УДК 547.831;543.429.23;539.26

СИНТЕЗ И МОЛЕКУЛЯРНАЯ СТРУКТУРА 3-[N-АЦЕТИЛ-(3,5-ДИМЕТИЛФЕНИЛ)АМИНО]-5,7-ДИ(*mpem*-БУТИЛ)-2-[5,8-ДИМЕТИЛ-4-(3,5-ДИМЕТИЛФЕНИЛАМИНО)ХИНОЛИН-2-ИЛ]-ТРОПОНА

© 2022 г. В. В. Ткачев^{*a*,*}, Ю. А. Саяпин^{*b*}, Е. А. Гусаков^{*c*}, И. О. Тупаева^{*c*}, Т. А. Красникова^{*c*}, Г. В. Шилов^{*a*}, В. Н. Комиссаров^{*c*}, С. М. Алдошин^{*a*}, В. И. Минкин^{*c*}

^а Институт проблем химической физики Российской академии наук, пр. Академика Н. Н. Семенова 1, Черноголовка, 142432 Россия ^b Федеральный исследовательский центр «Южный научный центр Российской академии наук», Ростов-на-Дону, 344006 Россия ^c Научно-исследовательский институт физической и органической химии, Южный федеральный университет, Ростов-на-Дону, 344090 Россия *e-mail: vatka@icp.ac.ru

> Поступило в Редакцию 11 ноября 2021 г. После доработки 16 декабря 2021 г. Принято к печати 19 декабря 2021 г.

Ацилирование 5,7-ди(*трет*-бутил)-2-[5,8-диметил-4-(3,5-диметилфениламино)хинолин-2-ил]-3-(3,5-диметилфениламино)тропона приводит к 3-[арил(ацетил)амино]тропону. Методом рентгеноструктурного анализа установлена структура 3-[N-ацетил-(3,5-диметилфенил)амино]-5,7-ди(*трет*-бутил)-2-[5,8-диметил-4-(3,5-диметилфениламино)хинолин-2-ил]тропона.

Ключевые слова: хинолины, 1,3-трополоны, внутримолекулярная водородная связь, рентгеноструктурный анализ

DOI: 10.31857/S0044460X22020093

Высокая фармакологическая активность (противоопухолевая [1, 2], противовоспалительная [3], антибактериальная [4, 5] и др.) производных трополона стимулирует их исследование. Взаимодействие 3,5-ди(*трет*-бутил)-1,2-бензохинона с производными 2-метилхинолина приводит к производным 2-(хинолин-2-ил)-1,3-трополона, способных образовать внутримолекулярную водородную связь [6, 7]. Функционализация тропонового цикла основана на введении атома хлора в положение 3 с последующим нуклеофильным замещением первичными аминами [8]. Ацилирование производного 3-ариламино-5,7-ди(*трет*-бутил)-2[5,8-диметил-4-(пиперидин-1-ил)хинолин-2-ил]тропона 1 уксусным ангидридом приводит к соответствующему производному 3-[арил(ацетил)амино]тропона 2 (схема 1) [9]. Методом двумерной динамической спектроскопии установлено [9, 10] существование быстрых динамических процессов, связанных с изменением конформации молекул. Компьютерным моделированием вращения заместителей в соединении 2 показано, что наблюдаемая динамика спектров ЯМР определяется именно вращением ацетильной группы.

Нами получен и исследован методом РСА 3-[N-ацетил(3,5-диметилфенил)амино]-5,7-ди(*трет*-

бутил)-2-[5,8-диметил-4-(пиперидин-1-ил)хинолин-2-ил]тропон 2, полученный ацилированием соответствующего ариламинотропона 1. При кипячении 5,7-ди(трет-бутил)-2-[5,8-диметил-4-(3,5-диметилфениламино)хинолин-2ил]-3-(3,5-диметилфениламино)тропона 3 в уксусном ангидриде происходит ацилирование аминогруппы в тропоновом цикле с образованием 3-[N-ацетил(3,5-диметилфенил)амино]-5,7-ди(трет-бутил)-2-[5,8-диметил-4-(3,5-диметилфениламино)хинолин-2-ил]тропона 4 с выходом 77 % (схема 2). Присутствие второй ариламиногруппы в положении 4 хинолинового цикла

3 рентгеноструктурного анализа, подтверждена методами ЯМР ¹H, ¹³C, ИК спектроскопии и предс обра- ставлена на рис. 1 без атомов водорода в проекции

си соединение 5 не обнаружено.

