075-15-2022-284.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Пейсах Э.Е., Нестеров В.А.* Системы проектирования плоских рычажных механизмов. М.: Машиностроение, 1988. 232 с.
- 2. Диденко Е.В. Разработка и анализ плоских многоконтурных механизмов на основе теории графов: Дис. ... канд. техн. наук, М.: ИМАШ РАН, 2019.
- 3. *Ding H., Hou F., Kecskemethy A., Huang Z.* Synthesis of a complete set of contracted graphs for planar non-fractionated simple-jointed kinematic chains with all possible dofs // Mechanism and Machine Theory. 2011. V. 46 (11). P. 1588.
- 4. *Ковалёв М.Д.* Геометрическая теория шарнирных устройств // Известия РАН Серия математическая. 1994. Т. 58. № 1. С. 45.

- 5. *Ковалёв М.Д.* Вопросы геометрии шарнирных устройств и схем // Вестник МГТУ, Серия Машиностроение. 2001. № 4. С. 33.
- 6. *Харари* Ф. Теория графов. М.: Мир, 1973.
- 7. Rooney J., Wilson R.J. The mobility of a graph / Ed. by Koh K.M., Yap H.P. et al. // Conference proceedings. Graph Theory Singapore 1983. Lecture Notes in Mathematics. Springer, Berlin, Heidelberg, 1984. V. 1073. P. 135.
- 8. *Graver J.*, *Servatius B.*, *Servatius H*. Combinatorial Ridigity. American Mathematical Society, Providence, 1993. 172 p.
- 9. Handbook of Geometric Constraint Systems Principles / Ed. by M. Sitharam, A.St. John, J. Sidman. CRC Press, Taylor & Francis Group, 2018. 577 p.
- 10. *Пожбелко В.И.*, *Куц Е.Н.* Целочисленный структурный синтез многоконтурных рычажных механизмов со сложными шарнирами для разных областей машиностроения // Известия высших учебных заведений. Машиностроение. 2021. № 6. С. 23.
- 11. *Дворников Л.Т.* О принципиальных некорректностях в исследованиях проф. Пожбелко В.И. по структуре механизмов // Теория механизмов и машин. 2016. № 3 (31). Т. 14. С. 145.