= МЕХАНИКА МАШИН ==

УДК 539.3;620.17

ИДЕНТИФИКАЦИЯ ДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК УПРУГОСТИ И ДЕМПФИРУЮЩИХ СВОЙСТВ ТИТАНОВОГО СПЛАВА ОТ-4 НА ОСНОВЕ ИССЛЕДОВАНИЯ ЗАТУХАЮЩИХ ИЗГИБНЫХ КОЛЕБАНИЙ ТЕСТ-ОБРАЗЦОВ

© 2019 г. В. Н. Паймушин^{1,2,*}, В. А. Фирсов¹, В. М. Шишкин³

¹ Казанский национальный исследовательский технический университет им. А.Н. Туполева, г. Казань, Россия ² Казанский федеральный университет, г. Казань, Россия ³ Вятский государственный университет, г. Киров, Россия

* e-mail: vpajmushin@mail.ru

Поступила в редакцию 18.08.2017 г. Принята к публикации 24.12.2018 г.

В статье показано значительное снижение динамического модуля упругости титанового сплава ОТ-4 в диапазоне частот 0–25 Гц по сравнению со статическим модулем упругости с дальнейшей стабилизацией отмеченного динамического модуля при частотах 25–80 Гц на основе исследования затухающих изгибных колебаний серии консольно закрепленных тест-образцов; разработана методика идентификации демпфирующих свойств отмеченного сплава при растяжении – сжатии с учетом внутреннего и внешнего аэродинамического демпфирования на основе метода конечных элементов и минимизации целевой функции, содержащей экспериментальные и расчетные логарифмические декременты колебаний тест-образца; построена матрица аэродинамического демпфирования конечного элемента на основе аппроксимации Морисона для представления погонной силы аэродинамического сопротивления при колебаниях тест-образца; получена усредненная по нескольким тестобразцам амплитудная зависимость логарифмического декремента колебаний, представляющая демпфирующие свойства исследуемого сплава ОТ-4.

Ключевые слова: тест-образец, динамический модуль упругости, логарифмический декремент колебаний, аэродинамическое демпфирование, конечный элемент, целевая функция

DOI: 10.1134/S0235711919020111

Введение. Титановые сплавы отличаются высокой удельной прочностью и жесткостью в сочетании с высокой термической и коррозионной стойкостью, что открывают большие перспективы их применения в авиационной промышленности, ракетостроении и транспортном машиностроении. Это определяет необходимость адекватного определения их упругих и демпфирующих свойств, соответствующих реальным условиям режимов работы конструкции.

В расчетах по определению динамической реакции конструкций в колебательных режимах деформирования традиционно используются характеристики упругости материала, найденные при статических испытаниях соответствующих тест-образцов. Однако проведенные динамические испытания дюралюминиевых тест-образцов в режимах изгибных затухающих и резонансных колебаний в диапазоне частот 0–200 Гц [1] показали значительное снижение экспериментально измеренных частот по сравнению с их расчетными значениями, найденными с использованием статического модуля упругости дюралюминия, что нельзя объяснить погрешностями эксперимента, а только существенным снижением модуля упругости дюралюминия в указанном диапазоне частот по сравнению с его статическим номиналом. Это означает, что использование в динамических режимах деформирования статического модуля упругости материала может дать значительные ошибки в определении резонансных частот и динамической напряженности элементов конструкций. Отсюда вытекает необходимость определения упругих свойств других перспективных конструкционных материалов в динамических режимах деформирования.

К числу наименее исследованных механических характеристик титана и его сплавов относится демпфирующая способность, влияющая на динамическую напряженность элементов конструкции в циклических режимах деформирования и, прежде всего, при резонансе, реализующихся в конструкции при совпадении частот ее собственных колебаний с частотой внешнего циклического воздействия. При таком режиме нагружения многократно возрастают амплитудные значения параметров динамического напряженно-деформированного состояния (НДС). Корректное и достоверное их теоретическое определение с необходимой для практических целей точностью требует надлежащего учета в расчетных соотношениях демпфирующих свойств материалов конструкций, обусловленных внутренним трением.

Для экспериментального исследования демпфирующих свойств материалов в диапазоне частот от 50 до 5000 Гц в настоящее время существует международный стандарт ASTM E-756 [2], в соответствии с которым акустическим методом в резонансном режиме исследуются изгибные колебания консольно закрепленных тест-образцов различной структуры. Однако указанный стандарт имеет целый ряд ограничений, сужающих область его применения: 1) невозможно исследование демпфирующих свойств материалов в диапазоне частот от 0 до 50 Гц, наиболее полно отражающим реальные условия эксплуатации большинства конструкций; 2) демпфирующие свойства материалов исследуются в условиях малых амплитуд перемещений, что ограничивает использование полученных результатов для оценки динамического поведения конструкций с большими эксплуатационными амплитулами колебаний, например, лопастей несущих и управляющих винтов вертолетов, ветроэнергоустановок и т.д.; 3) не учитывается демпфирование воздушной среды при колебаниях тест-образцов, что, как показали проведенные исследования [3], может привести к существенным погрешностям в определении демпфирующих свойств как материала так и конструкции в целом, поскольку составляющая внешнего аэродинамического демпфирования будет приписываться к определяемой демпфирующей способности материала.