на плоскость наименьшего перекрывания. Основные длины связей и величины углов приведены в табл. 1.

тропона 3 предполагало возможность протекания

более глубокого ацилирования с образованием диацетилпроизводного 5, однако в реакционной сме-

Структура соединения 4 установлена методом

В хинолиновом фрагменте соединения 4 часть атомов разупорядочена в соотношении 1:2 по двум

Связь	d. Å	Связь	d. Å	Связь	d. Å
$\frac{1}{N^1 - C^8}$	1 323(2)	$C^{27} - C^{28}$	1 401(3)	$C^{29}-C^{39}$	1 514(4)
$N^{1}-C^{16}$	1 360(2)	$C^{19} - C^{24}$	1 523(3)	$N^{3}-C^{33}$	1.372(4)
$N^2 C^{43}$	1.300(2)	C^{19} C^{26}	1.525(5)	C^{33} C^{10}	1.372(4) 1.381(5)
N = C	1.373(2) 1.421(2)	$C^{19} C^{25}$	1.529(3) 1.544(2)	$C^{36} C^{35}$	1.301(3) 1.400(4)
$N^2 - C^2$	1.431(2)	$C^{10} - C^{10}$	1.544(3)	$C^{10} - C^{35}$	1.400(4)
$N^{2}-C^{3}$	1.4464	$C^{10}-C^{11}$	1.424(3)	$C^{10} - C^{55}$	1.387(5)
$C^{3}-C^{2}$	1.359(2)	$C_{22}^{10} - C_{21}^{13}$	1.435(3)	$C_{101}^{33}-C_{101}^{41}$	1.509(6)
$C^{3}-C^{4}$	1.437(2)	$C^{32}-C^{31}$	1.394(3)	$C^{181} - C^{121}$	1.508(6)
$O^2 - C^{43}$	1.222(2)	$C^{9}-C^{34}$	1.372(3)	$C^{121}-C^{131}$	1.360(7)
C^2-C^1	1.490(2)	$C^{28}-C^{29}$	1.388(4)	$C^{131}-C^{141}$	1.394(7)
$C^{2}-C^{8}$	1492(2)	$C^{15}-C^{14}$	1 377(6)	$C^{18} - C^{12}$	1 531(11)
$C^{4}-C^{5}$	1 363(2)	$C^{15} - C^{141}$	1 388(4)	$C^{13} - C^{12}$	1 370(11)
$C^{5}-C^{6}$	1.505(2)	$C^{15} - C^{17}$	1.500(1)	C^{13} C^{14}	1 382(10)
C^{5} C^{20}	1.530(2)	C^{31} C^{30}	1.403(3) 1.202(4)	C^{71} C^{72}	0.587(10)
$C^{20} C^{23}$	1.537(2) 1.522(2)	C^{31} C ⁴⁰	1.393(4)	C^{71}	
$C^{20} - C^{22}$	1.555(2)	C^{34} N ³	1.490(4)	$C^{71} - C^{73}$	1.4010
$C^{20} - C^{22}$	1.530(3)	$C^{34} - N^{3}$	1.390(3)	$C^{71} - C^{72}$	1.4/88
$C^{20} - C^{21}$	1.537(3)	$C^{34} - C^{11}$	1.41/(3)	$C^{71} - C^{72}$	1.4831
$C^{0} - C'$	1.354(2)	$C^{38} - C^{37}$	1.344(4)	$C^{/1} - C^{/1}$	1.939(10)
$C_{2}^{8}-C_{1}^{9}$	1.409(2)	$C^{38} - C^{33}$	1.395(3)	$C_{72}^{\prime 2} - C_{72}^{\prime 1}$	0.587(10)
