УДК 547.821

# СИНТЕЗ И ОПТИЧЕСКИЕ СВОЙСТВА 2-МОРФОЛИНОПРОИЗВОДНЫХ ДИНИТРИЛА ЦИНХОМЕРОНОВОЙ КИСЛОТЫ

### © 2022 г. А. И. Ершова<sup>а</sup>, М. Ю. Иевлев<sup>а</sup>, В. Н. Максимова<sup>а</sup>, О. В. Ершов<sup>а,\*</sup>

<sup>а</sup> Чувашский государственный университет имени И. Н. Ульянова, Московский пр. 15, Чебоксары, 428015 Россия \*e-mail: oleg.ershov@mail.ru

> Поступило в редакцию 23 июня 2022 г. После доработки 9 июля 2022 г. Принято к печати 10 июля 2022 г.

Разработан способ получения 2-морфолинопроизводных динитрила цинхомероновой кислоты (2-морфолинопиридин-3,4-дикарбонитрилов). Исследованы оптические свойства в растворе и в твердом состояние. Синтезированные соединения обладают флуоресценцией в растворе и твердом состоянии от синей до зеленой области спектра в зависимости от заместителей в пятом и шестом положениях пиридинового цикла. Установлено, что в бензоле относительный квантовый выход достигает 50%.

Ключевые слова: пиридины, аминопиридины, нуклеофильное замещение, флуоресценция, нитрилы

DOI: 10.31857/S0044460X22120198, EDN: MWJLCP

Органические материалы с интенсивной люминесценцией вызывают все больший интерес в связи с их широким спектром применения. Среди всего многообразия флуоресцентных молекул отдельно следует выделить соединения цианопиридинового ряда ввиду их теоретического и практического интереса. Например, они находят применение в фотовольтаике [1–3], светоизлучающих диодах (OLED) [4–7], нелинейно-оптических материалах (NLO) [8, 9], в качестве красителей [10], сенсоров для обнаружения ионов аминов или металлов [11–13].

Среди органических соединений можно выделить три типа фотолюминесцентных веществ. Первый тип – это органические флуоресцентные молекулы, чаще всего с плоскими и полициклическими сопряженными каркасами, которые демонстрируют интенсивную фотолюминесценцию в разбавленном растворе, но слабую эмиссию в твердом состоянии из-за тушения, вызванного агрегацией (ACQ) [14, 15]. Второй тип – это органические соединения, флуоресценция которых индуцирована агрегацией (AIE). В этом случае молекулы не излучают или излучают совсем слабо в разбавленном растворе, но флуоресцируют в агрегированном состоянии [16–18]. Значительно реже встречаются молекулы третьего типа, флуорофоры с сильной эмиссией как в растворе, так и в твердом состоянии (dual-state emission, DSE). ACQ и AIE-эффекты значительно ограничивают практическое применение люминесцентных материалов в области оптоэлектронных устройств. DSE-Молекулы являются более универсальными и, вследствие этого, находят более широкое применение [19–24].

Ранее нами было показано, что соединения с базовым фрагментом динитрила цинхомероновой кислоты проявляют флуоресцентные свойства как в растворах, так и в твердом состоянии [21–23]. Например, были получены производные 2-(пирролидин-1-ил)-, 2-(пиперидин-1-ил)- и 2-(азепан-1-ил)-пиридин-3,4-дикарбонитрила относительный квантовый выход которых в неполярных растворителях достигал 80%, а в твердом виде – 79% [21].

#### Схема 1.



$$\begin{split} & R^{1} = \text{Me}, R^{2} = \text{H} (\mathbf{a}), R^{1} = R^{2} = \text{Me} (\mathbf{6}), R^{1} = \text{Me}, R^{2} = \text{Et} (\mathbf{B}), R^{1} + R^{2} = (\text{CH}_{2})_{3} (\mathbf{r}), \\ & R^{1} + R^{2} = (\text{CH}_{2})_{4} (\mathbf{\mu}), R^{1} + R^{2} = (\text{CH}_{2})_{5} (\mathbf{e}), R^{1} + R^{2} = (\text{CH}_{2})_{6} (\mathbf{x}), R^{1} + R^{2} = (\text{CH}_{2})_{10} (\mathbf{3}), \\ & R^{1} = c \cdot \text{Pr}, R^{2} = \text{H} (\mathbf{u}), R^{1} = \text{Ph}, R^{2} = \text{H} (\mathbf{\kappa}), R^{1} = 3,4 \cdot (\text{MeO})_{2}C_{6}\text{H}_{3}, R^{2} = \text{H} (\mathbf{J}), \\ & R^{1} = \text{Ph}, R^{2} = \text{Me} (\mathbf{M}), R^{1} = R^{2} = \text{Ph} (\mathbf{H}), R^{1} = 4 \cdot (\text{MeO})C_{6}\text{H}_{4}, R^{2} = \text{Me} (\mathbf{o}), \end{split}$$

$$R^1 = \phi yp-2-ил, R^2 = H(\mathbf{n}), R^1 + R^2 =$$
 (**p**).

С целью получения новых соединений с уникальным свойством эффективно флуоресцировать в растворе и в твердом состоянии (DSE) были разработан способ получения новых производных динитрила цинхомероновой кислоты – 2-морфолинопиридин-3,4-дикарбонитрилов. Метод синтеза основан на взаимодействии производных 2-хлорпиридин-3,4-дикарбонитрила **1а–р** [25] и морфолина в присутствии диизопропилэтиламина (DIPEA) в среде изопропилового спирта (схема 1). Выход целевых соединений **2** составил 69–97%.

