УДК 547.26'118

К 145-летию со дня рождения А. Е. Арбузова

ДИФЕНИЛ(N-АЛКИЛ-N-ДИФЕНИЛФОСФИНИЛМЕТИЛ)-КАРБАМОИЛМЕТИЛФОСФИНОКСИДЫ: СИНТЕЗ И ДАННЫЕ СПЕКТРОСКОПИИ ЯМР¹Н, ¹³С И ³¹Р

© 2022 г. О. И. Артюшин^{*a*}, К. В. Царькова^{*b,c*}, А. С. Перегудов^{*a*}, Н. А. Бондаренко^{*b,c*,*}

^а Институт элементоорганических соединений имени А. Н. Несмеянова Российской академии наук, Москва, 119991 Россия

^b Институт химических реактивов и особо чистых химических веществ Национального исследовательского центра «Курчатовский институт», ул. Богородский вал 3, Москва, 107076 Россия ^c Национальный исследовательский центр «Курчатовский институт», Москва, 123098 Россия

*e-mail: bond039@mail.ru

Поступило в редакцию 5 октября 2022 г. После доработки 31 октября 2022 г. Принято к печати 3 ноября 2022 г.

Взаимодействием фосфорилированных аминов $Ph_2P(O)CH_2NHR$ (R = Et, *i*-Pr, Bu, Oct) с дифенилфосфинилуксусной кислотой в присутствии диизопропилкарбодиимида, либо с ее хлорангидридом, синтезированы модифицированные тридентатные карбамоилметилфосфиноксиды $Ph_2P(O)CH_2N(R)CH_2P(O)Ph_2$ (R = Et, *i*-Pr, Bu, Oct). Строение полученных соединений изучено методом спектроскопии ЯМР ¹H, ³¹P, ¹³C. Показано, что молекулы модифицированных тридентатных карбамоилметилфосфиноксидов, содержащих фосфорильную группу в амидной части, существуют в растворах в виде двух конформеров в соотношении 1.3:1 (R = Et), 1.5:1 (R = *i*-Pr) или 1:1 (R =Bu, Oct).

Ключевые слова: карбамоилметилфосфиноксиды, N-алкил-N-(дифенилфосфинилметил)амины, амидирование, дифенилфосфинилуксусная кислота, диизопропилкарбодиимид, N-алкил-N-(дифенилфосфинилметил)дифенилфосфинилацетамиды

DOI: 10.31857/S0044460X22120071, EDN: MUIASZ

Карбамоилметилфосфиноксиды, они же N,N-диалкил(дифенилфосфинил)ацетамиды, в настоящее время занимают лидирующие позиции в экстракционных технологиях переработки ядерных отходов и производства редкоземельных элементов (РЗЭ) [1–6] по совокупности свойств, прежде всего по соотношению цена/эффективность извлечения. В связи с большой практической важностью карбамоилметилфосфиноксидов, вопросы их синтеза [7] и влияния модификации их молекул на экстракционные свойства в отношении различных элементов подробно освещены в литературе [8, 9]. Так, было показано, что введение любых заместителей в центральное метиленовое звено карбамоилметилфосфиноксидов хотя и повышает их растворимость в разбавителях, снижает эффективность экстракции [10, 11]. Модификация амидной части молекулы карбамоилметилфосфиноксида дополнительными координирующими группировками действует не столь однозначно. Так, введение к атому азота группы CH₂CH₂P(O)Ph₂ приводит к увеличению степени извлечения P3Э(III) и снижению таковой для Th(IV), практически не влияя на экстракцию U(VI) [12]. Недавно нами показано, что карбамоилметилфосфиноксид, содержащий в амидной части молекулы CH₂P(O)Ph₂-группи-

$$R = {{}^{3}CH_{2}CH_{3} (1), CH(CH_{3})_{2} (2), (CH_{2})_{3}CH_{3} (3), (CH_{2})_{7}CH_{3} (4);} \\ R = Et (5), i-Pr (6), Bu (7), i-Bu (8), Oct (9).$$

Схема 2.

 $Ph_2PC1 \xrightarrow[20-30^{\circ}C]{H_2O-C_6H_6} Ph_2PHO \xrightarrow[Tonyon, 20^{\circ}C, 5]{} VPh_2PHO \xrightarrow[Tonyon, 20^{\circ}C, 5]$

Схема 3.

 $Ph_2PHO + [CH_2O]_n + RNH_2 \xrightarrow{\text{толуол}} Ph_2P \xrightarrow{O} Ph_2P \xrightarrow{O} NHR$ **5–9**

R = Et (5), i-Pr (6), Bu (7), i-Bu (8), Oct (9).

ровку, действует более избирательно: приводит к увеличению эффективности извлечения тяжелых РЗЭ(III) при одновременном снижении таковой легких РЗЭ(III), U(VI) и Th(IV) [13].

В настоящей работе описан синтез и особенности спектрального поведения дифенил(N-алкил-N-дифенилфосфинилметил)карбамоилметилфосфиноксидов 1–4 (схема 1), являющихся N-алкил-N-(дифенилфосфинилметил)амидами дифенилфосфинилуксусной кислоты, содержащих в амидной части молекулы CH₂P(O)Ph₂-группу. Эти соединения, полученные на основе N-алкил-N-(дифенилфосфинилметил)аминов 5–9 (схема 1), являются модифицированнымиструктурнымианалогамиизвестных бидентатных карбамоилметилфосфиноксидов – диалкиламидов дифенилфосфинилуксусной кислоты Ph₂P(O)CH₂C(O)NAlk₂ 10.

Для синтеза исходных вторичных фосфорилированных аминов 5–9 и амидов 1–4 были использованы разработанные ранее удобные и эффективные пути получения дифенилфосфинистой [14] и дифенилфосфинилуксусной **11** [15] кислот (схема 2).

Вторичные N-алкил-N-(дифенилфосфинилметил)амины **5–9** получены по реакции Кабачника– Филдса [16] (схема 3). Этот способ до сих пор является одним их самых распространенных в синтезе третичных фосфорилметиламинов, но все еще редко используемым для получения вторичных аминов аналогичной структуры. Так, из пяти синтезированных нами вторичных аминов в литературе упоминается лишь *n*-бутильное производное **7** [17], однако его физико-химические данные отсутствуют.

Целевые амины **5–9** образуются с высоким выходом (85–95%), однако в выделенной реакционной смеси в качестве побочных продуктов идентифицированы дифенилфосфинилметанол Ph₂P(O)CH₂OH (2–5%) и третичный N-алкилбис(N,N-дифенилфосфинилметил)амин [Ph₂P(O)CH₂]₂NAlk (2–8%). Первый из них может

R = Et(5), i-Pr(6), Bu(7), Oct(9).

быть легко удален в процессе выделения целевых аминов промывкой водного раствора их гидрохлоридов бензолом, за исключением октильного амина **9** из-за плохой растворимости его гидрохлорида в воде. Однако разделение вторичного и третичного аминов методом колоночной хроматографии или перекристаллизацией для получения аналитически чистых образцов сопровождается заметными потерями целевого продукта до 35–60%.