$C' - C^1$	1.480(2)	$C^{11}-C^{12}$	1.507(7)	$C^{72}-C^{72}$	1.153(12)
$C^{7}-C^{19}$	1.540(2)	$C^{11}-C^{121}$	1.509(5)	$C^{72}-O^{74}$	1.477(11)
C^1-O^1	1.224(2)	$C^{30}-C^{29}$	1.386(5)	$C^{72}-C^{73}$	1.996(10)
$C^{43}-C^{44}$	1 502(3)	$C^{37} - C^{36}$	1 384(4)	$C^{73} - C^{72}$	1 996(10)
$C^{27} - C^{32}$	1 383(3)	$C^{37} - C^{42}$	1 515(3)		1.550(10)
Угол	<u> </u>	Угол	0 грал	Угол	о грал
$C^{8}N^{1}C^{16}$	118 18(15)	$C^{24}C^{19}C^{25}$	108 26(15)	C ³⁷ C ³⁶ C ³⁵	120 7(3)
$C^{43}N^2C^{27}$	122 69(14)	$C^{26}C^{19}C^{25}$	108.88(17)	$C^{10}C^{35}C^{36}$	120.7(3) 110 2(3)
$C^{43}N^2C^3$	122.09(14) 110.00(15)	$C^{7}C^{19}C^{25}$	100.52(15)	$C^{36}C^{35}C^{41}$	119.2(3) 110.6(2)
$C^{27}N^2C^3$	117.20(12)	NICIÉCII	109.32(13) 122.19(17)		119.0(3) 119.2(2)
$C^{-1}N^{-}C^{-1}$	117.20(13)	NICIOCI	123.18(17)		118.5(5)
$C^2 C^3 V^2$	128.14(14)		115.94(16)		123.6(3)
$C^{2}C^{3}N^{2}$	117.78(14)	$C^{11}C^{10}C^{13}$	120.85(17)	$C^{12}C^{13}C^{14}$	121.8(6)
$C^{4}C^{3}N^{2}$	113.86(13)	$C^{27}C^{32}C^{31}$	120.5(2)	$C^{13}C^{12}C^{10}$	118.0(6)
$C^{3}C^{2}C^{1}$	121.32(14)	$C^{34}C^{9}C^{8}$	120.23(17)	$C^{13}C^{14}C^{15}$	124.1(5)
$C^{3}C^{2}C^{8}$	121.46(14)	$C^{29}C^{28}C^{27}$	119.4(3)	$C^{2}C^{1}C^{3}$	146.8(11)
$C^1C^2C^8$	117.22(14)	$C^{14}C^{15}C^{141}$	25.5(3)	$C^{/2}C^{/1}C^{/2}$	45.7(12)
$C^5C^4C^3$	128.40(15)	$C^{14}C^{15}C^{16}$	115.9(3)	$C^{73}C^{71}C^{72}$	123.1
$C^4C^5C^6$	122.86(15)	$C^{141}C^{15}C^{16}$	119.4(3)	$O^{74}C^{71}C^{71}$	111.9(3)
$C^{4}C^{5}C^{20}$	120.28(15)	$C^{14}C^{15}C^{17}$	121.2(3)	$C^{72}C^{71}C^{71}$	12.5(4)
$C^{6}C^{5}C^{20}$	116.49(14)	$C^{141}C^{15}C^{17}$	119.4(3)	$C^{71}C^{72}O^{74}$	71.1(10)
$C^{23}C^{20}C^{22}$	109 85(16)	$C^{16}C^{15}C^{17}$	120 35(17)	$C^{71}C^{72}C^{71}$	134 3(12)
$C^{23}C^{20}C^{21}$	107 31(15)	$C^{30}C^{31}C^{32}$	118 0(3)	$O^{74}C^{72}C^{71}$	140 3(4)
$C^{22}C^{20}C^{21}$	108 97(15)	$C^{30}C^{31}C^{40}$	122 1(3)	$C^{72} C^{72} C^{73}$	108 6(8)
$C^{23}C^{20}C^{5}$	109 90(14)	$C^{32}C^{31}C^{40}$	120.0(3)	$C^{71}C^{72}C^{73}$	127 6(3)