Имеющиеся экспериментальные и теоретические методы учета аэродинамического демпфирования при изгибных колебаниях тест-образцов в основном направлены на получение коэффициентов аэродинамического сопротивления и структурных формул для вычисления аэродинамической составляющей демпфирования [4–6], что не вписывается в общую конечно-элементную идеологию моделирования динамической реакции по причине отсутствия обоснованных методов получения матрицы аэродинамического демпфирования тест-образца. Наиболее приемлемый способ получения данной матрицы может состоять в использовании классической аппроксимации Морисона [7, 8] для представления погонных сил аэродинамического сопротивления протяженных объектов и конструкций, но данный вопрос пока остается открытым.

Необходимо отметить, что характеристики демпфирования материалов, получаемые при изгибных колебаниях тест-образцов, являются лишь сравнительной оценкой их демпфирующих свойств, и не могут быть использованы в условиях отличных от эксперимента [9]. Отсюда возникает необходимость идентификации реальных демпфирующих свойств материала по экспериментальным характеристикам демпфирования тест-образцов в условиях изгибных колебаний. Данные характеристики получают путем исследования резонансных или затухающих изгибных колебаний тест-образ-

Рис. 1. Принципиальная схема экспериментальной установки.

цов. Но проведение эксперимента в условиях резонанса требует чрезвычайно точной настройки частоты источника колебаний из-за высокой чувствительности амплитуды колебаний тест-образца к малым изменениям частоты вблизи резонанса. Поэтому идентификацию демпфирующих свойств материалов более удобно и надежно проводить на основе исследования затухающих изгибных колебаний, соответствующих тест-образцов [3, 10].

Экспериментальная установка для исследования затухающих изгибных колебаний тест-образцов. На кафедре прочности конструкций Казанского национального исследовательского технического университета им. А.Н. Туполева разработана специальная экспериментальная установка [3] для определения динамических характеристик упругости и демпфирующих свойств материалов (изотропных, композитных, эластичных) на основе исследования затухающих изгибных колебаний соответствующих тест-образцов (рис. 1). Установка состоит из основания 1 и силовой стенки 2, жестко соединенных между собой. На стенке консольно закрепляется испытуемый тест-образец 3. Защемление осуществляется с помощью разнесенных планок, соединяемых со стенкой двумя рядами болтовых соединений и исключающих поворот испытуемого тест-образца в сечении заделки. На основании установлена стойка 4 для крепления лазерного датчика перемещений 5, положение которой вдоль основания может изменяться для измерения амплитуды колебаний точек тест-образца при изменении его стрелы вылета.

В установке используется триангуляционный лазерный датчик фирмы RIFTEK (RF603-X/100), обеспечивающий точность измерения амплитуды колебаний 0,01 мм. Результаты измерений в цифровом формате поступают на персональный компьютер. Замеры начинаются с некоторой задержкой по времени, необходимой для перехода из начального (статического) изогнутого состояния на низшую форму колебаний тест-образца. Разработанное математическое обеспечение позволяет осуществить до 2000 замеров прогиба в секунду, и, таким образом, весьма точно отразить реальную виброграмму затухающих колебаний испытуемого образца.

Идентификация частной зависимости динамического модуля упругости титанового сплава ОТ-4. Проведены динамические испытания в режиме затухающих изгибных колебаний серии консольно закрепленных тест-образцов прямоугольного поперечного сечения с длинами L = 140-750 мм, что соответствует диапазону экспериментально измеренных частот $f_* = 73.3-2.68$ Гц. Статический модуль упругости и плотность сплава ОТ-4: $E = 1.1 \times 10^5$ МПа; $\rho = 4430$ кг/м³. Ширина и толщина тест-образцов:

ПАЙМУШИН и др.

<i>L</i> , мм	$f_*,$ Гц	<i>f</i> , Гц	Ω	<i>E</i> _d , МПа
140	73.30	79.67	-0.0800	0.9310×10^5
150	64.09	69.41	-0.0766	0.9380×10^5
160	56.00	61.00	-0.0820	0.9270×10^5
175	47.87	50.99	-0.0612	0.9694×10^5
200	36.20	39.04	-0.0727	0.9458×10^5
225	28.94	30.85	-0.0619	0.9682×10^5
250	23.31	24.99	-0.0672	0.9574×10^5
275	19.49	20.65	-0.0562	0.9799×10^5
300	16.35	17.35	-0.0576	0.9767×10^5
325	13.86	14.78	-0.0622	0.9667×10^5
400	9.30	9.76	-0.0471	0.9987×10^5
500	6.04	6.25	-0.0336	1.0285×10^5
600	4.23	4.34	0.0253	1.0460×10^5
700	3.08	3.20	-0.0375	1.0274×10^5
750	2.68	2.78	-0.0360	1.0251×10^5

Таблица 1.

b = 20 мм; h = 1.94 мм. Значения динамического модуля упругости отмеченного сплава в указанном диапазоне частот f_* определялись по формуле

$$E_d = 38.3216\rho L^4 f_*^2 / h^2, \tag{1}$$

следующей из известного соотношения для нахождения низшей частоты свободных изгибных колебаний консольно закрепленного стержня

$$f = (1.875/L)^2 \sqrt{EI/m}/(2\pi); \quad I = bh^3/12; \quad m = \rho bh.$$
 (2)

В табл. 1 приведены длины L тест-образцов, их экспериментальные частоты f_* , соответствующие расчетные частоты f, полученные по формуле (2) при статическом модуле упругости $E = 1.1 \times 10^5$ МПа (для сравнения их с частотами f_*), относительное расхождение частот $\Omega = (f_* - f)/f$ и значения динамического модуля упругости E_d сплава ОТ-4, полученные по формуле (1) при частотах f_* . Обращает на себя внимание факт систематического и значительного снижения экспериментальных частот f_* тестобразцов по сравнению с соответствующими расчетными частотами f, полученными при статическом модуле упругости $E = 1.1 \times 10^5$ МПа, что нельзя истолковать погрешностями эксперимента (в этом случае величины Ω имели бы больший разброс и различные знаки). Данный факт можно объяснить только существенно меньшим значением динамического модуля упругости E_d исследуемого сплава по сравнению с его статическим модулем упругости E.