Модифицированные амиды 1–4 были синтезированы амидированием дифенилфосфинилуксусной кислоты 11 вторичными аминами 5–7, 9 (схема 4) в присутствии диизопропилкарбодиимида (способ a) и усовершенствованной нами реакцией амина 5 с хлорангидридом 12, ранее описанной для синтеза первичных амидов [7] (способ δ).

Оба способа дают практически одинаковый результат. Основная потеря продукта происходит на стадии его очистки от диизопропилмочевины на колонке с SiO₂, после которой выход аналитически чистых амидов **1–4** составляет 40–66% (схема 4).

Строение и состав полученных вторичных аминов 5–9 (табл. S1, см. Дополнительные материалы) и амидов 1-4 (табл. S2–S4, см. Дополнительные материалы) подтверждено данными масс-спектрометрии и спектроскопии ЯМР ¹H, ¹³C{¹H}, ³¹P{¹H} растворов этих соединений в CDCl₃, а также данными элементного анализа. Для отнесения сигналов были применены двумерные гомо- (¹H–¹H,

COSY) и гетероядерные (¹H–¹³C, HSQC и HMBC) корреляционные методики.

По данным ЯМР, молекулы амидов 1–4 существуют в виде двух конформеров, отличающихся пространственным расположением различных по окружению $Ph_2P(O)$ -групп (P^1 и P^2), а также алкильных заместителей при атоме азота. Так, в спектрах ЯМР ³¹P{¹H} амидов 1 и 2 наблюдаются по две пары синглетных сигналов ядер P^1 и P^2 , принадлежащих мажорному (M) и минорному (m) конформерам с соотношением интегральной интенсивности сигналов (P^1+P^2) 1.3 (R = Et), 1.5 (R = *i*-Pr), а в случае амидов 3 и 4 – конформерам A и B с молярным соотношением, равным 1.0 (R = Bu, Oct) (рис. S1, табл. S2, см. Дополнительные материалы).

Сравнительный анализ значений химических сдвигов атома фосфора амидов 1–4 (табл. S2, см. Дополнительные материалы) и аналогичных по строению дифенил-N,N-диалкилкарбамоилфосфиноксидов 10, N,N-диалкиламинометилдифенилфосфиноксидов 13 и ω -N,N-дибутиламиноалкилдифенилфосфиноксидов 14 (схема 5) позволяет отнести пару сигналов в сильном поле к атому P² амидной части молекулы C(O)N(R)CH₂P²(O)Ph₂, а вторую пару сигналов, находящуюся в более слабом поле, к атому P¹ фрагмента Ph₂P¹(O)CH₂C(O).

В спектрах ЯМР ¹Н растворов амидов 1–4 в CDCl₃ количество сигналов соответствует чис-

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 92 № 12 2022

Схема 5.

$$\begin{array}{c|c} O & O & O \\ Ph_2P & NR_2 & Ph_2P & NR_2 & Ph_2P(CH_2)_nNBu_2 \\ \hline 10 & 13 & 14 \\ \delta_P = 29.1 \ (R = Et) \ \delta_P = 26.9 \ (R = Me) \ \delta_P = 32.4 \ (n = 2) \\ 29.0 \ (R = Bu) & 27.5 \ (R = Et) & 33.4 \ (n = 3) \\ 29.1 \ (R = Oct) & 27.8 \ (R = Bu) & 31.8 \ (n = 4) \end{array}$$

лу неэквивалентных протонов, а их положение и мультиплетность являются характерными для такой структуры. Каждый протон представлен двумя сигналами мажорного и минорного конформеров М и т амидов 1, 2, а также конформеров A и B амидов 3, 4 (рис. S2, табл. S3, см. Дополнительные материалы).

На основании данных гомоядерных спектров COSY (¹H–¹H) амидов **1–4** были установлены спиново-связанные протоны соседних CH₃- и CH₂-групп в алкильных группах при атоме азота R = Et (3, 4), *i*-Pr (3–5), Bu (3–6), Oct (3–10) в области 0.68–3.49 м. д. Две пары дублетных сигналов в области 3.40–3.70 и 4.30–4.80 м. д. отнесены нами к протонам конформеров М, т и А, В фрагментов P¹(O)C¹H₂C(O) и NC²H₂P² скелета молекулы. Протоны H₂C¹ представлены в более сильном поле, а H₂C² в слабопольной области. Такое отнесение подтверждается наличием корреляции сигналов протонов H₂C²P² с сигналами углеродных ядер NC³ и групп C=O в спектрах HMBC, отражающих вицинальное и геминальное взаимодействие.

Наличие спин-спинового взаимодействия протонов и ядер ³¹Р подтверждается данными спектров ЯМР ¹Н, зарегистрированных в режиме полной шумовой развязки от ³¹Р. Следует отметить, что значения константы спин-спинового взаимодействия ¹ $J_{\rm HP}$ метиленовых протонов $\rm H_2C^1P^1$ в 3.5 раза больше, чем ¹ $J_{\rm HP}$ протонов амидного фрагмента $\rm H_2C^2P^2$. В последнем случае величина КССВ ¹ $J_{\rm HP}$ в конформерах М и А ~ в 2 раза меньше, чем в конформерах т и В.

В спектрах ЯМР амидов **1–4** в области ароматических протонов 7.34–7.90 м. д. наблюдаются два мультиплетных сигнала *орто*-HC_{Ph} фенильных заместителей при атомах Р¹ и Р² обоих конформеров, тогда как сигналы *мета*- и *пара*-HC_{Ph} представлены общим мультиплетным сигналом (М+т и А+В) (табл. S3, см. Дополнительные материалы).

Следует отметить, что бидентатные дифенил-N,N-диалкилкарбамоилфосфиноксиды **10**, не содержащие фосфорильной группы в амидной части молекулы, по данным ЯМР ¹Н, также существуют в виде двух конформеров A и B в соотношении 1:1 [18], в которых положением в пространстве различаются только протоны алкильных заместителей при атоме азота. В спектрах ЯМР ¹³С и ³¹Р ядра представлены лишь одним сигналом.

На основании данных HSQC ($^{1}H-^{13}C$) эксперимента были сделаны отнесения сигналов в спектрах ЯМР ^{13}C амидов **1–4** и определены значения химического сдвига ядер ^{13}C для всех групп скелета молекулы, алкильных заместителей при атоме азота и фенильных радикалов при атоме фосфора (рис. S3, S4, табл. S4, см. Дополнительные материалы).

В спектрах ¹³C{¹H}, снятых в режиме ЈМОДЕСНО, углеродные ядра всех CH₂-групп амидов **1**–4 представлены двумя сигналами конформеров M, m и A, B за исключением ω -группы C¹⁰H₃ амида **4** (рис. S3, см. Дополнительные материалы). Следует отметить, что абсолютное значение разницы химических сдвигов сигналов ядер ¹³C углеводородных заместителей при атоме азота в обоих конформерах $\Delta\delta_C = \delta_C(M) - \delta_C(m)$ последовательно уменьшается при переходе от NC³H₂-группы к конечной группе CH₃ [18]. Это позволило сделать отнесение сигналов ядер ¹³C в группах H₂C⁹ и H₂C¹⁰ амида **4** (рис. S3, табл. S4, см. Дополнительные материалы).