$C^{22}C^{20}C^{5}$	109.90(14) 108.69(14)	$C^{9}C^{34}N^{3}$	120.0(3) 121.2(2)	$C^{71}O^{74}C^{72}$	127.0(3) 23 3(4)
$C^{21}C^{20}C^{5}$	100.09(14) 112 10(14)	$C^{9}C^{34}C^{11}$	121.2(2) 110 95(19)	$C^{33}C^{10}C^{35}$	120.5(4)
$C^{7}C^{6}C^{5}$	120 52(16)	$N_{3}C_{34}C_{11}$	110.03(10)	$C^{10}C^{35}C^{41}$	120.0(3) 121 1(2)
$V^1C^8C^9$	129.52(10)	1000000	119.0(2)	C131C121C181	121.1(5) 110.2(4)
$N^{1}C^{8}C^{2}$	122.55(16)	$C^{34}C^{11}C^{16}$	123.7(3)		118.2(4)
$N^{1}C^{2}C^{2}$	116.19(14)	$C^{34}C^{11}C^{12}$	116.86(19)		123.3(5)
	121.23(15)	$ C^{3}C^{1}C^{12}$	120.8(3)	$C^{13}C^{141}C^{151}$	120.1(4)
$C^{0}C^{\prime}C^{1}$	121.30(16)	$\begin{bmatrix} C^{10}C^{11}C^{12}\\ \sigma^{24}\sigma^{11}\sigma^{12} \end{bmatrix}$	115.7(3)	$\begin{bmatrix} C^{13}C^{12}C^{11}\\ c^{11}c^{12}c^{10} \end{bmatrix}$	116.9(5)
$C^{0}C'C^{19}$	122.26(16)	$ C^{54}C^{11}C^{121}$	125.7(2)	$C^{11}C^{12}C^{18}$	124.3(6)
$C_{1}C_{1}C_{2}$	116.28(15)	$ C_{10}^{10}C_{11}^{11}C_{121}^{121}$	116.0(3)	$C^{\prime 2}C^{\prime 1}O^{\prime 4}$	85.5(11)
$O^1C^1C^7$	121.88(16)	$C_{12}^{12}C_{11}^{11}C_{121}^{121}$	37.1(3)	$O''^4 C''^1 C^{73}$	115.6
$O^1C^1C^2$	120.52(17)	$C^{29}C^{30}C^{31}$	122.3(2)	$O^{74}C^{71}C^{72}$	121.2
$C^7C^1C^2$	117.20(14)	$C^{38}C^{37}C^{36}$	118.1(2)	$C^{72}C^{71}C^{71}$	33.2(9)
$O^2 C^{43} N^2$	121.53(19)	$C^{38}C^{37}C^{42}$	123.2(3)	$C^{73}C^{71}C^{71}$	132.1(3)
$O^2C^{43}C^{44}$	121.49(17)	$C^{36}C^{37}C^{42}$	118.7(2)	$C^{71}C^{72}C^{72}$	112.9(16)
$N^2C^{43}C^{44}$	116 98(14)	$C^{30}C^{29}C^{28}$	119 1(2)	$C^{72}C^{72}O^{74}$	145 6(10)
$C^{32}C^{27}C^{28}$	120 7(2)	$C^{30}C^{29}C^{39}$	121 7(3)	$C^{72}C^{72}C^{71}$	21 4(5)
$C^{32}C^{27}N^{2}$	118 96(16)	$C^{28}C^{29}C^{39}$	110 2(2)	$C^{71}C^{72}C^{73}$	24.0(8)
$C^{28}C^{27}N^{12}$	120 27(10)	$C^{33}N^{3}C^{34}$	126.8(2)	$0^{74}C^{72}C^{73}$	87.8(5)
$C^{24}C^{19}C^{26}$	120.27(19)	N ³ C ³³ C ¹⁰	120.0(3)	$C^{71}C^{73}C^{72}$	
$C^{24}C^{19}C^{7}$	1100.23(17)	N3C33C38	121.0(2)		7.5(5)
$C^{26}C^{19}C^{7}$	112.08(15)	010033038	120.7(3)		
	109./9(15)		11/.6(3)		