Полученные значения *E*_d имеют некоторый экспериментальный разброс (рис. 2 – точки). Для получения сглаживающей кривой использовалась аппроксимация

$$E_d(f) = c_1 \exp(c_2 f) + c_3 \exp(c_4 f).$$
(3)

Параметры *c*₁, *c*₂, *c*₃, *c*₄ данной аппроксимации определялись минимизацией целевой функции

$$H(c_1, c_2, c_3, c_4) = \sum_i (1 - E_{d,i}^* / E_{d,i})^2,$$
(4)

Рис. 2. Зависимости $E_d(f)$: точки – табл. 1; линия – аппроксимация (5).

где $E_{d,i}^*$ и $E_{d,i}$ – соответственно табличные и найденные по аппроксимации (3) значения динамического модуля упругости E_d . Для отыскания минимума функции (4) использовался метод конфигураций Хука–Дживса [11] с учетом ограничения – равенства $E_d(0) = c_1 + c_3 = E = 1.1 \times 10^5$ МПа.

В результате получена зависимость

$$E_d(f) = 9.472 \times 10^4 \exp(-2.156 \times 10^{-8} f) +$$

+ 1.528 \times 10^4 \exp(-1.238 \times 10^{-1} f), (5)

дающая значения E_d в МПа. На рис. 2 (линия) приведен график полученной зависимости, который показывает значительное снижение динамического модуля упругости сплава ОТ-4 по мере возрастания частоты *f* в диапазоне 0–25 Гц (примерно на 13.3%) и дальнейшую практическую стабилизацию его при f = 25-80 Гц.

Идентификация демпфирующих свойств сплава ОТ-4. Теоретические основы. При затухающих изгибных колебаниях тест-образца материал в любой точке поперечного сечения находится в состоянии циклического растяжения-сжатия. В этом случае демпфирующие свойства материала определяются логарифмическим декрементом колебаний (ЛДК) D, зависящим от амплитуды деформации ε_0 . Для представления зависимости $D(\varepsilon_0)$ предлагается использовать степенную функцию

$$D(\varepsilon_0) = \alpha \varepsilon_0^{\beta}.$$
 (6)

Демпфирующие свойства тест-образца при колебаниях по низшей моде определяются ЛДК $\delta(A)$, зависящим от амплитуды колебаний A его свободного конца (зависимость $\delta(A)$ можно получить обработкой экспериментальной виброграммы затухающих изгибных колебаний тест-образца). Идентификация демпфирующих свойств материала состоит в отыскании параметров α - и β -функции (6) по имеющейся экспериментальной зависимости $\delta^*(A)$ так, чтобы расчетные ЛДК тест-образца мало отличались от экспериментальных значений δ^* при некотором заданном наборе амплитуд A_j (j = 1, 2, ..., m) в диапазоне представления зависимости $\delta^*(A)$. Для оценки результатов необходимо ввести норму невязки сравниваемых величин, например, в виде

$$F(\alpha,\beta) = \sum_{j=1}^{m} (\delta_j^* - \delta_j)^2$$

Рис. 3. Конечно-элементная модель тест-образца (а) и отдельный конечный элемент (б).

Здесь $F(\alpha, \beta)$ – целевая функция, неявно зависящая от параметров α и β ; δ_j^* , δ_j – соответственно экспериментальные и расчетные ЛДК тест-образца при амплитудах A_j (j = 1, 2, ..., m).

Для нахождения минимума функции нескольких переменных обычно используют метод координатного или скорейшего спуска [11], где требуется вычислять частные производные от данной функции по каждой независимой переменной. Однако, при отсутствии явной зависимости $F(\alpha, \beta)$ частные производные $\partial F/\partial \alpha$ и $\partial F/\partial \beta$ необходимо определять численно. Поэтому предпочтительными будут прямые методы поиска нулевого порядка [11] (симплекс-метод, метод Хука–Дживса, метод Розенброка), не требующие вычисления отмеченных производных. Наиболее удобным является метод Хука–Дживса, который легко реализуется при любой размерности пространства поиска.

При моделировании затухающих изгибных колебаний тест-образца учитываются внутреннее демпфирование, обусловленное необратимым рассеянием энергии в материале, силы аэродинамического сопротивления и частотная зависимость динамического модуля упругости материала. Для учета комплекса перечисленных факторов предлагается использовать метод конечных элементов с представлением тест-образца совокупностью балочных элементов (рис. 3). Узловыми параметрами элемента являются прогибы w_1 , w_2 и углы поворота поперечных сечений θ_1 , θ_2 , зависящие от времени *t*.