В первую очередь были изучены сольватохромные свойства синтезированных 2-морфолинопиридин-3,4-дикарбонитрилов **2а**-**р** на примере со-

| Растворитель | $\lambda_{abs}$ , нм $^a$ | ε, М. <sup>-1</sup> ∙см <sup>-1</sup> | $\lambda_{em}$ , нм <sup>б</sup> | Стоксов сдвиг |                  | - <b>Φ</b> 0/B     |
|--------------|---------------------------|---------------------------------------|----------------------------------|---------------|------------------|--------------------|
|              |                           |                                       |                                  | HM            | см <sup>-1</sup> | $\Psi_{\rm F}, \%$ |
| Бензол       | 383                       | 5200                                  | 455                              | 72            | 4132             | 25                 |
|              | 281                       | 19860                                 |                                  |               |                  |                    |
| Дихлорметан  | 385                       | 7980                                  | 469                              | 84            | 4652             | 16                 |
|              | 280                       | 35240                                 |                                  |               |                  |                    |
| 1,4-Диоксан  | 380                       | 6120                                  | 477                              | 97            | 5351             | 15                 |
|              | 280                       | 27840                                 |                                  |               |                  |                    |
| AcOEt        | 380                       | 4220                                  | 478                              | 98            | 5395             | 11                 |
|              | 280                       | 19660                                 |                                  |               |                  |                    |
| MeCN         | 380                       | 4780                                  | 491                              | 111           | 5949             | 2                  |
|              | 280                       | 22260                                 |                                  |               |                  |                    |
| EtOH         | 380                       | 4820                                  | 490                              | 110           | 5908             | 0.5                |
|              | 280                       | 21720                                 |                                  |               |                  |                    |
| ДМФА         | 385                       | 3940                                  | 490                              | 105           | 5566             | 0.1                |
|              | 280                       | 18300                                 |                                  |               |                  |                    |

Таблица 1. Сольватохромные свойства 5-метил-2-морфолино-6-фенилпиридин-3,4-дикарбонитрила 2м

<sup>а</sup> Спектры поглощения растворов с концентрацией  $5 \times 10^{-5}$  М.

<sup>6</sup> Спектры фотолюминесценции растворов с концентрацией 10<sup>-6</sup> М. (λ<sub>возб</sub> 425 нм).

<sup>в</sup> Относительный квантовый выход был измерен с использованием раствора сульфата хинина в 0.05 М. H<sub>2</sub>SO<sub>4</sub> (λ<sub>возб</sub> 350 нм).



**Рис. 1**. Нормализованные спектры флуоресценции **2**м в различных растворителях. *1* – бензол, *2* – дихлорметан, *3* – диоксан, *4* – AcOEt, *5* – MeCN, *6* – EtOH, *7* – ДМФА.

единения 2м (табл. 1, рис. 1). Было установлено, что его растворы являются практически бесцветными и характеризуются максимумами оптического поглощения при 280-281 и 380-385 нм, которые не испытывают значительного влияния от смены растворителя. В свою очередь, полоса флуоресценции соединения 2м смещается батохромно с увеличением полярности среды. Так, максимум флуоресценции в бензоле находится при 455 нм. а в ДМФА – при 490 нм, что соответствует изменению окраски свечения с синей на сине-зеленую. Причем с ростом полярности среды также снижается эффективность фотолюминесценции. Относительный квантовый выход испускания ( $\Phi_{\rm F}$ ) в неполярном бензоле составил 25%, в то время как в полярных этаноле и ДМФА он составил менее 1%. Большой стоксов сдвиг (72-111 нм), который также увеличивается при переходе от неполярных растворителей к полярным свидетельствует о реализации внутримолекулярного переноса заряда в возбужденном состоянии от электронодонорного фрагмента на акцепторные нитрильные группы.

Исследование структурного обрамления соединений **2** показало, что заместители в пятом и шестом положениях пиридинового цикла оказывают



Рис. 2. Спектры флуоресценции в бензоле соединений 2к-р, содержащих ароматические заместители.

незначительное влияние на спектры поглощения (табл. 2). Большинство соединений характеризуется двумя выраженными максимумами при 280-282 и 375-383 нм, и только введение ароматического заместителя приводит к батохромному смещению длинноволновой полосы до 396-408 нм. Область испускания данных соединений варьируется от 447 до 477 нм, что соответствует синей и синезеленой фотолюминесценции. Наибольший квантовый выход флуоресценции 38-50% был отмечен для производных 2г-з, р, содержащих аннелированный циклический фрагмент, что может быть связано с повышением конформационной жесткости молекул и уменьшением вероятности безылучательной релаксации. Это предположение также подтверждается меньшими значениями квантовых выходов 18-24% для производных 2а-в, содержащих алкильные фрагменты. Арилсодержащие призводные 2к-п характеризуются промежуточной эффективностью флуоресценции 25-47%, однако смещенной в более длинноволновую область (рис. 2). Сочетание ароматического фрагмента в шестом положении пиридиновой системы, который пространственно зафиксирован с помощью циклического фрагмента в соединении 2р приво-