Таблица 1. Длины связей и величины углов в молекуле соединения 4

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 92 № 2 2022

Рис. 1. Общий вид молекулы 3-[N-ацетил(3,5-диметилфенил)амино]-5,7-ди(*трет*-бутил)-2-[5,8-диметил-4-(3,5-диметил-фениламино)хинолин-2-ил)]тропона 4 в кристалле.

позициям, которые равноудалены от плоскости, образованной атомами N¹, C⁸–C¹¹, C¹⁶. Как установлено ранее для 3-арил-2-[(хинолин-2-ил)амино]тропонов [8], тропоновое кольцо в соединении 4 имеет традиционную форму *ванна*, в основании которой лежат атомы C², C³, C⁶ и C⁷, а плоскости атомов C¹, C², C⁷ и C³, C⁴, C⁵, C⁶ расположены к нему под углами 45.2 и 23.7°. Отсутствие внутримолекулярной водородной связи приводит к развороту двух фрагментов вокруг связи C²–C⁸ [торсионный угол C¹C²C⁸N¹ 125.24 (0.17)°].

Ранее было исследовано строение молекулярной структуры 3-[N-ацетил(3,5-диметилфенил)амино]-5,7-ди(*трет*-бутил)-2-[5,8-диметил-4-(пиперидин-1-ил)хинолин-2-ил]тропона **2** [10], центральная часть которой имеет схожее строение (рис. 2, лишние атомы удалены, номера структуры **2** увеличены на 50). В монокристалле соединения **4** в пустотах между исследованными молекулами наблюдается группа связанных элементом симметрии атомов с очень низкой электронной плотностью (заданные как атомы углерода и кислорода, они имеют заселенность 0.12); идентифицировать их не удалось.

Таким образом, реакция ацилирования 5,7-ди(*трет*-бутил)-2-[5,8-диметил-4-(3,5-диметил-фениламино)хинолин-2-ил]-3-(3,5-диметил-фениламино)тропона протекает по аминогруппе тропона и приводит к моноацилзамещенному 3-[N-ацетил-(3,5-диметилфенил)амино]-5,7-ди(*трет*-бутил)-2-[5,8-диметил-4-(3,5-диметил-фениламино)хинолин-2-ил]тропону, структура которого установлена методом рентгеноструктурного анализа.

Рис. 2. Фрагмент молекулы соединения 2 в сравнении с соединением 4.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР регистрировали на спектрометре Varian Unity-300. Инфракрасные спектры образцов сняты на приборе Varian 3100FT-IR Excalibur Series в вазелиновом масле. Хроматографирование проводили на колонках с наполнителем Al₂O₃ II-III степени активности по Брокману. Температуру плавления измеряли на приборе Фишера–Джонса. ИК и ЯМР спектры регистрировали на оборудовании Центра коллективного пользования Южного федерального университета «Молекулярная спектроскопия».

5,7-Ди(*трет*-бутил)-2-[5,8-диметил-4-(3,5-диметилфениламино)хинолин-2-ил]-3-(3,5-диметилфениламино)тропон **3** получен по описанной методике [8].

3-[N-Ацетил(3,5-диметилфенил)амино]-5,7-ди(*трет*-бутил)-2-[5,8-диметил-4-(3,5-диметилфениламино)хинолин-2-ил]цилогепта-2,4,6-триен-1-он (4). Раствор 0.2 г (0.3 ммоль) замещенного тропона (цилогепта-2,4,6-триен-1-она) 3 в 5 мл ангидрида уксусной кислоты кипятили 4 ч. Охлажденный раствор разбавляли холодной водой, продукты реакции экстрагировали хлористым метиленом (100 мл). Экстракт промывали водой (2×50 мл), сушили безводным Na₂SO₄, рас-