Представим прогиб w(t) в пределах элемента в виде

$$w(t) = \mathbf{N}^T \mathbf{r}_e(t). \tag{7}$$

Здесь $\mathbf{r}_e(t) = \{w_1 \ \theta_1 \ w_2 \ \theta_2\}, \mathbf{N} = \{N_1 \ N_2 \ N_3 \ N_4\}$ – вектор базисных функций:

$$\begin{split} N_1 &= 1 - 3\overline{x}^2 + 2\overline{x}^3; \quad N_2 &= \overline{x}l(1 - 2\overline{x} + \overline{x}^2); \quad N_3 &= 3\overline{x}^2 - 2\overline{x}^3; \\ N_4 &= \overline{x}l(-\overline{x} + \overline{x}^2); \quad \overline{x} &= x/l. \end{split}$$

Для получения уравнений движения конечного элемента воспользуемся принципом Даламбера—Лагранжа

$$\delta A_J + \delta A_\sigma + \delta A_a = 0. \tag{8}$$

Здесь δA_J , δA_{σ} , δA_a — соответственно возможные работы сил инерции, нормальных напряжений σ и сил аэродинамического сопротивления, определяемые с учетом представления (7). Символ δ в (8) и далее означает варьирование величины справа от него. Выражение для δA_J получается следующим:

$$\delta A_J = -m \int_0^l \delta w \ddot{w} dx = -m \delta \mathbf{r}_e^T \int_0^l \mathbf{N} \mathbf{N}^T dx \ddot{\mathbf{r}}_e = -\delta \mathbf{r}_e^T \mathbf{M}_e \ddot{\mathbf{r}}_e.$$
(9)

Здесь *m* – погонная масса тест-образца, **M**_e – матрица масс конечного элемента:

$$\mathbf{M}_{e} = -m_{0}^{l} \mathbf{N} \mathbf{N}^{T} dx = m \begin{bmatrix} \frac{13l/35}{11l^{2}/210} & \frac{11l^{2}/210}{l^{3}/105} & \frac{9l/70}{13l^{2}/420} & -\frac{13l^{2}/420}{l^{3}/105} \\ \frac{9l/70}{-13l^{2}/420} & \frac{13l^{2}/420}{l^{3}/140} & \frac{-11l^{2}/210}{l^{3}/105} \end{bmatrix}.$$
 (10)

Возможная работа δA_{σ} зависит от модели неупругого деформирования материала. Если материал тест-образца обладает вязкоупругими свойствами, то для их описания можно использовать физические зависимости между компонентами тензора напряжений σ_{ij} , тензора деформаций ε_{ij} и тензора скоростей деформаций $\dot{\varepsilon}_{ij} = \partial \varepsilon_{ij} / \partial t$: $\sigma_{ij} = \sigma_{ij}(\varepsilon_{ij}, \dot{\varepsilon}_{ij})$. При одноосном напряженном состоянии простейшая из таких зависимостей, наиболее часто используемая на практике, соответствует известной модели Фойгта–Томпсона–Кельвина [12, 13]

$$\sigma = E\varepsilon + \eta \dot{\varepsilon},\tag{11}$$

где σ , ε , $\dot{\varepsilon}$ – соответственно нормальное напряжение, относительная деформация и скорость ее изменения по времени *t*; *E*, η – модуль упругости и коэффициент вязкости материала. Коэффициент η связан с ЛДК *D*(ε_0) материала зависимостью

$$\eta = ED(\varepsilon_0)/(\pi\omega), \tag{12}$$

где ω — круговая частота деформирования материала. В случае зависимости упругих свойств материала от частоты ω , модуль *E* необходимо заменить динамическим модулем упругости E_d [14, 15]. С учетом такой замены и зависимости (12) модель (11) принимает вид

$$\sigma = E_d[\varepsilon + D(\varepsilon_0)\dot{\varepsilon}/(\pi\omega)].$$

В этом случае возможная работа δA_{σ} будет такой

$$\delta A_{\sigma} = -\int_{0}^{l} \int_{-h/2}^{h/2} \delta \varepsilon \sigma dz dx = -E_{d} b \left[\int_{0}^{l} \int_{-h/2}^{h/2} \delta \varepsilon \varepsilon dz dx + \frac{1}{\pi \omega} \int_{0}^{l} \int_{-h/2}^{h/2} \delta \varepsilon D(\varepsilon_{0}) \dot{\varepsilon} dz dx \right].$$
(13)

Деформация ε и ее амплитуда ε_0 в точке *z* поперечного сечения элемента определяются геометрическими зависимостями

$$\varepsilon = -z(\mathbf{N}^{"})^{T}\mathbf{r}_{e}, \quad \varepsilon_{0} = |z|\chi_{0}(x).$$
(14)

Здесь $\chi_0(x)$ — амплитуда кривизны оси элемента. Будем считать, что величина χ_0 не зависит от x и равна ее значению в середине элемента. Тогда вместо (6) получается зависимость

$$D(\varepsilon_0) = D(\chi_0) = \alpha |z|^{\beta} \chi_0^{\beta}$$

Подставляя данную зависимость в выражение (13) и учитывая (14) получаем

$$\delta A_{\sigma} = -E_d b \delta r_e^T \left[\int_0^l \int_{-h/2}^{h/2} \mathbf{N}''(\mathbf{N}'')^T z^2 dz dx \mathbf{r}_e + \frac{\alpha \chi_0^{\beta}}{\pi \omega} \int_0^l \int_{-h/2}^{h/2} \mathbf{N}''(\mathbf{N}'')^T \left| z \right|^{\beta+2} dz dx \dot{\mathbf{r}}_e \right].$$