#### СИНТЕЗ И ОПТИЧЕСКИЕ СВОЙСТВА

| N⁰  | <b>)</b> a                         | ε, М. <sup>-1</sup> ·см <sup>-1</sup> | λ <sub>em</sub> , нм <sup>б</sup> | Стоксов сдвиг |                  | <b>A</b> 0/P       |
|-----|------------------------------------|---------------------------------------|-----------------------------------|---------------|------------------|--------------------|
|     | λ <sub>abs</sub> , ΗΜ <sup>α</sup> |                                       |                                   | НМ            | см <sup>-1</sup> | Ф <sub>F</sub> , % |
| 2a  | 375                                | 4840                                  | 453                               | 78            | 4592             | 18                 |
|     | 281                                | 20160                                 |                                   |               |                  |                    |
| 26  | 280                                | 26500                                 | 459                               | 82            | 4739             | 21                 |
| •   | 382                                | 3660                                  | 455                               | 73            | 4200             | 24                 |
| 2в  | 281                                | 15720                                 |                                   |               |                  |                    |
| 2-  | 389                                | 6040                                  | 459                               | 70            | 3920             | 50                 |
| 26  | 282                                | 22700                                 |                                   |               |                  |                    |
| 2 п | 380                                | 4780                                  | 455                               | 75            | 4338             | 46                 |
| 24  | 281                                | 23420                                 |                                   |               |                  |                    |
| 2.e | 381                                | 3760                                  | 453                               | 72            | 4172             | 48                 |
| 20  | 284                                | 15000                                 |                                   |               |                  |                    |
| 2ж  | 384                                | 3960                                  | 455                               | 71            | 4064             | 49                 |
|     | 281                                | 16580                                 |                                   |               |                  |                    |
| 23  | 384                                | 6640                                  | 457                               | 73            | 4160             | 38                 |
|     | 280                                | 27620                                 |                                   |               |                  |                    |
| 2и  | 378                                | 6240                                  | 447<br>468                        | 69<br>72      | 4084<br>3885     | 19<br>26           |
|     | 281                                | 23920                                 |                                   |               |                  |                    |
| 2к  | 396                                | 4940                                  |                                   |               |                  |                    |
|     | 292                                | 11/00                                 |                                   |               |                  |                    |
| 2 - | 404<br>351                         | 7680                                  | 458                               | 54            | 2918             | 31                 |
| 2,1 | 278                                | 14740                                 |                                   |               |                  |                    |
|     | 383                                | 5200                                  | 455                               | 72            | 4132             | 25                 |
| 2м  | 281                                | 19860                                 |                                   |               |                  |                    |
|     | 402                                | 7660                                  | 473                               | 71            | 3734             | 26                 |
| 2н  | 297                                | 28880                                 |                                   |               |                  |                    |
|     | 394                                | 7200                                  |                                   |               |                  |                    |
| 20  | 322                                | 8340                                  | 469                               | 75            | 4059             | 41                 |
|     | 287                                | 17460                                 |                                   |               |                  |                    |
|     | 402                                | 8460                                  |                                   |               |                  |                    |
| 2п  | 382                                | 12340                                 | 468                               | 66            | 3508             | 14                 |
|     | 298                                | 14120                                 |                                   |               |                  |                    |
| 2p  | 408                                | 8220                                  | 477                               | 69            | 3545             | 47                 |
|     | 297                                | 19460                                 |                                   |               |                  | 4/                 |

Таблица 2. Спектрально-флуоресцентные свойства соединений 2а-р в бензоле

<sup>а</sup> Спектры поглощения растворов с концентрацией 5×10<sup>-5</sup> М.

<sup>6</sup> Спектры фотолюминесценции растворов с концентрацией 10<sup>-6</sup> М. (λ<sub>возб</sub> 425 нм).

<sup>в</sup> Относительный квантовый выход был измерен с использованием раствора сульфата хинина в 0.05 М. H<sub>2</sub>SO<sub>4</sub> ( $\lambda_{возб}$  350 нм).

дит к наибольшему сдвигу полосы флуоресценции и достаточно высокой интенсивности испускания.

Спектры флуоресценции соединений **2** были также зарегистрированы в порошке при комнатной температуре (табл. 3, рис. 3, 4). Установлено, что

синтезированные соединения обладают интенсивной фотолюминесценцией в сине-зеленой области спектра с максимумами в диапазоне 463–529 нм, для инициации которой может использоваться как УФ, так и коротковолновое видимое облучение.

|    | •                                |                            |    | • • • • • • •                    |                            |
|----|----------------------------------|----------------------------|----|----------------------------------|----------------------------|
| N₂ | $\lambda_{em}$ , нм <sup>а</sup> | I <sub>отн</sub> , уд. ед. | N⁰ | $\lambda_{em}$ , нм <sup>а</sup> | I <sub>отн</sub> , уд. ед. |
| 2a | 506                              | 228                        | 2и | 463                              | 563                        |
| 26 | 483                              | 694                        | 2к | 497                              | 662                        |
| 2в | 479                              | 343                        | 2л | 491                              | 169                        |
| 2г | 509                              | 112                        | 2м | 479                              | 599                        |
| 2д | 489                              | 436                        | 2н | 513                              | 306                        |
| 2e | 470                              | 568                        | 20 | 498                              | 346                        |
| 2ж | 468                              | 860                        | 2п | 513                              | 30                         |
| 23 | 481                              | 335                        | 2n | 529                              | 471                        |

Таблица 3. Спектрально-люминесцентные характеристики соединений 2а-р в твердом виде

<sup>а</sup> Спектры фотолюминесценции зарегистрированы при длине волны возбуждения 450 нм.

Спектры возбуждения являются сплошными и характеризуются наличием двух выраженных максимумов в области 330–360 и 420–470 нм. Подробный анализ полос испускания выявил, что прямая корреляция между положением максимума флуоресценции и природой электронных эффектов заместителей при пиридиновом цикле в положениях  $C^5$  и  $C^6$  отсутствует. Более значительную роль, судя по всему, играет стерический фактор. Так, молекулы, характеризующиеся более плоским строением, обладают самым длинноволновым испусканием, по всей видимости из-за возможности формирования стопок и более эффективного ме-

жмолекулярного  $\pi$ -стекинга, по сравнению с молекулами с пространственно-объемными заместителями **2е–и**, а также соединениями с ароматическим фрагментами в шестом положении, которые частично или полностью выведены из сопряжения влиянием вицинально-расположенного фрагмента (**2м**, **o**). Для таких соединений межмолекулярная агрегация затрудняется, что приводит к более коротковолновой твердофазной флуоресценции в схожей области с раствором. Присутствие донорной метоксигруппы в ароматическом фрагменте, находящемся в шестом положении пиридинового цикла смещает полосу испускания батохромно по



**Рис. 3.** Нормализованные спектры флуоресценции соединений **2**г-ж, содержащих аннелированные к пиридину циклические фрагменты различного размера, в порошке.



