УДК 678.01:54;678.84

ВЗАИМОДЕЙСТВИЕ ПОЛИФЕНИЛСИЛСЕСКВИОКСАНА С БИС(АЦЕТИЛАЦЕТОНАТОМ) ДИХЛОРИДА ОЛОВА В УСЛОВИЯХ МЕХАНОХИМИЧЕСКОЙ АКТИВАЦИИ

© 2022 г. В. В. Либанов*, А. А. Капустина, Н. П. Шапкин, А. А. Рюмина

Дальневосточный федеральный университет, Владивосток, о. Русский, п. Аякс 10, 690922 Россия *e-mail: libanov.vv@dvfu.ru

Поступило в Редакцию 29 сентября 2021 г. После доработки 6 октября 2021 г. Принято к печати 18 октября 2021 г.

Впервые изучено взаимодействие полифенилсилсесквиоксана с бис(ацетилацетонатом) дихлорида олова в условиях механохимической активации и получены циклолинейные полиоловофенилсилоксаны с соотношениями [Si]:[Sn] = 2:1, 4:1, 8:1. Продукты синтеза изучены методами элементного и рентгенофазового анализа, ИК и ЯМР спектроскопии, ВЭЖХ. Предполагается радикальный механизм протекающих реакций.

Ключевые слова: механохимическая активация, полифенилсилсесквиоксан, бис(ацетилацетонат) дихлорида олова, оловофенилсилоксаны

DOI: 10.31857/S0044460X22020147

Метод механохимической активации, исключающий использование растворителей не только на стадии синтеза, но и в некоторых случаях при выделении продукта реакции, интенсивно развивается. Помимо того, что механохимическая активация исключает использование растворителей на стадии синтеза, вырабатываемая механическая энергия приводит к разрыву связей и возникновению радикалов, которые не могут образоваться в растворе, и в результате механохимических реакций могут получиться новые соединения, которые не образуются в растворах.

Использование метода механохимической активации перспективно для синтеза элементоорганических соединений, в том числе элементоорганосилоксанов, которые находят применение в электронике, оптоэлектронике и в полупроводниковом приборостроении [1, 2].

С применением реакцией гетерофункциональной конденсации [3, 4], расщепления силоксано-

вой связи [5] и обменного разложения [6] были получены оловоорганосилоксаны, однако перечисленные методы синтеза сопряжены с некоторыми трудностями, главная из которых — способность атома олова координировать молекулы растворителя, теряя при этом реакционную способность.

Твердофазный синтез оловоорганосилоксанов впервые был проведен в условиях механохимической активации [7]. В качестве исходного использовали дибутилоксид олова, а в качестве кремнийорганических производных – полифенилсилоксан и полиметилсилоксан. Изучено расщепление силоксановой связи оксидом олова в условиях механохимической активации [Капустина А.А. и др., ЖОХ, 2005, т. 75, вып. 4]. Ранее в условиях механохимической активации были получены линейные полиборфенилсилоксаны при использовании полифенилсилсесквиоксана и ацетилацетоната дифторида бора [Капустина А.А. и др., ЖОХ, 2014, т. 84, вып. 7]. При молярном соотношении реа-

Вариант синтеза	Соединение, w, %	Найдено, %					Вычислено, %			
		Si	Sn	С	Cl	Si/Sn	Si	Sn	С	Cl
1	1a	95	20.5	40.0	11.5	1.96	[(PhSiO1,5)0.96(O0.5SnCl(acac)2)(PhSi(Cl)O)]n			
	38.00						8.6	18.5	40.8	11.1
	16	3.4	27.1	36.1	14.5	1:1.9	$PhSi(OH)(O_{0.5}SnCl(acac)_2)_2$			
	48.31						3.2	27.1	35.6	12.1
2	2a 63.51	14.0	13.9	44.7	7.2	4.27	[(PhClSiO) _{0.73} (PhSiO _{1.5}) _{3.34} (ClSnO _{1.5}) _{0.4} ·			
							$\cdot (O_{0.5}Sn(acac)_2)_{0.6}]_n$			
							13.9	13.8	41.2	7.1
	2б	0.2	30.6	30.5	18.4	1:24.1	$Cl_2Sn(acac)_2$			
	36.49	0.3					0.0	30.6	30.9	18.3
3	3a	146	7.5	51.1	2.4	8.25	[(PhSiO1.5)8.25(O0.5SnCl(acac)2)]n			
	82.34	14.6	7.5	51.1	2.4		14.6	7.5	53.7	2.3
	36	0.4 22.2 20.5 19.0 1.10.0			$(SnOCl_2)_{2.4}(Cl_2Sn(AcAc)_2)_{16.6}(PhSiO_{1.5})$					
	17.66	0.4	32.3	29.5	18.9	1:19.0	0.4	32.0	29.2	19.1

Таблица 1. Элементный состав продуктов синтеза

гентов [Si]:[B] = 1:1 образуются полиборфенилсилоксаны с исходным соотношением, а увеличение доли кремнийорганического соединения вызывает протекание побочных процессов, приводящих к увеличению полидисперсности продуктов.