Последнее выражение можно привести к виду

$$\delta A_{\sigma} = -\delta \mathbf{r}_{e}^{T} \mathbf{K}_{e} \mathbf{r}_{e} - \delta \mathbf{r}_{e}^{T} \mathbf{C}_{e,m} \dot{\mathbf{r}}_{e}, \qquad (15)$$

где \mathbf{K}_{e} , $\mathbf{C}_{e,m}$ — соответственно матрица жесткости и матрица внутреннего демпфирования конечного элемента:

$$\mathbf{K}_{e} = \frac{E_{d}bh^{3}}{12} \int_{0}^{l} \mathbf{N}''(\mathbf{N}'')^{T} dx = \frac{E_{d}bh^{3}}{12} \begin{bmatrix} \frac{12/l^{3}}{6/l^{2}} & \frac{6/l^{2}}{-12/l^{3}} & \frac{6/l^{2}}{2/l} \\ \frac{-12/l^{3}}{-6/l^{2}} & \frac{12/l^{3}}{-6/l^{2}} & \frac{6/l^{2}}{2/l} \\ \frac{-12/l^{3}}{-6/l^{2}} & \frac{2/l}{2/l} & \frac{-6/l^{2}}{-6/l^{2}} \\ \frac{-6/l^{2}}{4/l} \end{bmatrix};$$
(16)
$$\mathbf{C}_{e,m} = \frac{3\alpha(\chi_{0}h/2)^{\beta}}{\pi\alpha(\beta+3)} \mathbf{K}_{e}.$$

При определении сил аэродинамического сопротивления считается, что аэродинамическое взаимодействие может быть сведено к инерционному эффекту присоединенной массы и аэродинамическому демпфированию. Инерционный эффект приводит к снижению частоты, а аэродинамическое демпфирование — к росту ЛДК тест-образца по сравнению с его колебаниями в вакууме. Классической в этом случае является аппроксимация Морисона [7, 8]

$$P_a(x,t) = -0.25\rho_a b^2 C_M \dot{u} - 0.5\rho_a b C_D |u| u.$$
(17)

Здесь $P_a(x, t)$ – погонная аэродинамическая сила, ρ_a – плотность воздуха, C_M – коэффициент присоединенной массы; C_D – коэффициент аэродинамического сопротивления, $u = \dot{w}$ – скорость потока относительно тест-образца на бесконечности. Коэффициенты C_M и C_D являются функциями безразмерных параметров $\kappa_0 = A/b$, $d = b^2 \omega/(2\pi\mu)$ и $\Delta = h/b$, где μ – кинематическая вязкость воздуха. В работе [4] показано, что при колебаниях тест-образца в воздухе влияние присоединенной массы на относительное снижение частоты ω (по сравнению с частотой в вакууме) составляет величину порядка 0,001. Поэтому далее этим влиянием можно пренебречь и вместо (17) использовать выражение

$$P_a(x,t) = -0.5\rho_a b C_D |\dot{w}|.$$

Коэффициент аэродинамического сопротивления обычно представляется в виде суммы вязкой C_{vis} и вихревой C_{vort} составляющих [4, 16]: $C_D = C_{\text{vis}} + C_{\text{vort}}$. Влияние вязкой составляющей на ЛДК тест-образца существенно только на малых амплитудах колебаний. При этом можно использовать аналитическое приближение Стокса, из которого для тонкого тест-образца ($\Delta < 1/3$) следует формула [17]

$$C_{vis} = 4.61/(\kappa\sqrt{d}), \quad \kappa = \kappa_0 W(\xi),$$

где $W(\xi)$ – нормированная низшая мода колебаний тест-образца

$$W(\xi) = \frac{1}{2}(\operatorname{ch} k\xi - \cos k\xi) - \frac{1}{2}\frac{\operatorname{ch} k + \cos k}{\operatorname{sh} k + \sin k}(\operatorname{sh} k\xi - \sin k\xi) \quad (k = 1.875; \quad W(1) = 1).$$

Для определения составляющей C_{vort} можно воспользоваться аппроксимацией, приведенной в работе [6]

$$C_{\text{vort}} = 0.171 \kappa^{a-0.58} (a + 3.087 + 25.8 \kappa^{a}) / (0.12 + \kappa^{a})^{2}; \quad a = 1.03 + 16.61 d^{-0.627}$$

Перейдем к определению возможной работы погонной аэродинамической силы $P_a(x, t)$ по длине конечного элемента. При этом будем считать, что величины C_D и $|\dot{w}|$ в пределах элемента постоянны и равны их значениям в его середине

$$\delta A_a = -0.5 \rho_a b C_D \left| \dot{w} \right| \int_0^t \delta w \dot{w} dx.$$

Подставляя сюда представление (7) получаем

$$\delta A_a = -0.5 \rho_a b C_D \left| \dot{w} \right| \delta \mathbf{r}_e^T \int_0^l \mathbf{N} \mathbf{N}^T dx \dot{\mathbf{r}}_e.$$

С учетом равенства (10) и выражения для погонной массы $m = \rho bh$ последнее соотношение можно привести к виду

$$\delta A_a = -\delta \mathbf{r}_e^T \mathbf{C}_{e,a} \dot{\mathbf{r}}_e, \tag{18}$$

