_____ НАДЕЖНОСТЬ, ПРОЧНОСТЬ, ИЗНОСОСТОЙКОСТЬ ___ МАШИН И КОНСТРУКЦИЙ

УДК 629.7.017.1

МЕТОДОЛОГИЧЕСКИЕ АСПЕКТЫ УПРАВЛЕНИЯ ПРОЦЕССАМИ ОБЕСПЕЧЕНИЯ НАДЕЖНОСТИ АВИАЦИОННОЙ ТЕХНИКИ

© 2019 г. А. А. Ицкович^{1,*}, И. А. Файнбург¹, Г. Д. Файнбург¹

1 Московский государственный технический университет гражданской авиации (МГТУ ГА), г. Москва, Россия *e-mail: aai777@mail ru

Поступила в редакцию 18.11.2018 г. Принята к публикации 25.06.2019 г.

Методологические аспекты управления процессами обеспечения надежности сложных машин рассматриваются применительно к авиационной технике и включают: актуальность проблемы и основные задачи, характеристику процессов обеспечения надежности авиационной техники как объектов управления, формирование системы управления процессами обеспечения надежности авиационной техники, анализ статистических методов контроля надежности и вероятностно-статистических характеристик редеющих потоков случайных событий — отказов: выявленных в полете, приведших к наземным сбоям эксплуатации, к заменам воздушного судна и суммарного количества отказов и повреждений, выявленных в полете и на земле. Результаты исследований направлены на повышение надежности, безопасности полетов и эффективности эксплуатации авиационной техники.

Ключевые слова: надежность, процессный подход, стандартизованные термины обеспечение надежности, процессы обеспечения надежности, управляемый процесс, система управления процессами, анализ статистических методов контроля надежности и вероятностно-статистических характеристик редеющих потоков случайных событий

DOI: 10.1134/S0235711919050031

1. Актуальность проблемы и основные задачи. Обеспечение надежности авиационной техники гражданской авиации (АТ ГА) является приоритетной проблемой, от ее успешного решения зависят безопасность полетов и эффективность эксплуатации АТ ГА.

В опубликованных работах рассматриваются различные аспекты проблемы обеспечения надежности (ОН) машин: актуальность проблемы ОН [1], ОН на основе современных стандартов [2, 3], контроль и мониторинг надежности АТ [4, 5], надежность и ремонтопригодность оборудования [6], программы обеспечения надежности и технического обслуживания с учетом обеспечения безопасности полетов [7].

Особое место занимают работы, в которых на основе комплексного подхода надежность рассматривается в составе других свойств машин, отражающих их качество: эксплуатационно-технических характеристик воздушных судов (ВС) (отказобезопасность, надежность, эксплуатационная технологичность, эффективность стоимости жизненного цикла) [8], эффективности процессов технической эксплуатации (ТЭ) и поддержания летной годности (ПЛГ) ВС (безопасность и регулярность полетов ВС, безотказность АТ, интенсивность использования ВС, экономичность процессов ТЭ и ПЛГ ВС [9]; в государственных стандартах ГОСТ Р 56079-2014, ГОСТ Р 56080-2014 и ГОСТ Р 56081-2014 (безопасность полета, надежность, контролепригодность, эксплуатационная и ремонтная технологичность).

Однако, в опубликованных работах отсутствует рассмотрение актуальной проблемы управления процессами ОН машин и анализа вероятностно-статистических характеристик редеющих потоков отказов на основе процессного подхода. Настоящая статья посвящена методологическим аспектам этой проблемы, включающим решение основных задач: классификацию стандартизированных терминов ОН машин [6], характеристику процессов ОН АТ как объектов управления, формирование системы управления процессами ОН АТ, анализ статистических методов контроля надежности и вероятностно-статистических характеристик редеющих потоков случайных событий — отказов: выявленных в полете, приведших к наземным сбоям эксплуатации, к заменам ВС и суммарного количества отказов и повреждений, выявленных в полете и на земле

2. Характеристика процессов ОН АТ как объектов управления. Учитывая основополагающую роль терминологии в области надежности машин, выполнена классификация стандартизованных терминов ОН по ГОСТ 27.002-2015 и ГОСТР27.001-2009, в которой приняты следующие процессы: резервирование; техническое обслуживание, восстановление, ремонт; разработка, обеспечение и анализ; испытания на надежность и управление надежностью (табл. 1). Полужирным шрифтом в табл. 1 выделены процессы ОН АТ, приведенные в ГОСТ 27.002-2015 и ГОСТ Р27001-2009.