**Рис. 4.** Нормализованные спектры флуоресценции соединений **2и**, **к**, **о**, **м**, **р**, содержащих ароматический или циклопропильный заместитель, в порошке.

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 92 № 12 2022

сравнению с незамещенным 6-фенилпиридинпроизводным. С увеличением размера сочлененного с пиридином цикла отмечается небольшое гипсохромное смещение полосы фотолюминесценции. Так производное циклопента[b]пиридина **2г** флуоресцирует при 509 нм, тетрагидрохинолиновое производное **2д** – при 489 нм, циклогепта[b]пиридин **2е** и циклоокта[b]пиридин **2ж** – при 470 и 468 нм соответственно (рис. 3).

Таким образом, был разработан способ получения новых производных 2-морфолинопиридин-3,4-дикарбонитрила и исследованы их спектрально-люминесцентные свойства. Получены соединения, обладающие уникальным свойством эффективно флуоресцировать в растворе и твердом состоянии (DSE).

#### ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры снимали в тонком слое (суспензия в вазелиновом масле) на ИК Фурье-спектрометре ФСМ-2201. Спектры ЯМР регистрировали на спектрометре Bruker DRX-500 [500.13 (<sup>1</sup>H), 125.76 МГц (<sup>13</sup>С)], растворитель – ДМСО-*d*<sub>6</sub>, внутренний стандарт - ТМС. Масс-спектры снимали на приборе Shimadzu GCMS-QP2020 (энергия ионизирующих электронов – 70 эВ). Элементный анализ выполняли на CHN-анализаторе FlashEA 1112 CHN. Контроль протекания реакций и чистоты синтезированных веществ осуществляли методом TCX на пластинах Sorbfil ПТСХ-АФ-А-УФ (проявление с помощью УФ облучения, парами иода, термическим разложением). Температуры плавления веществ определяли на приборе Opti-Melt MPA100. Спектры поглощения снимали на приборе Agilent Cary 60 UV-Vis Spectrophotometer. Спектры флуоресценции регистрировали на приборе Agilent Cary Eclipse.

**6-Метил-2-морфолинопиридин-3,4-дикарбонитрил (2а).** 2-Хлорпиридин **1а** (0.01 моль) суспендировали в 5 мл *i*-PrOH, затем по каплям добавляли морфолин (0.011 моль) и DIPEA (0.011 моль). Реакционную смесь перемешивали 24 ч при комнатной температуре. После завершения реакции (контроль TCX) смесь охлаждали и выпавший в осадок продукт отфильтровывали, промывали ледяной водой и *i*-PrOH. Полученный продукт перекристаллизовывали из *i*-PrOH. Выход 82%, т. пл. 175–176°С (*i*-PrOH). ИК спектр, v, см<sup>-1</sup>: 2214 (С $\equiv$ N). Спектр ЯМР <sup>1</sup>H,  $\delta$ , м. д.: 2.45 с (3H, CH<sub>3</sub>), 3.69–3.74 м [8H, O(CH<sub>2</sub>)<sub>4</sub>N], 7.32 с (1H, CH<sub>Py</sub>). Масс-спектр, *m/z* ( $I_{\text{огн}}$ , %): 228 (63) [*M*]<sup>+</sup>. Найдено, %: С 63.15; H 5.30; N 24.55. С<sub>12</sub>H<sub>12</sub>N<sub>4</sub>O. Вычислено, %: С 63.04; H 5.27; N 24.49.

Соединения 26-р получали аналогично.

**5,6-Диметил-2-морфолинопиридин-3,4-ди**карбонитрил (26). Выход 94%, т. пл. 155–156°С (*i*-PrOH). ИК спектр, v, см<sup>-1</sup>: 2218 (С≡N). Спектр ЯМР <sup>1</sup>H, δ, м. д.: 2.34 с (3H, CH<sub>3</sub>), 2.47 с (3H, CH<sub>3</sub>), 3.64–3.67 м [4H, O(CH<sub>2</sub>)<sub>4</sub>N], 3.69–3.72 м [4H, O(CH<sub>2</sub>)<sub>4</sub>N]. Масс-спектр, *m/z* (*I*<sub>отн</sub>, %): 242 (52) [*M*]<sup>+</sup>. Найдено, %: С 64.45; H 5.82; N 23.13. С<sub>13</sub>H<sub>14</sub>N<sub>4</sub>O. Вычислено, %: С 64.52; H 5.78; N 23.17.

**6-Метил-2-морфолино-5-этилпиридин-3,4-дикарбонитрил (2в).** Выход 92%, т. пл. 136– 137°С (*i*-PrOH). ИК спектр, ν, см<sup>-1</sup>: 2220 (С≡N). Спектр ЯМР <sup>1</sup>H, δ, м. д.: 1.14 т (3H, CH<sub>2</sub>CH<sub>3</sub>, <sup>3</sup>J<sub>HH</sub> 7.5 Гц), 2.52 с (3H, CH<sub>3</sub>), 2.73 к (2H, CH<sub>2</sub>CH<sub>3</sub>, <sup>3</sup>J<sub>HH</sub> 7.5 Гц), 3.64–3.68 м [4H, O(CH<sub>2</sub>)<sub>4</sub>N], 3.69–3.73 м [4H, O(CH<sub>2</sub>)<sub>4</sub>N]. Масс-спектр, *m/z* (*I*<sub>отн</sub>, %): 256 (40) [*M*]<sup>+</sup>. Найдено, %: С 65.61; H 6.29; N 21.86. C<sub>14</sub>H-<sub>16</sub>N<sub>4</sub>O. Вычислено, %: С 65.55; H 6.32; N 21.71.