В спектрах ЯМР амидов 1-4 в области 36-40 и 42-50 м. д. наблюдаются по две пары дублетных

сигналов углеродных ядер P^1C^1 и C^2P^2 конформеров M, m и A, B с константами ${}^1J_{CP}$ 60–64 (C¹) и 73– 80 Гц (C²). Сигналы ядер 13 С фрагментов $P^1C^1C(O)$ конформеров M и A находятся в более слабом поле по сравнению с сигналами конформеров m и B. Величина КССВ ${}^1J_{CP}$ углеродных ядер фрагмента $P^1(O)C^1H_2C(O)$ на 13–16 Гц больше таковой ${}^1J_{CP}$ углерода C^2P^2 в амидной части молекулы (рис. S3, см. Дополнительные материалы).

В спектрах амидов 1–4 в области 125–135 м. д. находятся по две пары дублетных сигналов *орто-*, *мета-*, *пара-* и *ипсо-*¹³С, относящихся к группам PhP¹ и PhP² конформеров M, m и A, B (рис. S4, табл. S4, см. Дополнительные материалы).

В области 165.17-166.25 м. д. наблюдаются два частично перекрывающихся дублетных сигнала, принадлежащих магнитно неэквивалентным ядрам ¹³С=О мажорного и конформера А. а также дублетный сигнал ¹³С конформеров т и В амидов 1, 3 и 4 (табл. S4, см. Дополнительные материалы). В спектре изопропильного производного амида 2 (R = i-Pr) карбонильная группа конформеров М и т представлена двумя дублетными сигналами (табл. S4, см. Дополнительные материалы). Отметим, что для всех амидов величина ² J_{CP} углеродных ядер конформеров т и В (5.2-5.7 Гц) больше таковой для конформеров М и А (${}^{2}J_{CP}$ 4.6–5.1 Гц). В корреляционных спектрах НМВС этих соединений найдены все три кросс-пика сигналов ядер ¹³С=О с протонными сигналами метиленовых групп $H_2C^1P^1$, $H_2C^2P^2$ и H_2C^3N соответствующих конформеров М, т и А, В.

Сделанные отнесения сигналов протонов и ядер ¹³С подтверждаются наличием соответствующих кросс-пиков в корреляционных спектрах HMBC. Соотношение интегральной интенсивности индикаторных сигналов H^1 и ¹³С в группах $H_2C^1P^1$, $H_2C^2P^2$, H_2C^3N соответствует таковому в спектрах ³¹Р.

Таким образом, N-алкил-N-(дифенилфосфинилметил) дифенилфосфинилацетамиды $Ph_2P(O)CH_2N(R)CH_2P(O)Ph_2$ (R = Et, *i*-Pr, Bu, Oct), синтезированные амидированием дифенилфосфинилуксусной кислоты вторичными N-алкил-N-(дифенилфосфинилметил)аминами, по данным спектроскопии ЯМР ¹H, ¹³C {¹H}, ³¹P {¹H} в растворах CDCl₃ находятся в двух конформерных формах (M, m и A, B) в соотношении 1.3:1 (R = Et), 1.5:1 (R = i-Pr) и 1:1 (R = Bu и Oct). Ядра ¹³С карбонильной группы в конформерах M и A полученных амидов являются магнитно неэквивалентными. Способ получения тридентатных амидов при этом не оказывает влияния на соотношение конформеров.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР 1 H, 13 C { 1 H} и 31 P { 1 H} растворов реакционных смесей и исследованных соединений в CDCl₂ зарегистрированы на спектрометрах Bruker AvanceTM 400, 500 и 600. Рабочая частота составляет 400.13, 500.13 600.22 МГц (¹Н), 100.61, 125.77 и 150.925 МГц (13С) и 161.97, 202.46 и 242.974 МГц (³¹Р) соответственно. Химические сдвиги протонов и ядер ¹³С были определены относительно остаточного сигнала хлороформа или сигнала CDCl₂. В спектрах ЯМР ³¹Р в качестве внешнего стандарта использован 85%-ный раствор H₃PO₄ в D₂O. Для отнесения сигналов в спектрах ЯМР ¹Н и ¹³С были применены двумерные гомо- $(^{1}H^{-1}H)$ и гетеро- $(^{1}H^{-13}C)$ корреляционные методики из стандартной библиотеки программ Bruker, использующие импульсные полевые градиенты gs-COSY, gs-HSOC и gs-HMBC. Масс-спектры растворов полученных соединений в метаноле зарегистрированы на масс-спектрометре AmaZon Bruker Daltonik GmbH в режиме сканирования Ultra-Scan положительной ионизации и в диапазоне регистрируемых элементов *m/z* 70–2200. Для колоночной хроматографии использован силикагель марки Fluka (70-230 меш, 60 Å) и Aldrich, 130-270 меш, 60 Å с использованием градиентных систем растворителей CHCl₃-MeOH (20:0→20:0.5). Органические растворители высушены известными методами [19]. Температуры плавления измерены укороченными термометрами Аншютца в специальном блоке с использованием капилляров.

N-(Дифенилфосфинилметил)-N-этиламин (5). К смеси 2.40 г (12 ммоль) дифенилфосфинистой кислоты [14], 0.66 г (12 ммоль) параформа и 11 мл безводного толуола, помещенной в ампулу, прибавляли при –18°С в токе аргона 0.54 г (0.8 мл, 12 ммоль) этиламина. Полученную смесь нагревали в запаянной ампуле при 110°С в течение 10 ч, затем упаривали в вакууме. Остаток

(2.88 г) растворяли в 10 мл 2.5%-ной соляной кислоты, раствор промывали бензолом (3×10 мл), подщелачивали до значения рН 10–12 и экстрагировали CHCl₃ (3×10 мл). Объединенный экстракт промывали водой (2×10 мл), сушили Na₂SO₄ и упаривали в вакууме. Остаток очищали на колонке с SiO₂. Выход 1.31 г (42%), т. пл. 70-71°С. Спектр ЯМР ¹Н (400.13 МГц), б, м. д. (*J*, Гц): 1.06 т (3Н, H₃C³, ³J_{HH} 7.1), 1.52 с (1H, NH), 2.72 к (2H, H₂C², ³*J*_{HH} 7.1), 3.48 д (2H, H₂C¹P, ²*J*_{HP} 7.9), 7.42–7.58 м (6Н, мета-СН + пара-СН), 7.72-7.88 м (4Н, *орто*-СН). Спектр ЯМР ${}^{13}C{}^{1}H{}$ (100.61 МГц), δ_{C} , м. д. (*J*, Гц): 14.71 (С³), 45.84 д (С², ³*J*_{CP} 13.9), 48.96 д (С¹, ¹*J*_{CP} 80.5), 128.42 д (мета-СН, ³*J*_{CP} 11.6), 130. 93 д (*opmo*-CH, ²*J*_{CP} 9.3), 131.74 д (*napa*-CH, ⁴*J*_{CP} 2.5), 131.84 д (*unco*-C, ¹*J*_{CP} 97.7). Спектр ЯМР ³¹Р{¹H} (161.97 МГц): б_Р 29.1 м. д. Масс-спектр, m/z ($I_{\text{отн}}$, %): 260 (10) $[M + \text{H}]^+$, 282 (15) $[M + \text{Na}]^+$, 519 (100) [2*M* + H]⁺, 541 (50) [2*M* + Na]⁺. Найдено, %: С 69.46; Н 6.88; N 5.39; Р 11.81. С₁₅Н₁₈NOP. Вычислено, %: С 69.48; Н 7.00; N 5.40; Р 11.95.