С учетом терминов и определений, установленных ГОСТ 27.002-2015, ГОСТ Р 27.001-2009 и ГОСТ Р ИСО 9000-2015, на основе процессного подхода [2, 6], дополнительно сформулированы понятия по управлению процессами ОН АТ ГА.

Процесс ОН АТ: совокупность последовательных действий, ориентированных на достижение, поддержание и подтверждение требуемого уровня надежности АТ.

Управление процессами ОН АТ: совокупность координируемых действий, являющихся частью общего управления предприятием в целях выполнения требований к надежности АТ.

Программа управления процессами OH AT: документ, устанавливающий комплекс взаимоувязанных организационных и технических мероприятий, методов, средств, требований и норм, направленных на выполнение установленных в документации на AT требований к надежности.

Процессный подход в ОН АТ включает в себя систематическое определение процессов и управление процессами ОН с их взаимодействием таким образом, чтобы достигать намеченных результатов в соответствии с программой управления процессами ОН АТ.

Надежность закладывается при проектировании, обеспечивается при производстве и поддерживается при эксплуатации. Поэтому процессы ОН АТ на разных стадиях жизненного цикла АТ будем рассматривать в рамках исследования, проектирования, производства и эксплуатации АТ, а нормирование надежности АТ производить с учетом требований норм летной годности ВС и эффективности эксплуатации ВС.

Управляемым процессом ОН АТ называется любая деятельность по ОН АТ, использующая ресурсы и управляемая для обеспечения способности превращать входящие (Вход) элементы в выходящие (Выход) (рис. 1).

Внешний контур (контур программного управления) K_1 "настроен" на выполнение требований процесса эксплуатации АТ ГА по обеспечению надежности АТ, в соответствии с которыми на основе априорной информации о конструктивно-эксплуатационных свойствах АТ и ожидаемых условиях эксплуатации формируется программа управление процессами ОН АТ ГА.

Механизм управления процессами ОН АТ включает два контура (рис. 2).

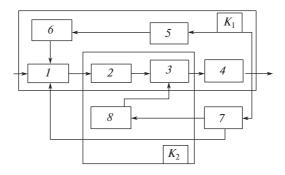
По мере накопления апостериорной информации о техническом состоянии AT в авиапредприятиях ГА в реальных условиях эксплуатации производится корректировка программы управление процессами OH AT.

Таблица 1. Классификация стандартизированных терминов обеспечения надежности								
Признаки	Термины обеспечения надежности							
По ГОСТ 27.002-2015								
1. Резервирование	Резервирование: нагруженное, облегченное, ненагруженное, постоянное, замещением, общее, раздельное, смешанное, без восстановления, с восстановлением, мажоритарное. Резерв: основной элемент, резервный элемент, кратность резерва, нагруженный резерв, облегченный резерв, ненагруженный резерв							
2. Техническое обслуживание, восстановление и ремонт	Система технического обслуживания и ремонта. Техническое обслуживание. Восстановление. Самовосстановление. Ремонт. Мониторинг технического состояния. Замена. Запасная часть. Запасные части, инструменты и принадлежности: ЗИП. Комплект ЗИП. Система ЗИП							
3. Разработка, обеспечение, анализ	Нормируемый показатель надежности. Нормирование надежности. Распределение требований. Структурная схема надежности. Программа обеспечения надежности. Оценка надежности. Прогнозирование надежности. Контроль надежности. Расчетный метод определения надежности. Расчетно-экспериментальный метод определения надежности. Экспериментальный метод определения надежности. Модель надежности. Анализ отказов. Отбраковочные испытания							
4. Испытания на надежность	Испытания на надежность: определительные испытания на надежность, контрольные испытания на надежность, лабораторные испытания на надежность, эксплуатационные испытания на надежность, нормальные испытания, ускоренные испытания. Коэффициент ускорения испытаний. План испытаний на надежность							
	По ГОСТ Р 27.001-2009							
5. Управление надежностью	Предприятие. Система управления надежностью. Объект системы управления надежностью. Элемент системы управления надежностью. Управление надежностью. Обеспечение надежности. Программа обеспечения надежности							

Внутренний контур (контур оперативного управления) K_2 "настроен" на реализацию программы управление процессами ОН АТ ГА с учетом требований процесса эксплуатации АТ конкретного эксплуатационного авиапредприятия, в соответствии с которыми планируются процессы ОН АТ.