**2-Морфолино-6,7-дигидро-5***Н***-циклопента[***b***]пиридин-3,4-дикарбонитрил (2г). Выход 96%, т. пл. 133–134°С (***i***-PrOH). ИК спектр, v, см<sup>-1</sup>: 2211 (С≡N). Спектр ЯМР <sup>1</sup>Н, δ, м. д.: 2.20–2.25 м (2H, CH<sub>2</sub>), 2.92–2.98 м (4H, CH<sub>2</sub>), 3.63–3.66 м [4H, O(CH<sub>2</sub>)<sub>4</sub>N], 3.70–3.73 м [4H, O(CH<sub>2</sub>)<sub>4</sub>N]. Массспектр,** *m/z* **(***I***<sub>отн</sub>, %): 254 (43) [***M***]<sup>+</sup>. Найдено, %: С 66.13; H 5.55; N 22.03. С<sub>14</sub>Н<sub>14</sub>N<sub>4</sub>O. Вычислено, %: С 66.06; H 5.58; N 21.97.** 

**2-Морфолино-5,6,7,8-тетрагидрохинолин-3,4-дикарбонитрил (2д).** Выход 92%, т. пл. 146– 147°С (*i*-PrOH). ИК спектр, v, см<sup>-1</sup>: 2212 (С≡N). Спектр ЯМР <sup>1</sup>H, δ, м. д.: 1.77–1.82 м (4H, CH<sub>2</sub>), 2.76–2.79 м (4H, CH<sub>2</sub>), 3.60–3.63 м [4H, O(CH<sub>2</sub>)<sub>4</sub>N], 3.69–3.72 м [4H, O(CH<sub>2</sub>)<sub>4</sub>N]. Масс-спектр, *m/z* (*I*<sub>отн</sub>, %): 268 (28) [*M*]<sup>+</sup>. Найдено, %: С 67.15; H 6.01; N 20.88. С<sub>15</sub>H<sub>16</sub>N<sub>4</sub>O. Вычислено, %: С 67.20; H 5.97; N 20.93.

**2-Морфолино-6,7,8,9-тетрагидро-5***Н***-циклогепта[***b***]пиридин-<b>3,4-**дикарбонитрил (2е). Выход 82%, т. пл. 138–139°С (*i*-PrOH). ИК спектр, v, см<sup>-1</sup>: 2211 (С≡N). Спектр ЯМР <sup>1</sup>Н, б, м. д.: 1.60– 1.64 м (4H, CH<sub>2</sub>), 1.79–1.83 м (2H, CH<sub>2</sub>), 2.89–2.92 м (2H, CH<sub>2</sub>), 2.94–2.97 м (2H, CH<sub>2</sub>), 3.66–3.69 м [4H, O(CH<sub>2</sub>)<sub>4</sub>N], 3.6–3.72 м [4H, O(CH<sub>2</sub>)<sub>4</sub>N]. Массспектр, *m/z* (*I*<sub>отн</sub>, %): 282 (34) [*M*]<sup>+</sup>. Найдено, %: С 68.06; Н 6.43; N 19.84. С<sub>16</sub>Н<sub>18</sub>N<sub>4</sub>O. Вычислено, %: С 67.94; Н 6.39; N 19.89.

**2-Морфолино-5,6,7,8,9,10-гексагидроциклоокта[b]пиридин-3,4-дикарбонитрил (2ж).** Выход 87%, т. пл. 154–155°С (*i*-PrOH). ИК спектр, v, см<sup>-1</sup>: 2217 (С≡N). Спектр ЯМР <sup>1</sup>H, δ, м. д.: 1.35–1.38 м (4H, CH<sub>2</sub>), 1.66–1.71 м (4H, CH<sub>2</sub>), 2.88–2.91 м (4H, CH<sub>2</sub>), 3.66–3.69 м [4H, O(CH<sub>2</sub>)<sub>4</sub>N], 3.70–3.73 м [4H, O(CH<sub>2</sub>)<sub>4</sub>N]. Масс-спектр, *m*/*z* (*I*<sub>отн</sub>, %): 296 (47) [*M*]<sup>+</sup>. Найдено, %: С 68.90; H 6.80; N 18.90. C<sub>17</sub>H-<sub>20</sub>N<sub>4</sub>O. Вычислено, %: С 68.82; H 6.81; N 18.95.

**2-Морфолино-5,6,7,8,9,10,11,12,13,14-декагидроциклододека[b]пиридин-3,4-дикарбонитрил (23).** Выход 69%, т. пл. 137–138°С (*i*-PrOH). ИК спектр, v, см<sup>-1</sup>: 2222 (С≡N). Спектр ЯМР <sup>1</sup>H, δ, м. д.: 1.25–1.45 м (10H, CH<sub>2</sub>), 1.46–1.56 м (2H, CH<sub>2</sub>), 1.63–1.69 м (2H, CH<sub>2</sub>), 1.75–1.82 м (2H, CH<sub>2</sub>), 2.70– 2.76 м (2H, CH<sub>2</sub>), 2.78–2.83 м (2H, CH<sub>2</sub>), 3.69–3.74 м [8H, O(CH<sub>2</sub>)<sub>4</sub>N]. Масс-спектр, *m/z* (*I*<sub>отн</sub>, %): 352 (14) [*M*]<sup>+</sup>. Найдено, %: С 71.56; Н 8.01; N 15.90. С<sub>21</sub>H<sub>28</sub>N<sub>4</sub>O. Вычислено, %: С 71.49; H 7.96; N 15.98.