Нами получены полиоловофенилсилоксаны на основе полифенилсилсесквиоксана и бис(ацетилацетоната) дихлорида олова. В вариантах синтеза 1–3 механохимическую активацию исходных реагентов проводили 3 мин в планетарной мельнице «Pulverisette 6» при соотношениях [Si]:[Sn] = 1:1 (вариант 1), 2 (вариант 2) и 4 (вариант 3). Полученные после активации вещества полностью растворяются в толуоле, их фракционирование проводили в среде толуол–гексан с различным соотношением растворителей. Фракции соединений

1а, 2а и 3а — стеклообразные вещества, представляющие собой, по данным гельпроникающей хроматографии, высокомолекулярные соединения с молекулярной массой ≥5000. Элементный состав продуктов синтеза представлен в табл. 1.

Соединение **1a**, по данным рентгенофазового анализа (РФА), – мезоморфный полимер. На его дифрактограмме видны два аморфных гало, характерных для полиэлементоорганосилоксанов. В соединении **1a** соотношение [Si]:[Sn] отличается от исходного и составляет 1.96:1. Формула элементарного звена соединения **1a** (схема 1) установлена по данным элементного анализа, ИК и ЯМР спектроскопии.

Ранее неописанное соединение **16**, по данным РФА, представляет собой кристаллическое вещество с т. пл. 204–206°С и соотношением [Si]:[Sn] = 1:1.88. В ИК спектре этого соединения присутствуют полосы поглощения, характерные для оловофенилсилоксанов. Помимо полос поглощения, характерных для колебаний связей Si–O–Sn [8] и связей ацетилацетонатных фрагментов, присутствуют полосы поглощения при 588 см⁻¹, соответствующие колебаниям группы Sn–Cl [9]. Полосы поглощения при 3431 и 809 см⁻¹ соответствуют колебаниям связи Si–OH [10]. Полосы, характерные для колебания силоксановой связи (1000–1100 см⁻¹), отсутствуют [11].

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 92 № 2 2022

В спектре ЯМР ¹Н соединения **16** регистрируются синглеты метильных групп при 2.09 (12Н) и 2.17 (12Н) м. д. Синглет при 5.69 м. д. соответствует сигналам γ-протонов четырех ацетилацетонатных циклов. Мультиплет в области 7.2 м. д. соответствует химическим сдвигам протонов бензольного кольца. В спектре ЯМР ¹³С присутствуют сигналы при 127, 130, 134 м. д., соответствующие химическим сдвигам ядер ¹³С бензольного кольца; сигналы в области 195–198, 102–103 и 28 м. д. соответствуют химическим сдвигам ядер ¹³С ацетилацетонатных циклов [12].

По данным элементного анализа, ИК и ЯМР спектроскопии установлена структурная формула мономерного соединения **16** (схема 2). Состав соединения **16** подтвержден масс-спектрометрически (ESI+). Величина m/z 861.1081 для молекулярного иона $[M+H]^+$ соответствует брутто-формуле $C_{26}H_{34}Cl_2O_{11}SiSn_2$.

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 92 № 2 2022

Массовая доля растворимой высокомолекулярной фракции **2a** составляла 63.51%. Состав соединения **2a**, по данным РФА, элементного анализа и ИК спектроскопии, соответствует элементарному звену, приведенному в табл. 1. Соотношение [Si]:[Sn] равно 4.27:1.

Соединение **26**, по данным РФА, элементного анализа и ИК спектроскопии представляет собой не вступивший в реакцию бис(ацетилацетонат) дихлорида олова.

Поскольку получаемые в высокомолекулярных фракциях соотношения [Si]:[Sn] в вариантах синтеза 1 и 2 превышали исходные в 2 раза, вариант синтеза 3 проводили при исходном соотношении [Si]:[Sn] = 4:1. В результате активации было получено высокомолекулярное соединение **3a** с массовой долей 83.24%, что объясняется введением избытка растворимого в толуоле полифенилсилсесквиоксана. Соотношение [Si]:[Sn] в соединении **3a** также в два раза превышает исходное (табл. 1).