3. Формирование системы управления процессами ОН АТ. Система управления проиессами ОН АТ: Совокупность всех средств авиапредприятия (разработчика, изготовителя, эксплуатанта АТ) по управлению процессами ОН АТ.

Система управления процессами ОН АТ должна обеспечивать разработку и осуществление мероприятий на всех стадиях жизненного цикла АТ (исследование, проектирование, изготовление, эксплуатация).


Система управления процессами ОН АТ включает: подсистему линейного руководства; целевые подсистемы; функциональные подсистемы; подсистему обеспечения управления (табл. 2).

Подсистема линейного руководства осуществляет управление процессами ОН АТ линейными руководителями подразделений авиационных отраслей (отраслевом, региональном, авиапредприятия), специальными органами целевого управления, функциональными подразделениями.

Целевая подсистема в соответствии с основными целями деятельности подразделений по управления процессами ОН АТ включает: управление процессами ОН в целом (многоцелевая подсистема), управление процессами обеспечения: безотказности АТ,

Рис. 1. Управляемый процесс ОН АТ ГА.

Рис. 2. Схема управления процессами ОН АТ: K_1 — внешний контур (программное управление); K_2 — внутренний контур (оперативное управление); I — анализ надежности АТ; 2 — программа управления процессами ОН АТ; 3 — процессы ОН АТ; 4 — оценка надежности АТ; 5 — процессы эксплуатации АТ; 6 — нормирование надежности АТ; 7 — контроль надежности АТ; 8 — оперативное управление процессами ОН АТ.

долговечности АТ, ремонтопригодности АТ, сохраняемости АТ, восстанавливаемости АТ и готовности АТ. Взаимосвязь специальных функций с целевыми подсистемами показана в табл. 3. Для повышения *целенаправленности* управления процессами обеспечения надежности используется целевой подход к управлению, в соответствии с которым определяются главная цель управления и ее последующая дифференциация в виде иерархической системы целей (в том числе, по производственным единицам и подразделениям), условия, обеспечивающие достижение целей и организация деятельности трудового коллектива.

Целью системы управления процессами ОН АТ является достижение, подтверждение и поддержание требуемого уровня надежности АТ, установленного в документации на АТ, при минимальных затратах времени, труда и средств на комплекс взаимоувязанных организационных и технических мероприятий, методов и средств ОН АТ.

Таблица 2. Структура системы управления процессами обеспечения (ПО) надежности АТ

Система управления процессами ОН АТ

1. Подсистемы линейного руководства

	3.						
2. Целевые подсистемы	3.1. Планирование 3.2. Оперативное управительное управительное управительное вание 3.4. Учет и отчетность		4. Подсистема обеспечения				
2.0. Многоцелевые	2.0-3.1-1	2.0-3.1-1 2.0-3.2-1		2.0-3.4-1	4.1. Нормативно-		
специальные функции	2.0-3.1-2	2.0-3.2-2	2.0-3.3-2	2.0-3.4-2	правовое		
функции	2.0-3.1-3	2.0-3.2-3					
2.1. Управление ПО безотказности АТ			2.1-3.3-1	2.1-3.4-1	4.2. Информационное		
2.2. Управление ПО долговечности AT	2.2-3.1-1	2.2-3.2-1	2.2-3.3-1	2.2-3.4-1	4.3. Метрологическое		
2.3. Управление ПО ремонтопри- годности АТ	2.3-3.1-1	2.3-3.2-1	2.3-3.3-1	2.3-3.4-1	4.4.Материаль- но-техническое		
2.4. Управление ПО сохраняемости AT	2.4-3.1-1	2.4-3.2-1	2.4-3.3-1	2.4-3.4-1	4.5. Научно-ме- тодическое		
2.5. Управление ПО восстанавлива- емости АТ	2.5-3.1-1	2.5-3.2-1	2.5-3.3-1	2.5-3.4-1			
2.6. Управление ПО готовности AT	2.6-3.1-1	2.6-3.2-1	2.6-3.3-1	2.6-3.4-1			

Степень достижения цели системы управления процессами ОН АТ характеризуется частными и комплексными показателями надежности (ГОСТ 27.002-2015).

Функциональная подсистема характеризуется специализацией управленческой деятельности, целями управления, составом специальных функций управления, составом задач управления по каждой специальной функции и их распределения по органам управления. В состав функциональных подсистем входят: перспективное и текущее планирование процессов ОН АТ; оперативное управление процессами ОН АТ; оценка и стимулирование повышения эффективности процессов ОН АТ; учет и отчетность по процессам ОН АТ.