творитель отгоняли в вакууме. Остаток пропускали через хроматографическую колонку с Al₂O₃ (элюент – хлористый метилен). Собирали желтую фракцию, $R_{\rm f}$ 0.7. Отгоняли растворитель и остаток кристаллизовали из пропан-2-ола. Выход 0.16 г (77%), желтые кристаллы, т. пл. 204-205°С (пропан-2-ол). ИК спектр, v, см⁻¹: 1680, 1656, 1607, 1586, 1557, 1523, 1464, 1372, 1325, 1296, 1265, 1241, 1186, 1066, 1034, 983, 952, 920, 897, 862, 841, 827. Спектр ЯМР ¹Н (CDCl₃), б, м. д.: 1.24 с (9Н, 7-t-Bu), 1.30 c (9H, 5-t-Bu), 1.75 c (1H, COCH₃), 1.98 c [6H, Ph(CH₃)₂], 2.23 c (2H, COCH₃), 2.25 c [6H, Ph(CH₃)₂], 2.50 с (1H, C⁸_{хинолин}-CH₃), 2.58 с (2H, C⁸_{хинолин}-CH₃), 2.92 с (3H, C⁵_{хинолин}-CH₃), 6.17 c (1.4H, H^o, PhNAc), 6.36 c (0.6H, H^o, PhNAc), 6.58 c (2H, Hⁿ, Ph), 6.63 c (2H, H^o, PhNH), 6.68 c (1H, $H^{3}_{xинолин}$), 6.77 с (1H, $H^{4}_{тропон}$), 6.96 с (1H, NH), 7.07 д (1H, $H^{6}_{xинолин}$, *J* 6.9 Гц), 7.15 д (1H, $H^{6}_{тропон}$, J 1.5 Гц), 7.33 д (1Н, Н⁷_{хинолин}, J 6.9 Гц). Спектр ЯМР ¹³С (151 МГц, CDCl₃), δ_{C} , м. д.: 18.78, 20.45, 20.75, 23.90, 24.29, 24.85, 29.97, 30.34, 36.78, 37.08, 106.28, 118.61, 119.00, 123.00, 124.85, 125.21, 125.89, 126.82, 127.96, 128.25, 129.07, 135.94, 136.85, 138.69, 139.70, 140.84, 142.41, 148.63, 149.08, 151.21, 152.51, 155.58, 170.45, 192.61. Найдено, %: С 80.64; Н 7.66; N 6.28. С₄₄Н₅₁N₃O₂. Вычислено, %: С 80.82; Н 7.86; N 6.43; О 4.89.

Рентгеноструктурный анализ. Исследование кристалла соединения 4 выполнено на автоматическом дифрактометре XCalibur фирмы Agilent с координатным CCD детектором EOS (Agilent Technologies UK Ltd, Yarnton, Oxfordshire, England). Сбор отражений, определение и уточнение параметров элементарной ячейки проведено с использованием специализированного программного пакета CrysAlis PRO [11]. Рентгенодифракционные данные получены при температуре образца 100(1) К с использованием МоК_а-излучения (λ 0.71073 Å). Заполняемость экспериментального массива (20 68°) составляет 99.5%. После усреднения интенсивностей эквивалентных отражений рабочий массив измеренных $F^2(hkl)$ и $\sigma(F^2)$ составил 15273 отражения, из которых только 9132 с $F^2 > 4\sigma(F^2)$. Структура расшифрована прямым методом и уточнена полноматричным методом наименьших квадратов (МНК) в анизотропном приближении для не водородных атомов. В кристаллической структуре атомы Н частично локализованы в синтезе Фурье разностной электронной плотности, остальные получены из геометрических соображений (для малозаселенных позиций растворителя атомы водорода не определены). Координаты и изотропные тепловые параметры всех атомов уточняли в модели наездника. Конечные параметры уточнения: R₁ 0.0914 по наблюдаемым отражениям с $I \ge 2\sigma(I)$; GOF 1.039. Все расчеты выполнены с использованием комплекса программ SHELXTL [12]. Полная информация об исследованной структуре соединения 4 депонирована в Кембриджский банк кристаллоструткутрных данных (ССDС 1970827).