N-Изопропил-N-(дифенилфосфинилметил)амин (6). Смесь 4.45 г (22 ммоль) дифенилфосфинистой кислоты [14], 0.36 г (22 ммоль) параформа и 1.30 г (1.9 мл, 22 ммоль) изопропиламина в 20 мл безводного толуола нагревали в запаянной ампуле при 120°С в течение 10 ч, затем упаривали в вакууме. Остаток (5.65 г) растворяли в 10 мл 2.5%-ной соляной кислоты, раствор промывали бензолом (3×10 мл), подщелачивали до pH 10–12 и экстрагировали CHCl₃ (3×10 мл). Объединенный экстракт промывали водой (2×10 мл), сушили Na₂SO₄ и упаривали в вакууме. Остаток очищали на колонке с SiO₂ с использованием градиентных систем растворителей CHCl₃-МеОН (20:0→20:0.5). Выход 3.37 г (57%), т. пл. 103–104°С. Спектр ЯМР ¹Н (400.13 МГц), б, м. д. (*J*, Гц): 1.04 д (6Н, Н₃С³ + H_3C^4 , ${}^3J_{HH}$ 6.2), 1.56 c (1H, NH), 2.83 center (1H, C^2 , ³*J*_{HH} 6.2), 3.46 д (2H, H₂C¹P, ²*J*_{HP} 8.7), 7.32–7.62 м (6Н, мета-СН + пара-СН), 7.70-7.95 м (4Н, *орто-*СН). Спектр ЯМР ${}^{13}C{}^{1}H{}$ (100.61 МГц), δ_{C} , м. д. (*J*, Гц): 22.30 (2С, С³+С⁴), 46.85 д (С¹, ¹*J*_{СР} 81.4), 50.35 д (С², ³J_{СР} 13.8), 128.41 д (мета-СН, ³*J*_{CP} 11.6), 130. 93 д (*орто*-СН, ²*J*_{CP} 9.2), 131.74 д (*napa*-CH, ${}^{4}J_{CP}$ 2.7), 131.84 д (*unco*-C, ${}^{1}J_{CP}$ 98.3). Спектр ЯМР ${}^{31}P{}^{1}H$ (161.97 МГц): δ_{P} 29.6 м. д. Масс-спектр, m/z ($I_{\text{отн}}$, %): 274 (35) [M + H]⁺, 296 $(28) [M + Na]^+, 547 (100) [2M + H]^+, 569 (40) [2M +$

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 92 № 12 2022

Na]⁺. Найдено, %: С 70.21; Н 7.30; N 5.09; Р 11.21. С₁₆Н₂₀NOP. Вычислено, %: С 70.31; Н 7.38; N 5.12; Р 11.33.

N-Бутил-N-(дифенилфосфинилметил)амин (7) получали аналогично из 4.04 г (20 ммоль) дифенилфосфинистой кислоты [14], 0.60 г (20 ммоль) параформа и 1.46 г (2 мл, 20 ммоль) бутиламина в 18 мл безводного толуола. Выход 3.24 г (56%), т. пл. 66-67°С. Спектр ЯМР ¹Н (400.13 МГц), б, м. д. (*J*, Гц): 0.87 т (3H, H₃C⁵, ³J_{HH} 7.3), 1.28 секстет (2H, H₂C⁴, ³J_{HH} 7.4), 1.43 квинтет (2H, H₂C³, ³J_{HH} 7.4), 2.68 т (2H, H₂C², ³J_{HH} 7.1), 3.48 д (2H, H₂C¹P, $^{2}J_{\rm HP}$ 7.8), 7.42–7.60 м (6H, *мета*-CH + *napa*-CH), 7.75-7.88 м (4H, *орто*-CH). Спектр ЯМР ¹³С{¹H} (100.61 МГц), _бс, м. д. (*J*, Гц): 13.93 (С⁵), 20.22 (C⁴), 31.67 (C³), 49.40 д (C¹, ¹*J*_{CP} 80.6), 51.49 д (C², ³*J*_{CP} 13.5), 128.65 д (*мета*-СН, ³*J*_{CP} 11.6), 131. 18 д (*opmo*-CH, ²*J*_{CP} 9.3), 131.99 д (*napa*-CH, ⁴*J*_{CP} 2.7), 132.00 д (*unco-*C, ¹*J*_{CP} 97.8). Спектр ЯМР ³¹Р{¹H} (161.97 МГц): бр 29.4 м. д. Масс-спектр, *m/z* (*I*_{отн}, %): 288 (25) $[M]^+$, 310 (30) $[M + \text{Na}]^+$, 326 (9) [M +K]⁺, 575 (100) [2*M*]⁺, 597 (40) [2*M* + Na]⁺. Найдено, %: С 71.09; Н 7.69; N 4.70; Р 10.83. С₁₇Н₂₂NOP. Вычислено, %: С 71.06; Н 7.72; N 4.87; Р 10.78.

N-Изобутил-N-(дифенилфосфинилметил)амин (8) получали аналогично из 4.00 г (20 ммоль) дифенилфосфинистой кислоты [14], 0.60 г (20 ммоль) параформа и 1.46 г (2 мл, 20 ммоль) изобутиламина в 18 мл безводного толуола. Выход 3.20 г (55%), т. пл. 70-71°С Спектр ЯМР ¹Н (400.13 МГц), δ, м. д. (*J*, Гц): 0.86 д (6Н, H₃C⁴ + H_3C^5 , ${}^3J_{HH}$ 6.6), 1.64 c (1H, HN), 1.71 center (1H, HC³, ³*J*_{HH} 6.7), 2.49 д (2H, H₂C², ³*J*_{HH} 6.8), 3.48 д $(2H, H_2C^1P, {}^2J_{HP} 8.0), 7.44-7.60 \text{ M} (6H, mema-CH +$ пара-СН), 7.76-7.89 м (4Н, орто-СН). Спектр ЯМР ¹³С{¹H} (100.61 МГц), б_с, м. д. (*J*, Гц): 20.31 $(2C, C^4+C^5), 27.91 (C^3), 49.50 \ \text{д} (C^1, {}^1J_{CP} 80.9), 59.60$ д (С², ³J_{CP} 13.4), 128.45 д (мета-СН, ³J_{CP} 11.6), 131.10 д (орто-СН, ²J_{СР} 9.2), 131.79 д (пара-СН, ⁴*J*_{CP} 2.8), 131.94 д (*unco*-C, ¹*J*_{CP} 97.5). Спектр ЯМР ³¹Р{¹H} (161.97 МГц): б_Р 29.1 м. д. Масс-спектр, m/z (I_{0TH} , %): 310 (12) [M + Na]⁺, 575 (36) [2M + H]⁺, 597 (100) [2*M* + Na]⁺, 884 (12) [3*M* + Na]⁺. Найдено, %: С 71.10; Н 7.75; N 5.01; Р 10.63. С₁₇Н₂₂NOP. Вычислено, %: С 71.06; Н 7.72; N 4.87; Р 10.78.