Шифр специальной функции (табл. 2, 3) состоит из трех цифр $X_1 - X_2 - X_3$, где X_1 — номер целевой подсистемы, X_2 — номер функциональной подсистемы, X_3 — номер специальной функции в функциональной подсистеме.

Цель управления в функциональной подсистеме устанавливается в соответствии с основными целями управления процессами ОН АТ и составом специальных функций.

Функциональная подсистема включает подразделения всех уровней управления, участвующих в выполнении специальных функций. По каждой специальной функции назначается головное подразделение и устанавливается одно или несколько подразделений, участвующих в выполнении специальных функций: управление, отдел, бюро, группа, специалист.

4. Анализ методов контроля надежности и вероятностно-статистических характеристик редеющих потоков случайных событий. В настоящее время применяются различные статистические методы контроля надежности компонентов ВС в процессе экс-

Таблица 3. Перечень специальных функций управления процессами обеспечения надежности <u>AT</u>

Шифр специальной функции	Функциональная подсистема и специальные функции	Целевые подсистемы, реализующи специальные функции			
1. Перспектин	и вное и текущее планирование процесс	ов обеспечения надежности АТ			
2.0-3.1-1	Анализ надежности АТ	Все целевые подсистемы			
2.0-3.1-2	Прогнозирование показателей надежности AT	То же			
2.0-3.1-2	Разработка плана повышения на- дежности АТ	"			
2.1-3.1-1	Планирование повышения безотказности AT	Управление безотказностью АТ			
2.2-3.1-1	Планирование долговечности АТ	Управление долговечностью АТ			
2.3-3.1-1	Планирование повышения ремонтопригодности АТ	Управление ремонтопригодностью AT			
2.4-3.1-1	Планирование повышения сохраня- емости AT	Управление сохраняемостью АТ			
2.5-3.1-1	Планирование повышения восстанавливаемости AT	Управление восстанавливаемостью АТ			
2.6-3.1-1	Планирование повышения готовности AT	Управление готовностью АТ			
2. Опер	ративное управление процессами обес	печения надежности АТ			
2.0-3.2-1	Контроль надежности АТ	Все целевые подсистемы			
2.0-3.2-2	Анализ причин снижения уровня надежности АТ	То же			
2.0-3.2-3	Формирование управляющих воздействий по повышению надежности AT	Все целевые подсистемы			
2.1-3.2-1	Оперативное управление безотказ- ностью AT	Управление безотказностью АТ			
2.2-3.2-1	Оперативное управление долговечностью AT	Управление долговечностью АТ			
2.3-3.2-1	Оперативное управление ремонто- пригодностью AT	Управление ремонтопригодностью AT			
2.4-3.2-1	Оперативное управление сохраняе- мостью AT	Управление сохраняемостью АТ			
2.5-3.2-1	Оперативное управление восстанавливаемостью AT	Управление восстанавливаемостью АТ			
2.6-3.2-1	Оперативное управление готовно- стью AT	Управление готовностью АТ			
3	3. Оценка и стимулирование повышен	ия надежности АТ			
2.0-3.3-1	Оценка уровня надежности АТ и годового экономического эффекта от ее повышения	Все целевые подсистемы			
2.0-3.3-2	Стимулирование повышения надежности AT	То же			
2.1-3.3-1	Оценка и стимулирование повышения безотказности AT	Управление безотказностью АТ			
2.2-3.3-1	Оценка и стимулирование повышения долговечности AT	Управление долговечностью АТ			

Таблица 3. Окончание

Шифр специальной функции	Функциональная подсистема и специальные функции	Целевые подсистемы, реализующие специальные функции
2.3-3.3-1	Оценка и стимулирование повышения ремонтопригодности AT	Управление ремонтопригодностью АТ
2.4-3.3-1	Оценка и стимулирование повышения сохраняемости AT	Управление сохраняемостью АТ
2.5-3.3-1	Оценка и стимулирование повышения восстанавливаемости AT	Управление восстанавливаемостью АТ
2.6-3.3-1	Оценка и стимулирование повышения готовности AT	Управление готовностью АТ
4. Учет и	отчетность управления процессами об	беспечения надежности АТ
2.0-3.4-1	Организация учета при управлении процессами обеспечения надежности AT	Все целевые подсистемы
2.0-3.4-2	Организация отчетности о выполнении плана повышения надежности АТ	То же
2.1-3.4-1	Учет и отчетность по безотказности АТ	Управление безотказностью АТ
2.2-3.4-1	Учет и отчетность по долговечности АТ	Управление долговечностью АТ
2.3-3.4-1	Учет и отчетность по ремонтопригодности AT	Управление ремонтопригодностью AT
2.4-3.4-1	Учет и отчетность по сохраняемости АТ	Управление сохраняемостью АТ
2.5-3.4-1	Учет и отчетность по восстанавлива- емости AT	Управление восстанавливаемостью АТ
26-3.4-1	Учет и отчетность по готовности АТ	Управление готовностью АТ