ИНФОРМАЦИЯ ОБ АВТОРАХ

Ткачев Валерий Владимирович, ORCID: https:// orcid.org/0000-0002-1348-1363

Саяпин Юрий Анатольевич, ORCID: https:// orcid.org/0000-0002-3180-1762

Гусаков Евгений Александрович, ORCID: https://orcid.org/0000-0001-7593-1334

Тупаева Инна Олеговна, ORCID: https://orcid. org/0000-0002-7695-9512

Красникова Татьяна Анатольевна, ORCID: https://orcid.org/0000-0002-1386-6490

Шилов Геннадий Викторович, ORCID: https:// ЖУРНАЛ ОБЩЕЙ ХИМИИ том 92 № 2 2022 orcid.org/0000-0001-5279-7283

Комиссаров Виталий Николаевич, ORCID: https://orcid.org/0000-0002-2087-1917

Алдошин Сергей Михайлович, ORCID: https:// orcid.org/0000-0003-3555-7442

Минкин Владимир Исаакович, ORCID: https:// orcid.org/0000-0001-6096-503X

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена при поддержке Министерства науки и высшего образования Российской Федерации (государственное задание в сфере научной деятельности, проект № 0852-2020-0031, Е.А. Гусаков и В.И. Минкин; государственная регистрация № АААА-А19-119092390076-7, В.В. Ткачев и С.М. Алдошин, а также в рамках реализации госзадания Южного научного центра Российской академии наук на 2022 год (Ю.А. Саяпин).

КОНФЛИКТ ИНТЕРЕСОВ

В.И. Минкин является членом редколлегии Журнала общей химии. Остальные авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Kai-Che W., Rui-Fang C., Yu-Fu C., Chia-Ho L. // Toxicol. Appl. Pharm. 2019. Vol. 366. P. 35. doi 10.1016/j.taap.2019.01.015
- 2. Зыонг Б.Н., Саяпин Ю.А., Хоанг Л., Данг Д.Н., Комиссаров В.Н. // ХГС. 2015. Т. 51. № 3. С. 291; Dyong N.B., Sayapin Yu.A., Hoang L., Dang D.N., Komissarov V.N. // Chem. Heterocycl. Compd. 2015. Vol. 51. P. 291. doi 10.1007/s10593-015-1697-2
- Ju-Hee L., Ji-Hong M., You-Jin L., Sang-Youel P. // J. Invest. Dermatol. 2017. Vol. 137. P. 1257. doi 10.1016/j. jid.2016.11.044
- Саяпин, Ю.А., Гусаков Е.А., Дороган И.В., Тупаева И.О., Теймуразов М.Г., Фурсова Н.К., Овчинников К.В., Минкин В.И. // Биоорг. хим. 2016. Т. 42. С. 247; Sayapin Yu.A., Gusakov E.A., Dorogan I.V., Tupaeva I.O., Teimurazov M.G., Fursova N.K., Ovchinnikov K.V., Minkin V.I. // Russ. J. Bioorg. Chem. 2016. Vol. 42. P. 224. doi 10.1134/S1068162016020114
- Shih Y.-H., Chang K.-W., Hsia S.-M., Yu C.-C., Fuh L.-J., Chi T.-Y., Shieh T.-M. // Microbiol. Res. 2013. Vol. 168. P. 254. doi 10.1016/j.micres.2012.12.007
- Минкин В.И., Алдошин С.М., Комиссаров В.Н., Дороган И.В., Саяпин Ю.А., Ткачев В.В., Стариков А.Г. // Изв. АН. Сер. хим. 2006. Т. 55. С. 1956; Minkin V.I.,

Aldoshin S.M., Komissarov V.N., Dorogan I.V., Sayapin Yu.A., Tkachev V.V., Starikov A.G. // Russ. Chem. Bull. 2006. Vol. 55. P. 2032. doi 10.1007/s11172-006-0547-x