N-Октил-N-(дифенилфосфинилметил)амин (9). Смесь 1.50 г (7.4 ммоль) дифенилфосфинистой кислоты [14], 0.22 г (7.4 ммоль) параформа

и 0.96 г (1.2 мл, 7.4 ммоль) октиламина в 7 мл безводного толуола нагревали в запаянной ампуле при 120°С в течение 10 ч, затем упаривали в вакууме. Остаток (2.47 г) очищали на колонке с SiO₂ с использованием градиентных систем растворителей СНСІ₂-МеОН (20:0→20:0.5). Выход 0.90 г (35%), т. пл. 55–56°С. Спектр ЯМР ^{1}H (400.13 МГц), б, м. д. (*J*, Гц): 0.88 т (3H, H₃C⁹, ³*J*_{HH} 6.8), 1.15-1.35 м (10H, H₂C⁴⁻⁸), 1.44 квинтет (2H, H₂C³, ³J_{HH} 6.4), 2.66 т (2H, H₂C², ³J_{HH} 7.1), 3.48 д $(2H, H_2C^1, {}^3J_{HP}, 7.9), 7.40-7.60 \text{ M} (6H, mema-CH +$ пара-СН), 7.72-7.90 (4Н, орто-СН). Спектр ЯМР ¹³С{¹H} (100.61 МГц), б_с, м. д. (*J*, Гц): 13.94 (С⁹), 22.48 (C⁸), 26.90 (C⁷), 29.08 (C⁶), 29.25 (C⁵), 29.46 (C⁴), 31.64 (C³), 49.28 д (C¹), ¹*J*_{CP} 80.6), 51.62 д (C², ³*J*_{CP} 13.4), 128.44 д (*мета*-CH, ³*J*_{CP} 11.6), 131.03 д (*opmo*-CH, ²*J*_{CP} 9.2), 131.75 д (*napa*-CH, ⁴*J*_{CP} 2.5), 132.12 д (*unco-*С, ¹*J*_{СР} 97.4). Спектр ЯМР ³¹Р{¹H} (161.97 МГц): бр 30.8 м. д. Масс-спектр, *m/z* (*I*_{отн}, %): 344 (42) $[M]^+$, 366 (75) $[M + \text{Na}]^+$, 382 (6) [M +К]⁺. Найдено, %: С 73.65; Н 8.74; N 4.07; Р 9.23. С₂₁Н₃₀NOP. Вычислено, %: С 73.44; Н 8.80; N 4.08; P 9.02.

N-(Дифенилфосфинилметил)-N-этилдифенилфосфинилацетамид (1). а. Смесь 1.00 г (3.8 ммоль) дифенилфосфинилуксусной кислоты 11 [15] и 0.98 г (3.8 ммоль) N-(дифенилфосфинилметил)-N-этиламина 5 в 8 мл абс. CH₂Cl₂ перемешивали при комнатной температуре 10 мин. К полученному раствору при 25-40°С прибавляли по каплям 0.55 г (4.4 ммоль) диизопропилкарбодиимида. Смесь перемешивали 8 ч, выпавший осадок диизопропилмочевины отфильтровывали. Фильтрат промывали 10 мл 2.5%-ной соляной кислоты и 10 мл воды, сушили Na₂SO₄ и упаривали в вакууме. Остаток (1.99 г) очищали на колонке с SiO₂ с использованием градиентных систем растворителей: CHCl₃-MeOH (20:0→20:0.5). Выход 0.76 г (40%), т. пл. 198–199°С. Спектр ЯМР ¹Н (500.13 МГц), δ, м. д. (J, Гц): конформер (М) 56.5% + конформер (m) 43.5%, 0.76 т [3H, H_3C^4 (m), ${}^3J_{HH}$ 7.1], 1.19 т [3H, H₃C⁴ (M), ³J_{HH} 7.1], 3.19 к [2H, H₂C³ (m), ${}^{3}J_{HH}$ 7.1], 3.44 μ [2H, H₂C¹ (M), ${}^{2}J_{HP}$ 15.0], 3.63 д [2H, H₂C¹ (m), ²J_{HP} 14.4], 3.75 к [2H, H₂C³ (M), ${}^{3}J_{\rm HH}$ 7.1], 4.38 д [2H, H₂C² (M), ${}^{2}J_{\rm HP}$ 5.8], 4.79 д [2H, $H_2C^2(m)$, $^2J_{HP}3.0$], 7.32–7.65 M [8H, *mema*-CH (M) + 8H, *mema*-CH (m) + 4H, *napa*-CH (M) + 4H, *napa*-CH (m)], 7.65–8.08 м [8H, *орто*-CH (M) + 8H,