плуатации (табл. 4). Анализ этих методов позволяет определить их преимущества и недостатки, наметить пути дальнейшего совершенствования.

В соответствии с "Методикой статистического регулирования безотказности", контроль уровня надежности компонентов ВС осуществляется статистическими методами с использованием для расчета верхней границы регулирования (ВГР) распределения Пуассона (п. 1 табл. 4). При статистическом мониторинге надежности компонентов ВС определяются доверительные границы случайных величин (п. 2 табл. 4) для самолетов Як-40 и Як-42 в Научном центре поддержания летной годности ГосНИИ ГА, при контроле надежности для каждого типа компонента, i-го квартала определяется допустимое количество отказов n_{di} путем решения уравнения. Текущее число отказов n_{di} сравнивается с допустимым уровнем n_{di} (п. 3 табл. 4).

При использовании в авиакомпаниях ВС иностранного производства, в соответствии с рекомендациями Международной организацией гражданской авиации ИКАО, применяются Программы обеспечения надежности (Maintenance Reliability Program — MRP) [4], цель которой состоит в том, чтобы контролировать и поддерживать ВС, эксплуатируемые авиакомпанией, в пределах приемлемых уровней летной годности, надежности и экономичности (п. 4 табл. 4).

Однако, эти методы не учитывают взаимосвязь показателей надежности на разных этапах эксплуатации АТ (периодическое ТО, оперативное ТО, полет) и не оценивают эти этапы в качестве защиты от возникающих в процессе эксплуатации отказов.

Система управления процессами ОН АТ должна предусматривать многоуровневую защиту от возникающих в процессе эксплуатации отказов. Обеспечивается такая защита при проведении различных видов технического обслуживания и ремонта (ТОиР),

Таблица 4. Методы статистического контроля показателей надежности АТ
--

Наименование задач	Расчетные формулы	Исходные данные
1. Определение верхней границы регулирования (ВГР) при распределении Пуассона	$P_{3\text{ad}} = \sum_{n=0}^{\text{BFP}} \frac{\left(K_{1000}^{\text{IJI}} Ta/100\right)^n}{n!} e^{-K_{1000}^{\text{III}} Ta/1000}$ $K_{1000}^{\text{IJI}} = \frac{n_{6\text{a3}}}{T_{6\text{a3}}} \times 1000$	$K_{1000}^{\Pi \Pi}$ — плановое значение количества отказов на 1000 ч наработки; T — налет парка BC за контрольный период; a — число однотипных изделий на BC, n — ожидаемое количество отказов за
	$n_{\text{O:K}} = K_{1000}^{\text{III}} \frac{Ta}{1000}$	контрольный период. n_{6a3} — количество отказов за базовый (предшествующий период), T_{6a3} — налет парка BC за базовый период
2. Определение доверительных границ	$lpha^* = P(Z_{ m H} \le Z_0 \le Z_{ m B})$ $lpha_1 = P(Z_0 \le Z_{ m H}), lpha_2 = P(Z_0 \le Z_{ m B}),$ $lpha^* = lpha_1 + lpha_2 - 1, { m mpu} lpha_1 + lpha_2 = lpha$ $lpha^* = 2lpha - 1$	Z — случайная величина; $Z_{\rm H}$ — нижняя и $Z_{\rm B}$ — верхняя границы генеральной характеристики Z_0 . α^* — двухсторонняя доверительная вероятность, α_1 и α_2 — односторонние доверительные вероятности
3. Определение допустимого количества отказов n_{di}	$\chi_{\alpha}^{2}(2n_{di}+2)=2\omega_{\mathrm{H}}T_{i}$	$\chi^2_{\rm O}(2n_{di}+2)$ — квантиль уровня хи-квадрат распределения с $2n_{di}+2$ степенями свободы; ω_u — заданный контрольный уровень надежности, T_i — суммарная наработка в часах совокупности рассматриваемых изделий в $-i$ -м квартале
4. Определение допустимого уровня надежности	$\sigma = \sqrt{\frac{\sum_{i=1}^{n}(Y_i - Y^*)^2}{n}}$ $UCL = Y + k\sigma$ или $UCL = Y - k\sigma$	n — количество месяцев, принятых в расчет, Y_i — показатель за i -й текущий месяц, Y^* — среднее значение месячного показателя за последние n месяцев, σ — стандартное отклонение. k — коэффициент умножения (обычно имеет значение между 2 и 3)