Согласно данным гельпроникающей хроматографии, РФА, элементного анализа и ИК спектроскопии, высокомолекулярное соединение, полученное в варианте синтеза 3, имеет элементарное звено **3a** (схема 3).

По данным РФА, элементного анализа и ИК спектроскопии, соединение **36** представляет собой смесь не вступивших в реакцию ацетилацетонатного комплекса, полифенилсилсесквиоксана и побочного продукта синтеза – оксохлорида олова(IV).

Таким образом, увеличение исходного соотношения [Si]:[Sn] приводит к увеличению массовой доли растворимой высокомолекулярной фракции. Несмотря на то, что доля олова в полученных полимерах из-за увеличения соотношения [Si]:[Sn] уменьшается с 20.5% в соединении 1а до 7.5% в соединении 3а, степень превращения олова (выход по олову) немного увеличивается: 43.2 (1a), 45.6 (2a) и 46.8% (3a). Кроме того, во всех полимерах сохраняются ацетилацетонатные группы при атоме олова.

На примере варианта синтеза 1 и проведенных исследований можно предположить радикальный механизм протекающих при механохимической активации реакций (схема 4), который согласуется с ранее предложенным [Капустина А.А. и др.,

Схема 4.

ЖОХ, 2014, т. 84, вып. 7]. На первом этапе (1, 2) происходит разрыв связей в исходных соединениях с образованием радикалов **A**, **Б**. На этапах релаксации (3, 4) протекает комбинация образовавшихся ранее радикалов с образованием оловофенилсилоксанов.

По-видимому, при увеличении исходного соотношения [Si]:[Sn] происходит взаимодействие радикалов **A** друг с другом и последующее присоединение к ним радикала **B**. Вероятно, скорость этого процесса выше, чем скорость реакции (3), из-за стерических затруднений, связанных с большими размерами радикала **B**. Это объясняет двукратное увеличение полученного соотношения [Si]:[Sn] по сравнению с исходным.

В табл. 2 представлены результаты РФА соединений 1а-3а, обработанные и рассчитанные с помощью программы MATCH! (CrystalImpact). Как видно из данных, приведенных в табл. 2, расстояния между плоскостями и между цепями, а также площади Ѕ поперечного сечения в полиоловофенилсилоксанах больше, чем в исходном полифенилсилсесквиоксане. С уменьшением доли олова в полимерной цепи увеличивается расстояние d_1 между цепями. Аналогично увеличивается и площадь S поперечного сечения полимеров. Это, на наш взгляд, связано с ослаблением координации электронной пары атомов кислорода силоксановой связи со свободными д-орбиталями атомов олова в полиоловофенилсилоксанах. Межплоскостное расстояние d_2 увеличивается с увеличением доли

Соединение	w(Sn), %	20, град	d, Å		I/I_0	Полуширина максимума	S, Å ²	
Полифенил-силсесквиоксан	0	9.92	d_1	11.2040	1000.00	6.48	99.0	
полифенил-силсесквиоксан		23.60	d_2	4.7370	279.41	2.16		
1a	20.5	9.55	d_1	11.6370	500.00	0.30	102.0	
14		17.21	d_2	6.4759	1000.00	0.30		
20	13.9	9.05	d_1	12.2785	1000.00	0.30	123.0	
2a		19.95	d_2	5.5924	250.00	0.25	123.0	
20	7.5	8.65	d_1	12.8451	745.76	1.70	126.0	
3a		22.95	d_2	4.8693	1000.00	1.70	126.0	

Таблица 2. Результаты рентгенофазового анализа соединений 1а-3а

олова, что может быть связано с большим радиусом атома олова по сравнению с кремнием.

Таким образом, в условиях механохимической активации возможен синтез оловоорганосилоксанов при взаимодействии полифенилсилсесквиоксана с бис(ацетилацетонатом)дихлоридом олова. Из-за большего размера атома олова и из-за объемистых ацетилацетонатных заместителей у этого атома в полученных соединениях соотношение [Si]:[Sn] превышает исходное в 2 раза.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали коммерческие реактивы и растворители, которые очищали по известным методикам. Физические константы соединений совпадали с литературными данными [13]. Тетрахлорид олова использовали без дополнительной очистки.