орто-СН (т)]. Спектр ЯМР ¹³С{¹H} (125.77 МГц), δ_C, м. д. (*J*, Γц): конформер (М) 56.5% + конформер (m) 43.5%, 11.82 [C⁴ (m)], 13.27 [C⁴ (M)], 36.97 д [C¹ (M), ¹*J*_{CP} 63.6], 38.69 д [C¹ (m), ¹*J*_{CP} 59.4], 43.93 д [C² (M), ${}^{1}J_{CP}$ 95.7], 44.60 д [C² (m), ${}^{1}J_{CP}$ 76.8], 48.05 [C³ (M)], 48.65 [C³ (m)], 128.59 д [мета-CH, PhP¹ (M), ³*J*_{CP} 12.4], 128.60 д [мета-CH, PhP² (M), ³*J*_{CP} 11.7], 128.61 д [*мета*-CH, PhP¹ (m), ³*J*_{CP} 12.3], 129.04 д [мета-CH, PhP² (m), ³J_{CP} 11.6], 130.81 д [*unco*-C, PhP² (m), ${}^{1}J_{CP}$ 96.5], 130.99 д [*opmo*-CH, PhP¹ (m), ²*J*_{CP} 9.8], 131.01 д [*unco*-C, PhP² (M), ¹*J*_{CP} 98.2], 131.09 д [*opmo*-CH, PhP¹ (M), ²*J*_{CP} 9.9], 131.13 д [*opmo*-CH, PhP² (M), ²*J*_{CP}9.6], 131.38 д [*opmo*-CH, PhP² (m), ²J_{CP} 9.3], 131.94 д [*unco*-C, PhP¹ (m), ${}^{1}J_{CP}$ 102.9], 132.05 д [*napa*-CH, PhP¹ (M), ${}^{4}J_{CP}$ 2.8], 132.12 д [*napa*-CH, PhP² (M), ⁴J_{CP} 2.8], 132.17 д [*napa*-CH, PhP¹ (m), ⁴J_{CP} 2.8], 132.28 д [*unco*-C, PhP¹ (M), ¹*J*_{CP} 103.5], 132.56 д [*napa*-CH, PhP² (m), ⁴*J*_{CP} 2.7], 165.17* д [С=О (М1), ²*J*_{CP} 5.0], 165.18* д [C=O (M2), ${}^{2}J_{CP}$ 5.2], 165.78 д [C=O (m), ${}^{2}J_{CP}$ 5.4]. Здесь и далее звездочкой обозначены частично перекрывающиеся сигналы. Спектр ЯМР ³¹Р{¹H} (202.47 МГц), δ_{P} , м. д.: конформер (М) 56.5% + конформер (m) 43.5%, 25.74 Р² (m), 27.55 Р² (M), 29.28 Р¹ (М), 30.14 Р¹ (m). Масс-спектр, *m/z* (*I*_{отн}, %): 502 (20) [*M* + H]⁺, 524 (100) [*M* + Na]⁺. Найдено, %: С 69.41; Н 5.80; N 2.84; Р 12.46. С₂₉Н₂₉NO₃Р₂. Вычислено, %: С 69.45; Н 5.83; N 2.79; Р 12.35.

б. Получали по описанной ранее методике [18] из 1.34 г (5.2 ммоль) N-(дифенилфосфинилметил)-N-этиламина 5, 0.31 г (0.2 мл, 2.3 ммоль) PCl₃, 1.46 г (2.0 мл, 14.5 ммоль) Et₃N, 1.50 г (5.8 ммоль) дифенилфосфинилуксусной кислоты 11 [15] и 18 мл абс. CHCl₃. Получено 1.63 г (62%) амида 1 с т. пл. 190–192°С. После очистки на колонке с SiO₂ с использованием градиентных систем растворителей CHCl₃–МеОН (20:0–20:0.5) выход 1.29 г (49%), т. пл. 198.5–200°С.

N-Изопропил-N-(дифенилфосфинилметил)дифенилфосфинилацетамид (2) получали аналогично (способ *a*) из 1.05 г (4.0 ммоль) дифенилфосфинилуксусной кислоты 11 [15], 1.09 г (4.0 ммоль) N-изопропил-N-(дифенилфосфинилметил)амина 6, 0.58 г (4.6 ммоль) диизопропилкарбодиимида и 8 мл абс. CH₂Cl₂. Остаток (2.19 г) очищали на колонке с SiO₂ с использованием градиентных систем растворителей CHCl₃–MeOH (20:0–20:0.5). Выход 1.36 г (66%), т. пл. 213–215°С. Спектр ЯМР

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 92 № 12 2022

¹Н (500.13 МГц), б, м. д. (*J*, Гц): конформер (М) 60.0% + конформер (m) 40.0%, 0.92 д [6H, H₃C⁴ + H_3C^5 (m), ${}^3J_{HH}$ 6.8], 1.15 π [6H, $H_3C^4 + H_3C^5$ (M), ³*J*_{HH} 6.8], 3.54 д [2H, H₂C¹ (M), ²*J*_{HP} 14.9], 3.68 д $[2H, H_2C^1 (m), {}^2J_{HP} 14.3], 3.91 \text{ септет } [1H, HC^3]$ (m), ${}^{3}J_{HH}$ 6.8], 4.32* π [2H, H₂C²N (M), ${}^{2}J_{HP}$ 6.6], 4.35* септет [1H, HC³ (M), ³J_{HH} 6.6], 4.79 д [2H, H₂C²N (m), ²J_{HP} 2.8], 7.35–7.62 м [8H, *мета-*СН (M) + 8H, *mema*-CH (m) + 4H, *napa*-CH (M) + 4H, *пара*-СН (m)], 7.68–7.98 м [8H, *орто*-СН (M) + 8H, *орто-*СН (т)]. Спектр ЯМР ¹³С{¹H} (125.77 МГц), δ_C, м. д. (*J*, Гц): конформер (М) 60.0% + конформер (m) 40.0%, 19.58 [2C, C^4+C^5 (m)], 21.08 [2C, C^4+C^5 (M)], 37.79 μ [C¹(M), ¹*J*_{CP} 62.6], 39.64 μ [C¹(m), ¹*J*_{CP} 60.2], 42.65 $\exists [C^2(M), \overline{}^1J_{CP}, \overline{75.3}], 47.41 \exists [C^2(M), \overline{75.3}], 47.41 a [C$ ¹*J*_{CP} 73.8], 50.10 [C³ (M)], 51.85 [C³ (m)], 128.39 д $[mema-CH, PhP^{2}(M), {}^{3}J_{CP}11.8], 128.57* \exists [mema-CH],$ PhP¹ (m), ³*J*_{CP} 12.1], 128.64* д [*мета*-CH, PhP¹ (M), ³*J*_{CP} 12.2], 128.97 д [*мета*-CH, PhP² (m), ³*J*_{CP} 11.5], 130.98* д [*opmo*-CH, PhP¹ (m), ²*J*_{CP} 9.8], 131.08* д [*opmo*-CH, PhP¹ (M), ²*J*_{CP}9.7], 131.31* д [*opmo*-CH, PhP² (m), ²*J*_{CP} 9.1], 131.35* д [*opmo*-CH, PhP² (M), ²J_{CP} 9.4], 131.82 д [*пара*-СН, PhP² (M), ⁴J_{CP} 2.4], 131.92 д [*unco*-C, PhP² (M), ¹*J*_{CP} 97.9], 132.09 д [2C, *пара*-СН, PhP¹ (M+m), ⁴*J*_{CP} 2.4], 132.12 д [*unco*-C, PhP¹ (m), ¹*J*_{CP} 102.7], 132.40 д [*пара*-CH, PhP² (m), ${}^{4}J_{CP}$ 2.5], 132.41 \exists [*unco*-C, PhP¹ (M), ${}^{1}J_{CP}$ 103.2], 165.21 д [C=O (M), ²*J*_{CP} 4.6], 166.25 д [C=O (m), $^{2}J_{CP}$ 5.2]. Спектр ЯМР $^{31}P\{^{1}H\}$ (202.47 МГц), δ_{P} , м. д.: конформер (М) 60.0% + конформер (m) 40.0%, 24.87 P² (m), 27.55 P² (M), 29.05 P¹ (M), 29.84 P¹ (m). Macc-спектр, m/z ($I_{\text{отн}}$, %): 516 (19) $[M + \text{H}]^+$, 538 (100) $[M + Na]^+$, 554 (10) $[M + K]^+$, 1053 (25) [2*M* + Na]⁺. Найдено, %: С 69.91; Н 5.90; N 2.77; Р 11.87. С₃₀Н₃₁NO₃Р₂. Вычислено, %: С 69.89; Н 6.06; N 2.72; P 12.02.