**2-Морфолино-6-циклопропилпиридин-3,4-дикарбонитрил (2и).** Выход 79%, т. пл. 179– 180°С (*i*-PrOH). ИК спектр, ν, см<sup>-1</sup>: 2218 (С≡N). Спектр ЯМР <sup>1</sup>H, δ, м. д.:1.01–1.14 м (4H, CH<sub>2</sub>), 2.11–2.19 м (1H, CH), 3.65–3.71 м [8H, O(CH<sub>2</sub>)<sub>4</sub>N], 7.41 с (1H, CH<sub>Py</sub>). Спектр ЯМР <sup>13</sup>С, δ<sub>C</sub>, м. д.: 12.0, 17.5, 47.5, 65.7, 89.6, 115.1, 115.2, 115.9, 125.5, 159.2, 168.0. Масс-спектр, *m*/*z* (*I*<sub>отн</sub>, %): 254 (29) [*M*]<sup>+</sup>. Найдено, %: С 66.13; H 5.55; N 22.03. С<sub>14</sub>H<sub>14</sub>N<sub>4</sub>O. Вычислено, %: С 66.20; H 5.58; N 21.97.

**2-Морфолино-6-фенилпиридин-3,4-дикарбонитрил (2к).** Выход 88%, т. пл. 200–201°С (*i*-PrOH). ИК спектр, v, см<sup>-1</sup>: 2210 (С≡N). Спектр ЯМР <sup>1</sup>H, δ, м. д.: 3.75–3.79 м [4H, O(CH<sub>2</sub>)<sub>4</sub>N], 3.82– 3.85 м [4H, O(CH<sub>2</sub>)<sub>4</sub>N], 7.52–7.57 м (3H, Ph), 8.09 с (1H, CH<sub>Py</sub>), 8.17–8.20 м (2H, Ph). Масс-спектр, *m/z* (*I*<sub>отн</sub>, %): 290 (56) [*M*]<sup>+</sup>. Найдено, %: С 70.33; H 4.86; N 19.30. С<sub>17</sub>H<sub>14</sub>N<sub>4</sub>O. Вычислено, %: С 70.26; H 4.88; N 19.34.

6-(3,4-Диметоксифенил)-2-морфолинопиридин-3,4-дикарбонитрил (2л). Выход 84%, т. пл. 215–216°С (*i*-PrOH). ИК спектр, v, см<sup>-1</sup>: 2209 (C≡N). Спектр ЯМР <sup>1</sup>H, δ, м. д.: 3.75–3.78 м [4H, O(CH<sub>2</sub>)<sub>4</sub>N], 3.79–3.82 м [4H, O(CH<sub>2</sub>)<sub>4</sub>N], 3.84 с (3H, CH<sub>3</sub>O), 3.86 с (3H, CH<sub>3</sub>O), 7.10 д (1H, C<sub>6</sub>H<sub>3</sub>, <sup>3</sup>J<sub>HH</sub> 8.5 Гц), 7.72 д (1H, C<sub>6</sub>H<sub>3</sub>, <sup>4</sup>J<sub>HH</sub> 2.1 Гц), 7.82 д. д (1H, C<sub>6</sub>H<sub>3</sub>, <sup>3</sup>J<sub>HH</sub> 8.5, <sup>4</sup>J<sub>HH</sub> 2.1 Гц), 8.11 с (1H, CH<sub>Py</sub>). Массспектр, *m/z* ( $I_{0TH}$ , %): 350 (34) [*M*]<sup>+</sup>. Найдено, %: С 65.13; H 5.18; N 15.99. С<sub>19</sub>H<sub>18</sub>N<sub>4</sub>O<sub>3</sub>. Вычислено, %: C 65.19; H 5.20; N 15.95.

**5-Метил-2-морфолино-6-фенилпиридин-3,4-дикарбонитрил (2м).** Выход 97%, т. пл. 134– 135°С (*i*-PrOH). ИК спектр, v, см<sup>-1</sup>: 2207 (С≡N). Спектр ЯМР <sup>1</sup>H, δ, м. д.: 2.41 с (3H, CH<sub>3</sub>), 3.68–3.71 м [4H, O(CH<sub>2</sub>)<sub>4</sub>N], 3.71–3.73 м [4H, O(CH<sub>2</sub>)<sub>4</sub>N], 7.51–7.54 м (3H, Ph), 7.61–7.64 м (2H, Ph). Массспектр, *m/z* (*I*<sub>отн</sub>, %): 304 (57) [*M*]<sup>+</sup>. Найдено, %: С 71.04; H 5.30; N 18.41. С<sub>18</sub>H<sub>16</sub>N<sub>4</sub>O. Вычислено, %: С 70.99; H 5.27; N 18.46.

**2-Морфолино-5,6-дифенилпиридин-3,4-ди**карбонитрил (2н). Выход 87%, т. пл. 223–224°С (*i*-PrOH). ИК спектр, ν, см<sup>-1</sup>: 2215 (С≡N). Спектр ЯМР <sup>1</sup>H, δ, м. д.: 3.75–3.80 м [4H, O(CH<sub>2</sub>)<sub>4</sub>N], 3.80– 3.85 м [4H, O(CH<sub>2</sub>)<sub>4</sub>N], 7.23–7.32 м (6H, 2Ph), 7.37– 7.41 м (2H, Ph). Спектр ЯМР <sup>13</sup>С, δ<sub>C</sub>, м. д.: 47.7, 65.8, 92.2, 114.6, 115.9, 127.7, 127.9, 128.5, 128.6, 128.7, 129.3, 129.6, 130.1, 134.8, 137.7, 157.8, 159.7. Масс-спектр, *m/z* (*I*<sub>отн</sub>, %): 366 (70) [*M*]<sup>+</sup>. Найдено, %: С 75.39; H 4.95; N 15.29. С<sub>23</sub>Н<sub>18</sub>N<sub>4</sub>O. Вычислено, %: С 75.28; H 4.91; N 15.32.