рассматриваемых в общем виде в качестве барьеров в модели профессора Д. Ризона, качественное описание которой нашло отражение в "Руководстве по управлению безопасностью полетов" (Документ ИКАО Doc 9859) AN/474 Издание третье — 2013. Реализация такой защиты при проведении оперативного и периодического ТО, приводящих к разрежению потока отказов, показана на схеме модифицированной модели Д. Ризона (рис. 3).

Разрежение потоков случайных событий происходит в результате выполнения планируемых и не планируемых видов оперативного и периодического технического обслуживания (ТО), отражающих связь надежности АТ с безопасностью и регулярностью полетов, эффективностью использования АТ.

Для описания потока случайных событий — отказов: выявленных в полете, приведших к наземным сбоям эксплуатации, к заменам BC и суммарного количества отказов и повреждений, выявленных в полете и на земле, определения их вероятностно-статистических характеристик можно использовать модель редеющих потоков случайных событий [10].

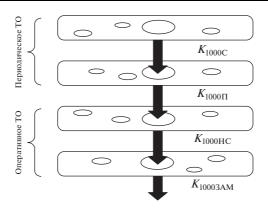


Рис. 3. Модифицированная модель Д. Ризона.

Моделирование редеющего потока случайных событий — последовательности событий, возникающих одно за другим в случайные моменты времени и разрежаемых при выполнении работ по TOuP BC, отражает количественные характеристики механизма защиты. Для информационного обеспечения системы управления процессами ОН АТ в ГА используется система сбора, обработки и использования информации об отказах, повреждениях АТ, реализующая обратную связь авиапредприятий ГА с организациями и предприятиями авиационной промышленности.

Предельная теорема для суммы нескольких потоков случайных событий утверждает сходимость суммы независимых, ординарных, стационарных потоков к простейшему потоку. При этом суммируемые потоки случайных событий должны удовлетворять условиям: среди них не должно быть потоков с очень большой интенсивностью (по сравнению с суммарной интенсивностью всех остальных); интенсивности суммируемых потоков не должны становиться исчезающе малыми по мере увеличения номера потока.

В стационарном пуассоновском потоке (простейшем потоке) интервал времени между любыми двумя соседними событиями распределен по экспоненциальному закону с параметром λ $f(t) = \lambda e^{\lambda t}$.

Интенсивность λ_P разреженного потока \overline{I} равна интенсивности исходного потока λ умноженной на вероятность сохранения события в потоке $P: \lambda_P = \lambda P$.

Для оценки вероятностно-статистических характеристик редеющих потоков случайных событий используются данные эксплуатационных наблюдений при наработке парка BC H о количестве отказов: выявленных в полете n_{Π} , приведших к наземным сбоям эксплуатации (задержки, отмены рейсов, возвраты с рулевой дорожки, прерванные взлеты плюс замены BC) n_{HC} , отказов, приведших к заменам BC (неисправных по техническим причинам, с целью предотвращения возможной задержки или отмены рейса или для сокращения времени задержки) n_{3AM} , и суммарном количестве отказов, выявленных в полете и на земле n_{C} .

Тогда количество отказов на 1000 ч налета оценивается по формулам: для отказов, выявленных в полете

$$K_{1000\Pi} = n_{\Pi} \times 1000/H, \tag{1}$$

для отказов, приведших к наземным сбоям эксплуатации

$$K_{1000\,\text{Hc}} = n_{\text{HC}} \times 1000/H,$$
 (2)