N-Бутил-N-(дифенилфосфинилметил)дифенилфосфинилацетамид (3) получали аналогично (способ *a*) из 1.02 г (3.9 ммоль) дифенилфосфинилуксусной кислоты **11** [15], 0.21 г (1.7 ммоль) 1.12 г (3.9 ммоль) N-бутил-N-(дифенилфосфинилметил)амина 7, 0.57 г (4.5 ммоль) диизопропилкарбодиимида и 8 мл абс. CH₂Cl₂. Остаток (2.16 г) перекристаллизовывали из смеси метанол-диэтиловый эфир (1:1). Выход 1.30 г (63%), т. пл. 194–195°С. Спектр ЯМР ¹Н (600.22 МГц), δ , м. д. (*J*, Гц): конформер (А) 50.0% + конформер (В) 50.0%, 0.68 г [3H, H₃C⁶ (A), ³*J*_{HH} 7.3], 0.87 г [3H, $H_{3}C^{6}$ (В), ${}^{3}J_{HH}$ 7.3], 0.98 секстет [2H, $H_{2}C^{5}$ (А), ${}^{3}J_{HH}$ 7.5], 1.13 квинтет [2H, H₂C⁴ (A), ³J_{HH} 7.5], 1.25 секстет [2H, H₂C⁵ (B), ³J_{HH} 7.5], 1.54 квинтет [2H, H_2C^4 (B), ${}^{3}J_{HH}$ 7.7], 3.09 T [2H, H_2C^3N (A), ${}^{3}J_{HH}$ 7.5], 3.42 д [2H, H₂C¹P¹ (A), ²J_{HP} 15.1], 3.60 т [2H, H₂C³N (B), ${}^{3}J_{HH}$ 7.9], 3.68 \exists [2H, H₂C¹P¹ (B), ${}^{3}J_{HP}$ 14.3], 4.39 д [2H, H₂C²P² (B), ²*J*_{HP} 5.6], 4.82 д [2H, H₂C²P² (A), ${}^{2}J_{HP}$ 2.2], 7.35–7.61 M [8H, *mema*-CH (A) + 8H, mema-CH (B) + 4H, napa-CH (A) + 4H, napa-CH (В)], 7.67–7.87 м [8Н, орто-СН (А) + 8Н, орто-СН (B)]. CIERT MAP ${}^{13}C{}^{1}H{}$ (150.925 MFu), δ_C , M. д. (*J*, Гц): конформер (А) 50.0% + конформер (В) 50.0%, 13.72 [C⁶ (A)], 13.75 [C⁶ (B)], 19.69 [C⁵ (A)], 19.94 [C⁵ (B)], 28.78 [C⁴ (A)], 30.07 [C⁴ (B)], 36.99 д [C¹ (A), ¹*J*_{CP} 62.0], 38.80 д [C¹ (B), ¹*J*_{CP} 59.9], 45.06 д [C² (B), ¹*J*_{CP} 76.3], 48.16 [C³ (A)], 48.62 д [C² (A), ¹*J*_{CP} 74.9], 49.41 [C³ (B)], 128.57* д [мета-CH, PhP² (A), ³*J*_{CP} 12.3], 128.61* д [2С, *мета*-СН, PhP¹ (A + B), ³*J*_{CP} 12.2], 129.03 д [мета-СН, PhP² (B), ³*J*_{CP} 11.6], 131.00 д [*opmo*-CH, PhP² (A), ²*J*_{CP} 9.8], 131.12 д [*opmo*-CH, PhP¹ (A), ²*J*_{CP} 9.5], 131.16 д [*opmo*-CH, PhP¹ (B), ²*J*_{CP} 9.7], 131.22 д [*unco*-C, PhP² (B), ¹*J*_{CP} 99.4], 131.32 д [*opmo*-CH, PhP² (B), ⁴*J*_{CP} 9.3], 131.38 д [*unco*-C, PhP² (A), ¹*J*_{CP} 99.6], 131.97 д [*unco*-C, PhP¹ (B), ¹*J*_{CP} 103.1], 132.05 д [*napa*-CH, PhP² (A), ⁴*J*_{CP} 2.1], 132.12 д [*napa*-CH, PhP¹ (A), ⁴*J*_{CP} 2.5], 132.15 д [*napa*-CH, PhP¹ (B), ⁴J_{CP} 2.4], 132.31 д [*unco*-C, PhP¹ (A), ¹*J*_{CP} 105.0], 132.56 д [*napa*-CH, PhP² (B), ⁴*J*_{CP} 2.4], 165.25–165.35 м [C=O (A)], 165.87 д [С=О (В), ²*J*_{СР} 5.7]. Спектр ЯМР ³¹Р{¹H} (202.47 МГц), δ_р, м. д.: конформер (А) 50.0% + конформер (B) 50.0%, 27.34, Р² (A), 29.42, Р² (B), 30.82, Р¹ (А), 31.66, Р¹ (В). Масс-спектр, *m/z* (*I*_{отн}, %): 530 $(100) [M + H]^+, 552 (98) [M + Na]^+, 568 (60) [M +$ K]⁺, 1081 (25) [2*M* + Na]⁺. Найдено, %: С 70.13; Н 6.19; N 2.63; Р 11.44. С₃₁Н₃₃NO₃P₂. Вычислено, %: C 70.31; H 6.28; N 2.65; P 11.70.

N-Октил-N-(дифенилфосфинилметил)дифенилфосфинилацетамид (4) получали аналогично (способ *a*) из 1.09 г (4.2 ммоль) дифенилфосфинилуксусной кислоты **11** [15], 1.44 г (4.2 ммоль) N-октил-N-(дифенилфосфинилметил)амина **9**, 0.61 г (4.8 ммоль) диизопропилкарбодиимида и 8 мл абс. CH₂Cl₂. Остаток (2.58 г) очищали на колонке с SiO₂ с использованием градиентных систем растворителей CHCl₃–МеОН (20:0→20:0.5). Выход 1.28 г (52%), т. пл.125–127°С. Спектр ЯМР ¹Н (600.22 МГц), δ , м. д. (*J*, Гц): конформер (A)