где C_{e,a} – матрица аэродинамического демпфирования конечного элемента:

$$\mathbf{C}_{e,a} = 0.5\rho_a C_D \left| \dot{w} \right| \mathbf{M}_e / (\rho h). \tag{19}$$

Подставляя выражения (9), (15) и (18) в уравнение (8) и учитывая условие $\delta \mathbf{r}_e \neq 0$, получаем систему уравнений движения конечного элемента

$$\mathbf{M}_{e}\ddot{\mathbf{r}}_{e} + (\mathbf{C}_{e,m} + \mathbf{C}_{e,a})\dot{\mathbf{r}}_{e} + \mathbf{K}_{e}\mathbf{r}_{e} = 0.$$

Объединяя данные уравнения по направлениям общих для смежных конечных элементов узловых перемещений приходим к системе разрешающих уравнений

$$\mathbf{M}\ddot{\mathbf{r}} + (\mathbf{C}_m + \mathbf{C}_a)\dot{\mathbf{r}} + \mathbf{K}\mathbf{r} = 0, \tag{20}$$

где **M**, **C**_{*m*}, **C**_{*a*}, **K**, **r** – соответственно матрица масс, матрицы внутреннего и аэродинамического демпфирования, матрица жесткости и вектор узловых перемещений конечно-элементной модели тест-образца. Необходимо заметить, что матрица **K** в уравнениях (20) должна вычисляться при динамическом модуле упругости E_d , зависящим от расчетной частоты *f*, которая на момент формирования системы (20) еще неизвестна. Поэтому процесс определения частоты *f* необходимо итерировать [1] используя полученную зависимость (5). Однако, проведенные численные эксперименты показали, что поученная таким образом частота *f* оказывается довольно близкой к экспериментальной частоте f_* . Поэтому с целью сокращения трудоемкости вычисления матрицы **K** динамический модуль E_d можно вычислять по зависимости (5) при экспериментальной частоте f_* .

Из выражений (16) и (19) видно, что матрица C_m должна зависеть от амплитуд кривизны χ_0 , а матрица C_a – от модулей скоростей $|\dot{w}|$ центров конечных элементов. В этом случае уравнения (20) возможно решить только с использованием прямых шаговых методов с вычислением матрицы C_a на каждом шаге интегрирования и пересчетом матрицы C_m на каждом цикле колебаний, что приводит к высокой трудоемкости решения данных уравнений. В связи с этим вместо (19) предлагается использовать соотношение

$$\mathbf{C}_{e,a} = 0.5 \rho_a C_D \left| \dot{w} \right|_s \mathbf{M}_e / (\rho h),$$

где $|\dot{w}|_s$ – средний модуль скорости центра элемента за период *T*, определяемый по его амплитуде колебаний w_0

$$|\dot{w}|_{s} = T^{-1} \int_{0}^{T} |\dot{w}| dt = 2w_{0}\omega/\pi.$$

Это дает возможность пересчитывать матрицу C_a не на каждом шаге интегрирования, а так же как и матрицу C_a , на каждом цикле колебаний в соответствии с достигнутыми значениями w_0 центров конечных элементов.

Так как затухающие колебания тест-образца происходят по низшей моде **F**, то справедливо представление $\mathbf{r} = \mathbf{F}q$, где q – нормальная координата данной моды. Это дает возможность перейти от системы (20) к уравнению

$$m_{q}\ddot{q} + (c_{q,m} + c_{q,a})\dot{q} + k_{q}q = 0$$
⁽²¹⁾

с модальными параметрами

$$m_q = \mathbf{F}^T \mathbf{M} \mathbf{F}, \quad c_{q,m} = \mathbf{F}^T \mathbf{C}_m \mathbf{F}, \quad c_{q,a} = \mathbf{F}^T \mathbf{C}_a \mathbf{F}, \quad k_q = \mathbf{F}^T \mathbf{K} \mathbf{F}$$

и начальными условиями: $q(0) = A_0/F_w$; $\dot{q}(0) = 0$, где A_0 – начальная амплитуда; F_w – компонента моды **F**, соответствующая прогибу *w* свободного конца тест-образца. Уравнение (21) можно представить в виде

$$\ddot{q} + 2n\dot{q} + \omega^2 q = 0, \tag{22}$$

где $n = (c_{q,m} + c_{q,a})/(2m_q), \omega^2 = k_q/m_q.$

Уравнение (22) дает возможность определить расчетные амплитуды затухающих колебаний и соответствующие им ЛДК тест-образца. При этом вместо шагового интегрирования возможно использовать алгоритм прогонки [18], значительно сокращающий процесс определения отмеченных параметров:

$$A^{(i+1)} = A^{(i)} \exp(-n^{(i)}T), \quad \delta^{(i+1)} = (c_{q,m}^{(i+1)} + c_{q,a}^{(i+1)})\pi/(m_q\omega)$$

Модальные параметры $c_{q,m}^{(i+1)}$ и $c_{q,a}^{(i+1)}$ вычисляются при амплитуде колебаний $A^{(i+1)}$ по соответствующим матрицам демпфирования C_m и C_a тест-образца. Необходимые для

этого значения амплитуды кривизны $\chi_0^{(i+1)}$ в серединах конечных элементов определяются выражением

$$\chi_0^{(i+1)} = (\theta_{2,F} - \theta_{1,F}) A^{(i+1)} / (lF_w),$$

где $\theta_{1, F}$, $\theta_{2, F}$ – компоненты моды **F**, соответствующие углам поворота θ_{1} , θ_{2} узлов конечного элемента.