					-								
Показа-						Пери	од (мес	. год)					
тели	12.17	01.18	02.18	03.18	04.18	05.18	06.18	07.18	08.18	09.18	10.18	11.18	12 мес.
K _{1000 C}	105.3	104.8	108.2	105.7	103.8	105.6	109.8	94.51	97.52	91.88	91.72	93.18	101.0
$K_{1000\Pi}$	41.55	52.26	47.15	43.44	44.37	46.01	51.06	40.55	36.39	34.71	38.48	38.39	42.86
$K_{1000\mathrm{HC}}$	22.76	28.44	26.48	19.08	17.50	23.47	24.12	21.89	20.78	13.88	15.48	17.75	20.97
$K_{10003AM}$	5.51	7.56	6.83	5.10	5.43	6.79	6.26	7.50	6.95	3.75	5.40	4.74	5.99

Таблица 5. Показатели надежности парка самолетов RRJ-95В ПАО "Аэрофлот"

для отказов, приведших к заменам ВС

$$K_{10003AM} = n_{3AM} \times 1000/H, \tag{3}$$

для суммарного количества отказов и повреждений, выявленных в полете и на земле

$$K_{1000\,C} = n_{\rm C} \times 1000/H. \tag{4}$$

Задача оценки вероятностно-статистических характеристик редеющего потока отказов решается поэтапно:

- 1) определение зависимостей показателей безотказности (1—4): $K_{1000 \text{ 3AM}}(K_{1000 \text{ HC}})$, $K_{1000 \text{ HC}}(K_{1000 \Pi})$, $K_{1000 \Pi}(K_{1000 C})$;
 - 2) определение вероятности того, что отказ:
- 2.1) из суммарного количества отказов перейдет в редеющий поток отказов, выявленных в полете

$$P_{\rm C\Pi} = K_{1000\,\Pi}/K_{1000\,\rm C},\tag{5}$$

2.2) из отказов, выявленных в полете, перейдет в редеющий поток отказов, приведших к наземным сбоям эксплуатации

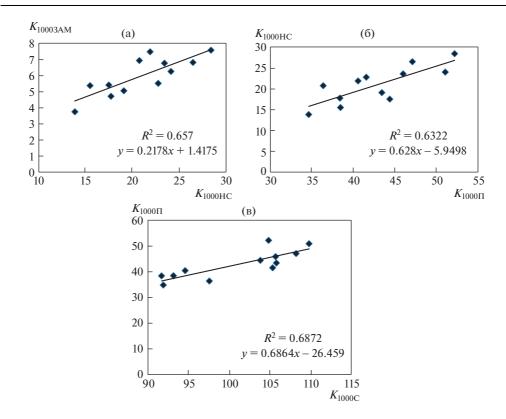
$$P_{\Pi HC} = K_{1000 \, HC} / K_{1000 \, \Pi}, \tag{6}$$

2.3) из отказов, приведших к наземным сбоям эксплуатации, перейдет в редеющий поток замен ВС

$$P_{\text{HC3AM}} = K_{10003\text{AM}} / K_{1000\text{HC}}, \tag{7}$$

2.4) из суммарного количества отказов, не перейдет в редеющий поток отказов, выявленных в полете

$$q_{\rm C\Pi} = 1 - (K_{1000\,\Pi}/K_{1000\,C}),\tag{8}$$


2.5) из отказов, выявленных в полете, не перейдет в редеющий поток отказов, приведших к наземным сбоям эксплуатации

$$q_{\Pi HC} = 1 - (K_{1000 HC} / K_{1000 \Pi}), \tag{9}$$

2.6) из отказов, приведших к наземным сбоям эксплуатации, не перейдет в редеюший поток замен ВС

$$q_{\text{HC3AM}} = 1 - (K_{10003\text{AM}}/K_{1000\text{HC}}). \tag{10}$$

Анализ вероятностно-статистических характеристик предложенной модели редеющего потока случайных событий рассмотрим на примере показателей надежности парка самолетов нового поколения, отечественного производства, RRJ-95B ПАО "Аэрофлот" (табл. 5).

Рис. 4. Зависимости показателей надежности парка самолетов RRJ-95В ПАО "Аэрофлот": (а) $K_{1000\,3AM}(K_{1000\,HC})$, (б) $K_{1000\,HC}(K_{1000\,\Pi})$, в) $K_{1000\,\Pi}(K_{1000\,C})$.

При определении суммарного количества отказов и отказов, выявленных в полете, в расчет принимались отказы функциональных систем с относительно высокой частотой наземных сбоев эксплуатации (доля наземных сбоев от отказов, выявленных в полете не менее 0.1). Поэтому не учитывались отказы по функциональным системам: пилотажно-навигационное, связное и приборное оборудование, освещение.