ИК спектры записывали на спектрометре HEWLETTPACKARD Series 1110 MSD в бромиде калия. Рентгенофазовый анализ проводили на приборе Bruker - AXS "D8" Advanced. Геометрия съемки по Бреггу-Брентано, CuK_{α} -излучение, λ 0.154184 нм, энергия излучения – 8.05 кэВ, Ni K_8 фильтр, линейный детектор Vantec-1. Непрерывный режим сканирования, скорость сканирования -1 с/шаг, шаг – 0.100614 град, время накопления в точке - 512 с. Спектры ЯМР снимали на спектрометре высокого разрешения Avance 400 МГц (Bruker) на ядрах ¹H, ¹³C. Масс-спектрометрический анализ проводили на жидкостном хроматографе с времяпролетным масс-спектрометрическим детектором высокого разрешения Agilent 1200/6210. В качестве растворителя использовали ацетонитрил.

Гельпроникающую хроматографию проводили на колонке длиной 980 мм, диаметром 12 мм, заполненной сополимером полистирола и 4% дивинилбензола. Диаметр зерен 0.08–1 мм, Элюент – толуол, скорость потока – 1 мл/мин, величина навески ~0.2 г. Детектирование проводили весовым методом по количеству сухого остатка во фракциях. Навеску вещества растворяли в 2 мл толуола и пропускали через колонку. Собирали фракции по 3 мл, растворитель удаляли в сушильном шкафу до постоянной массы.

Полифенилсилсесквиоксан синтезировали по ранее описанной методике [14]. Выход 89.3 %. Найдено, %: С 53.8; Si 21.0. $[C_6H_5O_{1.5}Si\cdot 0.23H_2O]_n$. Вычислено, %: С 54.0; Si 21.0. M > 6000 (предел делимости колонки).

Бис(ацетилацетонат) дихлорида олова (IV). К раствору 33.9 г (0.13 моль) тетрахлорида олова в 50 г четыреххлористого углерода по каплям приливали 26 г (0.26 моль) ацетилацетона при постоянном перемешивании при 10°С. После прибавления всего ацетилацетона перемешиваемую смесь медленно нагревали 2 ч до 75°С. Полученную смесь нейтрализовали раствором гидрокарбоната натрия до нейтральной реакции. Выпавшие после охлаждения кристаллы отфильтровывали, промывали холодным хлороформом и сушили в вакуумном шкафу при 50°С. Выход 83.7%. Найдено, %: С 31.2; С1 18.9; Sn 30.6. С₁₀Н₁₄О₄Сl₂Sn. Вычислено, %: С 31.0; С1 18.3; Sn 30.5.

Полиоловофенилсилоксаны. В планетарную мельницу Pulverisette 6 помещали 0.025 моль полифенилсилсесквиоксана и соответствующее количество бис(ацетилацетоната) дихлорида олова.

Соотношение [Si]:[Sn] = 1:1 (вариант синтеза 1), 2:1 (вариант 2) и 4:1 (вариант 3). В качестве активирующей насадки использовали шары из нержавеющей стали диаметром 0.8 см. Отношение массы насадки к массе полезной загрузки 1.8. Механохимическую активацию проводили 3 мин при частоте 600 об/мин (10 Гц).

После активации всю реакционную смесь помещали в аппарат Сокслета и разделяли на растворимую и нерастворимую фракции экстракцией толуолом. Об окончании экстракции судили по прекращению уменьшения массы нерастворимой фракции. Растворимую часть разделяли на фракции дробным осаждением в среде толуол—гексан. Осадок отфильтровывали и сушили в вакуумном шкафу при 75°С до постоянной массы. Из раствора отгоняли растворители, остаток сушили в вакуумном шкафу при 75°С до постоянной массы. Результаты анализа полученных соединений приведены в табл. 1. Выходы по олову, %: 43.21 (1а); 54.93 (16); 45.60 (2а); 58.10 (26); 46.77 (3а); 43.21 (3б).

Анализ на углерод, кремний и хлор проводили по методике, описанной в работе [15]. После минерализации и отделения от кремниевой кислоты олово определяли весовым методом [16].