Необходимо отметить, что зависимости $D(\varepsilon_0) = \alpha \varepsilon_0^{\beta}$, найденные на различных тестобразцах, могут иметь значительный разброс. Поэтому данные зависимости необходимо определять на нескольких тест-образцах, усредняя после этого полученные результаты.

Численные эксперименты. Для идентификации параметров α и β зависимости $D(\varepsilon_0) = \alpha \varepsilon_0^{\beta}$ титанового сплава ОТ-4 использовались экспериментальные ЛДК шести тест-образцов с длинами 150, 160, 175, 200, 225 и 250 мм. Толщина и ширина тест-образцов: h = 1.94 мм; b = 20 мм. Экспериментальные ЛДК тест-образцов определялись по известной формуле

$$\delta(t) = -\frac{1}{f} \frac{d \ln A(t)}{dt} = -\frac{1}{fA(t)} \frac{dA(t)}{dt}.$$
(23)

Для представления аналитической зависимости огибающей *A*(*t*) использовалась аппроксимация

$$A(t) = a_1 \exp(-a_2 t) + a_3 \exp(-a_4 t)$$
(24)

с параметрами a_1, a_2, a_3, a_4 , определяемыми из условия

$$\Phi(a_1, a_2, a_3, a_4) = \sum_{i=1}^n (1 - A_i / A_i^*)^2 = \min,$$

где A_i^* , A_i — амплитуды, найденные соответственно по экспериментальной виброграмме затухающих колебаний тест-образца и по зависимости (24). Таким образом, формула (23) и аппроксимация (24) при известных параметрах a_1 , a_2 , a_3 , a_4 , в параметрическом виде (через время *t*) задают необходимую для идентификации параметров α и β экспериментальную амплитудную зависимость ЛДК $\delta^*(A)$ тест-образца.

Поиск параметров α и β зависимости $D(\varepsilon_0) = \alpha \varepsilon_0^{\beta}$ осуществлялся методом Хука-Дживса при координатах базовой точки

$$\beta_0 = \ln(\delta_{\max}^* / \delta_{\min}^*) / \ln(A_{\max}^* / A_{\min}^*), \quad \alpha_0 = \delta_{\max}^* / (1.5A_{\max}^* h L^{-2})^{p_0}$$

Таблица 2.

<i>L</i> , м	α ₀	β_0	α	β	r	$F(\alpha, \beta)$
150	0.01857	0.08089	0.01806	0.08080	145	0.000000147
160	0.04360	0.16632	0.04347	0.16932	110	0.000000143
175	0.06458	0.20759	0.05742	0.19347	900	0.000000779
200	0.06244	0.21456	0.04546	0.18345	2370	0.000000983
225	0.10381	0.26712	0.06198	0.21342	3365	0.000001494
250	0.04670	0.15051	0.01733	0.05223	7625	0.000003371

с шагами $h_1 = \alpha_0/1000$ и $h_2 = \beta_0/1000$ по соответствующим координатным направлениям пространства поиска (α , β). В табл. 2 приведены длины *L* тест-образцов, координаты базовой точки α_0 , β_0 , найденные параметры α и β зависимости $D(\varepsilon_0) = \alpha \varepsilon_0^{\beta}$, а так же число *r* исследованных при поиске точек и достигнутые значения целевой функции *F*(α , β).

На рис. 4 для примера приведены экспериментальная (пунктирная линия) и расчетная (сплошная линия) амплитудные зависимости ЛДК тест-образца длиной L = 175 мм. Полученные зависимости являются достаточно близкими между собою, что свидетельствует о хорошем качестве поиска параметров α и β .

На рис. 5 приведены полный ЛДК (1), параметр внутреннего демпфирования (ПВД) (2), обусловленный демпфирующими свойствами материала и аэродинамическая составляющая демпфирования (3) тест-образца длиной L = 225 мм. Нетрудно видеть, что аэродинамическое сопротивление заметно увеличивает демпфирующие свойства тест-образца (по сравнению с ПВД), что говорит о необходимости учета данного сопротивления при идентификации демпфирующих свойств титанового сплава OT-4.

По параметрам α и β , приведенным в табл. 2, проведено арифметическое усреднение зависимостей $D(\varepsilon_0) = \alpha \varepsilon_0^{\beta}$ в 50 точках рабочего диапазона амплитуд деформаций $\varepsilon_0 = [0.123 \times 10^{-3}; 1.056 \times 10^{-3}]$ с последующей идентификацией окончательной ам-

Рис. 4. Амплитудные зависимости ЛДК тест-образца длиной *L* = 175 мм, экспериментальная (пунктирная линия) и расчетная (сплошная линия).

Рис. 5. Полный ЛДК (1), ПВД (2) и аэродинамическая составляющая демпфирования (3) тест-образца длиной L = 225 мм.

Рис. 6. Амплитудная зависимость ЛДК титанового сплава ОТ-4.

плитудной зависимости ЛДК титанового сплава ОТ-4 по отмеченным точкам. В результате получена зависимость

$$D(\varepsilon_0) = 0.0369 \varepsilon_0^{0.1515},$$

показывающая заметное увеличение ЛДК отмеченного сплава при возрастании амплитуды деформации ε_0 (рис. 6).