Использование предложенной модели редеющих потоков случайных событий позволили по данным табл. 5 получить регрессионные зависимости: а) $K_{1000\,\mathrm{3AM}}(K_{1000\,\mathrm{HC}})$, б) $K_{1000\,\mathrm{HC}}(K_{1000\,\mathrm{\Pi}})$, в) $K_{1000\,\mathrm{\Pi}}(K_{1000\,\mathrm{C}})$ и коэффициенты корреляции, приведенные на рис. 4. Анализ этих зависимостей показывает, что между рассматриваемыми показателями существуют корреляционные взаимосвязи (с коэффициентами корреляции от R^2 от 0.63 до 0.69), что подтверждает корректность построения модели редеющих потоков случайных событий.

Наличие корреляции позволяет прогнозировать рост показателей регулярности полетов при сокращении общего количества отказов в результате совершенствования процессов ТОиР ВС.

Выполнена оценка вероятностей сохранения (не сохранения) событий в редеющем потоке по формулам (5-7) и (8-10) и данным, приведенным в табл. 5.

Получены следующие значения вероятностей сохранения событий в редеющем потоке: $P_{\rm C\Pi}=0.424$; $P_{\rm \Pi HC}=0.489$; $P_{\rm HC3AM}=0.285$ и соответственно, значения вероятностей не сохранения событий: $q_{\rm C\Pi}=0.576$; $q_{\rm \Pi HC}=0.511$; $q_{\rm HC3AM}=0.715$, что свидетельствует о значительном разрежении потока отказов и эффективности работ по TO BC.

Заключение. Рассмотренные в статье методологические аспекты управления процессами ОН АТ ГА, которые содержат характеристику процессов ОН АТ как объектов управления, структуру системы управления процессами ОН АТ, вероятностно-статистический анализ редеющих потоков случайных событий, предназначены для применения предприятиями и организациями ГА и авиационной промышленности при разработке и внедрении системы управления процессами ОН АТ. Методологические аспекты управления процессами ОН АТ ГА направлены на повышение эффективности процессов эксплуатации и безопасности полетов ВС и могут найти применение для других видов машин.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Абрамов Д.В.* Актуальность проблемы ОН // Ж. Надежность и качество сложных систем. 2014. № 3. С. 3.
- 2. Ицкович А.А., Файнбург И.А., Файнбург Г.Д. Классификация стандартизованных терминов надежности технических объектов // Сборник статей Международной научно-практической конференции "Технические науки на службе созидания и прогресса". Уфа: Аэтерна, 2017. С. 109.
- 3. Ho M., Hodkiewicz M. Glossary of Reliability Terms and Definitions for maintenance of inservice assets. 2nd Edition 2013/ University of Western Australia Perth, Australia 6009 & CRC Mining, Australia.
- 4. *Далецкий С.В., Далецкий Е.С.* Обеспечение функциональных задач контроля надежности АТ в эксплуатации // Ж. Научный вестник МГТУ ГА. 2008. № 127(3). С. 16.
- 5. Ицкович А.А., Файнбург И.А., Алексанян А.Р. Анализ методов контроля надежности компонентов ВС // Ж. Научный вестник МГТУ ГА. 2010. № 160(10). С. 54.
- 6. *Houshyar A*. Reliability and Maintainability of Machinery and Equipment, Part 1: Accessibility and Assessing Machine Tool R&M / Performance International Journal of Modelling and Simulation, V. 25, 2005, Issue 1. P. 201.
- 7. *Marusic A., Alfirevic I., Pita O.* Maintenance Reliability Program as Essential Prerequisite of Flight Safety/ Promet − Traffic&Transportation. V. 21, 2009, № 4. P. 269.
- 8. *Петров А.Н.* Методология поддержания летной годности воздушного судна на основе управления эффективностью системы его технического обслуживания и ремонта // Ж. Научный вестник МГТУ ГА. 2008. № 130. С. 34.
- 9. *Ицкович А.А., Чернов А.О., Файнбург Г.Д., Файнбург И.А.* Повышение эффективности процессов поддержания летной годности ВС на основе методологии управления проектами // Ж. Научный вестник МГТУ ГА. 2017. Т. 20. № 1. С. 26.
- 10. Ицкович А.А., Титов И.В., Файнбург И.А. Моделирование редеющих потоков событий при формировании программ поддержания летной годности воздушных судов // Научный вестник МГТУ ГА. 2013. № 197(11). С. 68.