**5-Метил-6-(4-метоксифенил)-2-морфолинопиридин-3,4-дикарбонитрил (20).** Выход 95%, т. пл. 175–176°С (*i*-PrOH). ИК спектр, v, см<sup>-1</sup>: 2202 (С≡N). Спектр ЯМР <sup>1</sup>H, δ, м. д.: 2.42 с (3H, CH<sub>3</sub>), 3.66–3.69 м [4H, O(CH<sub>2</sub>)<sub>4</sub>N], 3.70–3.73 м [4H, O(CH<sub>2</sub>)<sub>4</sub>N], 3.82 с (3H, CH<sub>3</sub>O), 7.05 д (2H, C<sub>6</sub>H<sub>4</sub>, <sup>3</sup>J<sub>HH</sub> 8.8 Гц), 7.61 д (2H, C<sub>6</sub>H<sub>4</sub>, <sup>3</sup>J<sub>HH</sub> 8.8 Гц). Спектр ЯМР <sup>13</sup>С, δ<sub>С</sub>, м. д.:18.3, 48.3, 55.8, 66.3, 92.2, 114.2, 115.2, 116.4, 124.5, 127.8, 130.6, 131.4, 157.9, 160.9, 161.2. Масс-спектр, *m/z* (*I*<sub>отн</sub>, %): 334 (45) [*M*]<sup>+</sup>. Найдено, %: С 68.25; H 5.43; N 16.76. С<sub>19</sub>H<sub>18</sub>N<sub>4</sub>O<sub>2</sub>. Вычислено, %: С 68.17; H 5.41; N 16.80.

**2-Морфолино-6-(фуран-2-ил)пиридин-3,4-дикарбонитрил (2п).** Выход 71%, т. пл. 120– 121°С (разл.) (*i*-PrOH). ИК спектр, v, см<sup>-1</sup>: 2207 (С≡N). Спектр ЯМР <sup>1</sup>Н, δ, м. д.: 3.73–3.76 м [4H, O(CH<sub>2</sub>)<sub>4</sub>N], 3.78–3.81 м [4H, O(CH<sub>2</sub>)<sub>4</sub>N], 6.76 д. д (1H, Fu, <sup>3</sup>J<sub>HH</sub> 3.5, <sup>4</sup>J<sub>HH</sub> 1.6 Гц), 7.45 д (1H, Fu, <sup>3</sup>J<sub>HH</sub> 3.5 Гц), 7.71 с (1H, CH<sub>Py</sub>), 8.01 д (1H, Fu, <sup>4</sup>*J*<sub>HH</sub> 1.6 Гц). Масс-спектр, *m/z* (*I*<sub>отн</sub>, %): 280 (31) [*M*]<sup>+</sup>. Найдено, %: С 64.28; H 4.32; N 19.99. С<sub>15</sub>H<sub>12</sub>N<sub>4</sub>O<sub>2</sub>. Вычислено, %: С 64.21; H 4.29; N 20.03.

**2-Морфолино-5,6-дегидробензо[***h***]хинолин-3,4-дикарбонитрил (2р).** Выход 92%, т. пл. 314– 315°С (*i*-PrOH). ИК спектр, v, см<sup>-1</sup>: 2217 (С≡N). Спектр ЯМР <sup>1</sup>H, δ, м. д.: 2.93–3.03 (4H, 2CH<sub>2</sub>), 3.72–3.80 м [8H, O(CH<sub>2</sub>)<sub>4</sub>N], 7.35–7.43 м (2H, C<sub>6</sub>H<sub>4</sub>), 7.45–7.49 м (1H, C<sub>6</sub>H<sub>4</sub>), 8.15–8.19 м (1H, C<sub>6</sub>H<sub>4</sub>). Масс-спектр, *m*/*z* (*I*<sub>отн</sub>, %): 316 (87) [*M*]<sup>+</sup>. Найдено, %: С 72.13; H 5.10; N 17.71. C<sub>19</sub>H<sub>16</sub>N<sub>4</sub>O. Вычислено, %: С 72.18; H 5.09; N 17.74.

#### ИНФОРМАЦИЯ ОБ АВТОРАХ

Ершова Анастасия Игоревна, ORCID: https:// orcid.org/0000-0003-4095-6122

Иевлев Михаил Юрьевич, ORCID: https://orcid. org/0000-0003-0741-2254

Максимова Вероника Николаевна, ORCID: https://orcid.org/0000-0003-1612-086X

Ершов Олег Вячеславович, ORCID: https:// orcid.org/0000-0002-0938-4659

#### ФИНАНСОВАЯ ПОДДЕРЖКА

Исследование выполнено в рамках государственного задания Министерства образования и науки России (проект № 0849-2020-0003).

#### КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

#### СПИСОК ЛИТЕРАТУРЫ

- You J., Lo M.-F., Liu W., Ng T.-W., Lai S.-L., Wang P., Lee C.-S. // J. Mater. Chem. 2012. Vol. 22. N 11. P. 5107. doi 10.1039/C2JM15287H
- Ooyama Y, Inoue S., Nagano T., Kushimoto K., Ohshita J., Imae I., Komaguchi K., Harima Y. // Angew. Chem. Int. Ed. 2011. Vol. 50. N 32. P. 7429. doi 10.1002/ anie.201102552
- Вербицкий Е.В., Слепухин П.А., Субботина Ю.О., Валова М.С., Щепочкин А.В., Чепракова Е.М., Русинов Г.Л., Чарушин В.Н. // ХГС. Т. 50. № 6. С. 883; Verbitskiy E.V., Slepukhin P.A., Subbotina Y.O., Valova M.S., Schepochkin A.V., Cheprakova E.M., Rusinov G.L., Charushin V.N. // Chem. Heterocycl.