Выводы. Показано снижение динамического модуля упругости титанового сплава OT-4 при растяжении—сжатии в диапазоне частот f = 0-25 по сравнению с его статическим номиналом (примерно на 13.3%) с дальнейшей практической стабилизацией отмеченного модуля при частотах 25–80 Гц, что необходимо учитывать при определении собственных частот колебаний и динамической напряженности элементов конструкций, изготовленных из данного сплава. Построена матрица аэродинамического демпфирования конечного элемента, позволяющая включить аэродинамическое сопротивление в расчетный ЛДК тест-образца при идентификации демпфирующих свойств материала. Получена усредненная зависимость ЛДК сплава OT-4 при растяжении-сжатии от амплитуды соответствующей деформации на основе исследования затухающих изгибных колебаний серии тест-образцов, показывающая заметное возрастание демпфирующих свойств отмеченного сплава при увеличении амплитуды деформации ϵ_0 .

Исследование выполнено за счет гранта Российского научного фонда (проект № 14-19-00667).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Paimushin V.N., Firsov V.A., Gynal I., Shishkin V.M.* Accounting for the Frequency-Dependent Dynamic Elastic Modulus of Duralumin in Deformation Problems // J. Appl. Mech. and Tech. Phys. 2017. V. 58. № 3. P. 517–528.
- 2. ASTM E-756-05. Standard Test Method for Measuring Vibration-damping Properties of Materials. ASTM International, PA, 2010.
- 3. *Paimushin V.N., Firsov V.A., Gunal I., Egorov A.G.* Theoretical-Experimental Method for Determining the Parameters of Damping Based on the Study of Damped Flexural Vibrations of Test Specimens. 1. Experimental Basis // Mechanics of Composite Materials. 2014. V. 50. № 2. P. 127–136.
- Egorov A.G., Kamalutdinov A.M., Nuriev A.N., Paimushin V.N. Theoretical-Experimental Method for Determining the Parameters of Damping Based on the Study of Damped Flexural Vibrations of Test Specimens. 2. Aerodynamic Component of Damping // Mechanics of Composite Materials. 2014. V. 50. № 3. P. 267–278.
- Камалутдинов А.М., Егоров А.Г. Определение коэффициента аэродинамического сопротивления гармонически колеблющейся тонкой пластины / Сборник докладов XI Всероссийского съезда по фундаментальным проблемам теоретической и прикладной механики. Казань, 20–24 августа 2015 г. С. 1693–1695.
- 6. Egorov A.G., Kamalutdinov A.M., Paimushin V.N., Firsov V.A. Theoretical-Experimental Method of Determining the Drag Coefficient of a Harmonically Oscillating Thin Plate // J. Appl. Mech. and Tech. Phys. 2016. V. 57. № 2. P. 275–282.
- Sarpkaya T. Force on a circular cylinder in viscous oscillatory flow at low Keulegan–Carpenter numbers // J. Fluid Mech. 1986. V. 165. P. 61–71.
- 8. *Keulegan G.H., Carpenter L.H.* Forces on cylinders and plates in an oscillating fluid. // J. Res. Nat. Bureau of Standards. 1958. V. 60. № 5. P. 423–440.
- 9. Писаренко Г.С., Яковлев А.П., Матвеев В.В. Вибропоглощающие свойства конструкционных материалов: Справочник. Киев: Наукова думка, 1971. 375 с.
- Paimushin V.N., Firsov V.A., Gyunal I., Egorov A.G., Kayumov R.A. Theoretical-experimental Method for Determining the Parameters of Damping Based on the Study of Damped Flexural Vibrations of Test Specimens. 3. Identification of the Characteristics of Internal Damping // Mechanics of Composite Materials. 2014. V. 50. № 5. P. 633–646.
- 11. Шуп Т. Решение инженерных задач на ЭВМ. М.: Мир, 1982. 238 с.
- 12. Хильчевский В.В., Дубенец В.Г. Рассеяние энергии при колебаниях тонкостенных элементов конструкций // Киев: Вища школа, 1977. 252 с.
- 13. Постников В.С. Внутреннее трение в металлах. М.: Металлургия, 1969. 330 с.
- 14. Paimushin V.N., Firsov V.A., Gynal I., Shishkin V.M. Development of an Improved Technique for Identification of the Damping Properties of Orthogonally Reinforced Composites in Shear // Mechanics of Composite Materials. 2016. V. 52. № 2. P. 133–142.
- Paimushin V.N., Firsov V.A., Gynal I., Shishkin V.M. Identification of the Elastic and Damping Characteristics of Soft Materials Based on the Analysis of Damped Flexural Vibrations of Test Specimens // Mechanics of Composite Materials. 2016. V. 52. № 4. P. 435–454.
- 16. Sader J.E. Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope // J. Appl. Phys. 1998. V. 84. № 1. P. 64–76.
- Aureli M., Porfiri M. Low frequency and large amplitude oscillations of cantilevers in viscous fluids // Appl. Phys. Lett. 2010. V. 96. 164102.
- Paimushin V.N., Firsov V.A., Gynal I., Shishkin V.M. Identification of the Elastic and Damping Characteristics of Carbon Fiber-Reinforced Plastic Based on a Study of Damping Flexsural Vibrations Test Specimens // J. Appl. Mech. and Tech. Phys. 2016. V. 57. № 4. P. 720–730.