- Sayapin Yu.A., Tupaeva I.O., Kolodina A.A., Gusakov E.A., Komissarov V.N., Dorogan I.V., Makarova N.I., Metelitsa A.V., Tkachev V.V., Aldoshin S.M., Minkin V.I. // Beilstein J. Org. Chem. 2015. Vol. 11. P. 2179. doi 10.3762/bjoc.11.236
- Саяпин Ю.А., Гусаков Е.А., Зыонг Б.Н., Тупаева И.О., Комиссаров В.Н., Дороган И.В., Ткачев В.В., Алдоиин С.М., Минкин. В.И. // Изв. АН. Сер. хим. 2013. Т. 62. С. 480; Sayapin Yu.A., Gusakov E.A., Dyong N.B., Tupaeva I.O., Komissarov V.N., Dorogan I.V., Tkachev V.V., Aldoshin S.M., Minkin V.I. // Russ. Chem. Bull. 2013. Vol. 62. P. 480. doi 10.1007/s11172-013-0067-4
- 9. Ткачев В.В., Саяпин Ю.А., Гусаков Е.А., Колодина А.А., Дороган И.В., Шилов Г.В., Алдошин С.М.,

Минкин В.И. // Кристаллография. 2018. Т. 63. С. 72; Tkachev V.V., Sayapin Yu.A., Gusakov E.A., Kolodina A.A., Dorogan I.V., Shilov G.V., Aldoshin S.M., Minkin V.I. // Crystallogr. Rep. 2018. Vol. 63. P. 65. doi 10.1134/S1063774518010200

- Бородкина И.Г., Колодина А.А., Чепурной П.Б., Саяпин Ю.А., Гусаков Е.А., Дороган И.В., Бородкин Г.С., Шилов Г.В., Ткачев В.В. // Изв. АН. Сер. хим. 2015. Т. 64. С. 650; Borodkina I.G., Kolodina А.А., Chepurnoi P.B., Sayapin Yu.A, Gusakov E.A., Dorogan I.V., Borodkin G.S., Shilov G.V., Tkachev V.V. // Russ. Chem. Bull. 2015. Vol. 64. P. 650. doi 10.1007/ s11172-015-0913-7
- 11. CrysAlis PRO Version 171.35.19, Agilent Technologies UK Ltd, Yarnton, Oxfordshire, England, 2011.
- 12. *Sheldrick G.M.* SHELXTL v. 6.14, Structure Determination Software Suite, Bruker AXS, Madison, Wisconsin, USA, 2000.

Synthesis and Molecular Structure of 3-[*N*-Acetyl-(3,5-dimethylphenyl)amino]-5,7-di(*tert*-butyl)-2-[5,8dimethyl-4-(3,5-dimethylphenylamino)quinolin-2-yl]tropone

V. V. Tkachev^{*a*,*}, Yu. A. Sayapin^{*b*}, E. A. Gusakov^{*c*}, I. O. Tupaeva^{*c*}, T. A. Krasnikova^{*c*}, G. V. Shilov^{*a*}, V. N. Komissarov^{*c*}, S. M. Aldoshin^{*a*}, and V. I. Minkin^{*c*}

^a Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, 142432 Russia
^b Federal Research Center the Southern Scientific Centre of the Russian Academy of Sciences, Rostov-on-Don, 344006 Russia
^c Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don, 344090 Russia
*e-mail: vatka@icp.ac.ru

Received November 11, 2021; revised December 16, 2021; accepted December 19, 2021

Acylation of 5,7-di(*tert*-butyl)-2-[5,8-dimethyl-4-(3,5-dimethylphenylamino)quinolin-2-yl]-3-(3,5-dimethylphenylamino)tropone leads to 3-[aryl(acetyl)amino]tropone. Structure of 3-[*N*-acetyl-(3,5-dimethylphenyl) amino]-5,7-di(*tert*-butyl)-2-[5,8-dimethyl-4-(3,5-dimethylphenylamino)]quinolin-2-yl]tropone was established by single crystal X-ray diffraction method.

Keywords: quinolines, 1,3-tropolones, intramolecular hydrogen bond, X-ray diffraction

244