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 92 № 12 2022

Compd. 2014. Vol. 50. N 6. P. 814. doi 10.1007/s10593-014-1536-x

- 4. Liu W., Chen Z., Zheng C.-J., Liu X.-K., Wang K., Li F., Dong Y.-P., Ou X.-M., Zhang X.-H. // J. Mater. Chem. (C). 2015. Vol. 3. N 34. P. 8817. doi 10.1039/ C5TC01415H
- Li W., Li J., Liu D., Li D., Wang F. // CS Appl. Mater. Interfaces. 2016. Vol. 8. N 33. P. 21497. doi 10.1021/ acsami.6b04395
- You J., Lai S.-L., Liu W., Ng T.-W., Wang P., Lee C.-S. // J. Mater. Chem. 2012. Vol. 22. N 18. P. 8922. doi 10.1039/C2JM00078D
- Li N., Wang P., Lai S.-L., Liu W., Lee C.-S., Lee S.-T., Liu Z. // Adv. Mater. 2010. Vol. 22. N 4. P. 527. doi 10.1002/adma.200902430
- Janjua M.R.S.A., Guan W., Yan L., Su Z.-M., Karim A., Akbar J. // Eur. J. Inorg. Chem. 2010. Vol. 2020. N 22. P. 3466. doi 10.1002/ejic.201000428
- Indirapriyadharshini V.K., Ramamurthy P., Raghukumar V., Ramakrishnan V.T. // Spectrochimica Acta (A). 2002. Vol. 58. N 8. P. 1535. doi 10.1016/S1386-1425(01)00616-3
- Bowman M.D., Jacobson M.M., Blackwell H.E. // Org. Lett. 2006. Vol. 8. N 8. P. 1645. doi 10.1021/ol0602708
- Ershov O.V., Chunikhin S.S, Ievlev M.Y., Belikov M.Y., Tafeenko V.A. // CrystEngComm. 2019. Vol. 21. N 36. P. 5500. doi 10.1039/C9CE01089K
- Koner R.R., Sinha S., Kumar S., Nandi C.K., Ghosh S. // Tetrahedron Lett. 2012. Vol. 53. N 18. P. 2302. doi 10.1016/j.tetlet.2012.02.094
- Yan J., Li J., Hao P., Qiu F., Liu M., Zhang Q., Shi D. // Dyes Pigm. 2015. Vol. 116. P. 97. doi 10.1016/j. dyepig.2015.01.005
- Förster T., Kasper K. // Elektrochem. Ber. Bunsenges. Phys. Chem. 1955. Vol. 59. N 10. P. 976. doi 10.1002/ bbpc.19550591018
- Qi J., Hu X., Dong X., Lu Y., Lu H., Zhao W., Wu W. // Adv. Drug Deliv. Rev. 2019. Vol. 143. P. 206. doi 10.1016/j.addr.2019.05.009
- Mei J., Nelson L. C. Leung N.L.C., Kwok R.T.K., Jacky W.Y.6 Lam J.W.Y., Tang B.Z. // Chem. Rev. 2015. Vol. 115. N 21. P. 11718. doi 10.1021/acs. chemrev.5b00263
- Suman G.R., Pandey M., Chakravarthy A.S.J. // Mater. Chem. Front. 2021. Vol. 5. N 4. P 1541. doi 10.1039/ D0QM00825G
- Zhao Z., Zhang H., Lam J.W.Y., Tang B.Z. // Angew. Chem. Int. Ed. 2020. Vol. 59. N 25. P. 9888. doi 10.1002/anie.201916729
- Belmonte-Vázquez J.L., Amador-Sánchez Y.A., Rodríguez-Cortés L.A., Rodríguez-Molina B. // Chem.

Mater. 2021. Vol. 33. N 18. P. 7160. doi 10.1021/acs. chemmater.1c02460

- Ershova A.I., Alekseeva A.U., Ershov O.V., Ievlev M.Y., Bardasov I.N. // Dyes Pigm. 2022. Vol. 197. P. 109914. doi 10.1016/j.dyepig.2021.109914
- Ershova A.I., Ievlev M.Y., Maksimova V.N., Belikov M.Y., Ershov O.V. // ChemistrySelect. 2020. Vol. 5. N 24. P. 7243. doi 10.1002/slct.202001710
- Ershov O.V., Ievlev M.Y., Belikov M.Y., Naidenova A.I., Maksimova V.N., Tafeenko V.A. // RSC Adv. 2017. Vol. 7. N 55. P. 34886. doi 10.1039/C7RA06217F
- 23. Ershov O.V., Shishlikova M.A., Ievlev M.Y., Belikov M.Y., Maksimova V.N. // Tetrahedron. 2019. Vol. 75. N 34.
  P. 130465. doi 10.1016/j.tet.2019.130465
- 24. Yu F., Zhao H., Li Y., Xia G., Wang H. // Mater. Chem. Front. 2022. Vol. 6. N 2. P. 155. doi 10.1039/ D1QM01306H
- Ershov O.V., Ievlev M.Yu., Belikov M.Yu., Lipin K.V., Naydenova A.I., Tafeenko V.A. // RSC Advances. 2016.
  Vol. 6. N 85. P. 82227. doi 10.1039/C6RA16787J

## Synthesis and Optical Properties of 2-Morpholinocinchomeronic Dinitrile Derivatives

A. I. Ershova<sup>a</sup>, M. Yu. Ievlev<sup>a</sup>, V. N. Maksimova<sup>a</sup>, and O. V. Ershov<sup>a,\*</sup>

<sup>a</sup> I.N. Ulyanov Chuvash State University, Cheboksary, 428015 Russia \*e-mail: oleg.ershov@mail.ru

Received June 23, 2022; revised July 9, 2022; accepted July 10, 2022

A method for the preparation of 2-morpholinocinchomeronic dinitrile derivatives (2-morpholinopyridine-3,4-dicarbonitriles) was developed. The optical properties of the obtained products were investigated both in solution and the solid state. It was found that the synthesized compounds exhibit fluorescence both in solution and the solid state from the blue to green region of the spectrum, depending on the substituents at the fifth and sixth positions of the pyridine ring. It was found that the relative quantum yield in benzene reaches 50%.

Keywords: pyridines, aminopyridines, nucleophilic substitution, fluorescence, nitriles

1980