ИНФОРМАЦИЯ ОБ АВТОРАХ

Либанов Виталий Викторович, ORCID: https://orcid.org/0000-0001-6135-7159

Капустина Алевтина Анатольевна, ORCID: https://orcid.org/0000-0003-0343-5336

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Тоньшин А.М., Камарицкий Б.А., Спектор В.Н. // Усп. хим. 1983. Т. 52. № 8. С. 1365; Tonshin А.М., Kamaritskii B.A., Spektor V.N. // Russ. Chem. Rev. 1983. Vol. 52. N 8. P. 775. doi 10.1070/ RC1983v052n08ABEH002883
- Enea R., Apostol I., Damian V., Hurduc N., Iordache I. // J. Phys. 2008. Pt 1. P. 1. doi 10.1088/1742-6596/100/1/012022

- 3. *Gopalakrishnan M., Palanisami N. //* RSC Adv. 2016. Vol. 6. P. 1760. doi 10.1039/C5RA23424G
- 4. *Данько Е.Т., Аликовский А.В., Матюхина Е.Н.* // Изв. вузов. Сер. хим. и хим. технол. 1999. Т. 42. Вып. 1. С. 94.
- Alikovskii A.V., Vasileva V.V., Dan'ko E.T., Krasitskaya S.G., Balanov M.I. // Silicon. 2015. Vol. 7. P. 229. doi 10.1007/s12633-014-9258-3
- 6. Аликовский А.В., Красицкая С.Г., Баланов М.И., Васильева В.В., Шумкин И.Ю. // ЖПХ. 2014. Т. 87. № 7. С. 986; Alikovskii A.V., Krasitskaya S.G., Balanov M.I., Vasileva V.V., Shumkin I.Yu. // Russ. J. Appl. Chem. 2014. Vol. 87. N 7. P. 986. doi 10.1134/ S1070427214070234
- 7. *Капустина А.А., Шапкин Н.П., Вернер С.В.* // Изв. вузов. Сер. хим. и хим. технол. 2004. Т.47. Вып. 7. С. 45.
- 8. Аверин И.А., Карманов А.А., Мошников В.А., Пронин И.А., Игошина С.Е., Сигаев А.П., Теруков Е.И. // Физика твердого тела. 2015. Т. 57. № 12. С. 2373; Averin I.A., Karmanov A.A., Moshnikov V.A., Pronin I.A., Igoshina S.E., Sigaev A.P., Terukov E.I. // Physics Solid State. 2015. Vol. 57. N 12. P. 2373. doi 10.1134/S1063783415120069
- Matela G., Aman R. // Cent. Eur. J. Chem. 2012.
 Vol. 10. N 1. P. 1. doi 10.2478/s11532-011-0107-6
- 10. *Чукин Г.Д., Игнатьева Л.А.* // Ж. прикл. спектр. 1968. Т. 8. С. 872; *Chukin G.D., Ignat'eva L.A.* // J. Appl. Spectrosc. 1968. Vol. 8. P. 527. doi 10.1007/BF01103250
- 11. *Smith A.L.* // Spectrochim. Acta. 1960. Vol. 16. P. 87. doi 10.1016/0371-1951(60)80074-4
- 12. *Преч Э., Бюльманн Ф., Аффольтер К.* Определение строения органических соединений. Таблицы спектральных данных. М.: Мир; БИНОМ. Лаборатория знаний, 2006. 438 с.
- 13. Weissberger A., Proskauer E.S., Riddick J.A., Toops E.E. Organic solvents. Physical properties and methods of purification. New York: Interscience publishers, Inc., 1955. 518 p.
- Libanov V., Kapustina A., Shapkin N., Dmitrinok P., Puzyrkov Z. // Polymer. 2020. Vol. 194. 122367. doi 10.1016/j.polymer.2020.122367
- 15. *Терентьев А.П.* Органический анализ (Избранные труды). М.: МГУ, 1966. 408 с.
- 16. Гиллебранд В.Ф., Лендель Г.Э., Брайт Г.А., Гофман Д.И. Практическое руководство по неорганическому анализу. М.: Химия, 1966. 1111 с.

Reaction of Polyphenylsilsesquioxane with Tin Dichloride Bis(acetylacetonate) Under Mechanochemical Activation

V. V. Libanov*, A. A. Kapustina, N. P. Shapkin, and A. A. Rumina

Far Eastern Federal University, Vladivostok, 690922 Russia *e-mail: libanov.vv@dvfu.ru

Received September 29, 2021; revised October 6, 2021; accepted October 18, 2021

The reaction of polyphenylsilsesquioxane with tin dichloride bis(acetylacetonate) under mechanochemical activation was studied for the first time. The possibility of synthesizing cyclolinear polytinphenylsiloxanes with Si/Sn ratios different from the specified one and equal to 2:1, 4:1 and 8:1 was shown. Structure of the reaction products studied by the methods of elemental and X-ray phase analyzes, IR and NMR spectroscopy, HPLC. Assumptions were made about the mechanisms of the reactions taking place.

Keywords: mechanochemical activation, polyphenylsilsesquioxane, tin dichloride bis(acetylacetonate), tin phenylsiloxanes