50.0% + конформер (В) 50.0%, 0.81 т [3H, H₃C¹⁰ (A), ${}^{3}J_{\text{HH}}$ 7.3], 0.82 T [3H, H₃C¹⁰ (B), ${}^{3}J_{\text{HH}}$ 7.3], 0.88– 1.30 м [22H, H₂C⁴ (A) + H₂C⁵⁻⁹ (A + B)], 1.52 квинтет [2H, H_2C^4 (B), ${}^{3}J_{HH}$ 7.5], 3.04 т [2H, $H_2C^{3}N$ (B), ³*J*_{HH} 8.0], 3.39 д [2H, H₂C¹P¹ (A), ²*J*_{HP} 15.0], 3.56 т [2H, H₂C³N (A), ²J_{HH} 7.6], 3.65 д [2H, H₂C¹P¹ (B), ${}^{2}J_{\rm HP}$ 14.3], 4.34 μ [2H, H₂C²P² (A), ${}^{2}J_{\rm HP}$ 5.6], 4.78 д [2H, $H_2C^2P^2$ (B), ² J_{HP} 3.1], 7.32–7.52 м [8H, меma-CH (A) + 8H, mema-CH (B) + 4H, napa-CH (A) + 4Н, пара-СН (В)], 7.58-7.82 м [8Н, орто-СН (A) + 8H, opmo-CH (B)]. Спектр $\text{ЯМР}^{-13}C\{^{1}H\}$ (150.925 МГц), δ_C, м. д. (*J*, Гц): конформер (A) 50.0% + конформер (В) 50.0%, 14.10 [2C, C¹⁰ (A+B)], 22.56 [C⁹ (A)], 22.58 [C⁹ (B)], 26.45 [C⁵ (A)], 26.64 [C⁵ (B)], 26.67 [C⁴ (A)], 27.99 [C⁴ (B)], 29.06 [C⁶ (A)], 29.14 [C⁶ (B)], 29.17 [C⁸ (A)], 29.20 [C⁸ (B)], 31.70 [C⁷ (A)], 31.73 [C⁷ (B)], 36.92 д [C¹ (A), ²*J*_{CP} 63.4], 38.72 д [C¹ (B), ²*J*_{CP} 59.4], 45.05 д $[C^{2}(A), {}^{2}J_{CP} 76.7], 48.36 \, \mu [C^{2}(B), {}^{2}J_{CP} 75.0], 48.40$ [C³ (B)], 49.58 [C³ (A)], 128.52* д [мета-CH, PhP¹ (A), ${}^{3}J_{CP}$ 12.3], 128.55* \exists [*mema*-CH, PhP² (A), ${}^{3}J_{CP}$ 11.8], 128.56* д [мета-CH, PhP[!] (B), ³J_{CP} 12.1], 128.98 д [мета-CH, PhP² (В), ³J_{CP} 11.5], 130.81 д [*unco*-C, PhP² (B), ³J_{CP} 96.6], 130.92 д [*opmo*-CH, PhP² (A), ³J_{CP} 9.8], 131.00 д [*unco*-C, PhP² (A), ³*J*_{CP} 98.2], 131.06* д [*opmo*-CH, PhP¹ (A), ³*J*_{CP} 9.6], 131.08* д [*opmo*-CH, PhP¹ (B), ³J_{CP} 9.9], 131.24 д [*opmo*-CH, PhP² (B), ³J_{CP} 9.2], 131.92 д [*unco*-C, PhP¹ (B), ¹*J*_{CP} 102.7], 132.00 д [*пара*-CH, PhP² (A), ${}^{4}J_{CP}$ 2.8], 132.08* \exists [napa-CH, PhP¹ (A), ${}^{4}J_{CP}$ 3.5], 132.10* д [*napa*-CH, PhP¹ (B), ⁴J_{CP} 3.3], 132.25 д [*unco*-C, PhP¹ (A), ¹J_{CP} 103.6], 132.52 д [*napa*-CH, PhP² (B), ${}^{4}J_{CP}$ 2.7], 165.22* π [C=O (A1), ${}^{2}J_{CP}$ 5.1], 165.24* д [C=O (A2), ²*J*_{CP} 5.0], 165.83 д [C=O (B), $^{2}J_{CP}$ 5.4]. Спектр ЯМР $^{31}P{^{1}H}$ (202.47 МГц), δ_{P} , м. д.: конформер (A) 50.0% + конформер (B) 50.0%, 25.76, P² (A), 27.81, P² (B), 29.21, P¹ (A), 30.01, P¹ (В). Масс-спектр, *m/z* (*I*_{отн}, %): 586 (100) [*M*]⁺, 587 (45) $[M + H]^+$, 588 (10) $[M + 2H]^+$, 608 (10) [M +Na]⁺. Найдено, %: С 71.95; Н 7.16; N 2.43; Р 10.64. С₃₅Н₄₁NO₃Р₂. Вычислено, %: С 71.78; Н 7.06; N 2.39; P 10.58.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Артюшин Олег Иванович, ORCID: https://orcid. org/0000-0001-6333-5973

Царькова Ксения Валерьевна, ORCID: https:// orcid.org/0000-0001-8730-0521 Бондаренко Наталья Александровна, ORCID: https://orcid.org/0000-0002-6704-6957

ФИНАНСОВАЯ ПОДДЕРЖКА

Работа выполнена в рамках государственного задания Института элементоорганических соединений им. А.Н. Несмеянова РАН (№ 075-00697-22-00) при поддержке Министерства науки и высшего образования России, а также в рамках исследований Национального исследовательского центра «Курчатовский институт»–ИРЕА. Изучение свойств полученных соединений проведено с использованием научного оборудования Центра коллективного пользования Национального исследовательского центра «Курчатовский институт»– ИРЕА при финансовой поддержке Министерства науки и высшего образования России (соглашение № 075-15-2022-1157 от 16.08.2022).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

ДОПОЛНИТЕЛЬНЫЕ МАТЕРИАЛЫ

Дополнительные материалы для этой статьи доступны по doi 10.31857/S0044460X22120071 для авторизованных пользователей.

СПИСОК ЛИТЕРАТУРЫ

- Myasoedov B.F., Kalmykov S.N. // Mendeleev Commun. 2015. Vol. 25. N 5. P. 319. doi 10.1016/j. mencom.2015.09.001
- Аляпышев М.Ю., Бабаин В.А., Устынюк Ю.А. // Усп. хим. 2016. Т. 85. № 9. С. 943; Alyapyshev M.Yu., Babain V.A., Ustynyuk Yu.A. // Russ. Chem. Rev. 2016. Vol. 85. № 9. Р. 943. doi 10.1070/RCR4588
- Leoncini A., Huskens J., Verboom W. // Chem. Soc. Rev. 2017. Vol. 46. P. 7229. doi 10.1039/C7CS00574A
- Wilson A.M., Bailey P.J., Tasker P.A. // Chem. Soc. Rev. 2014. Vol. 43. P. 123. doi 10.1039/C3CS60275C
- Bhattacharyya A., Mohapatra P.K. // Radiochim. Acta. 2019. Vol. 107. P. 931. doi 10.1515/ract-2018-3064
- Myasoedov B.F., Chmutova M.K., Kochetkova N.E., Koiro O.E., Pribylova G.A., Nesterova N.P., Medved T.Y., Kabachnik M.I. // Solvent Extr. Ion Exch. 1986. Vol. 4. N 1. P. 61. doi 10.1080/07366298608917853
- Шарова Е.В., Артюшин О.И., Одинец И.Л. // Усп. хим. 2014. Т. 83. № 2. С. 95; Sharova E.V., Artyushin O.I., Odinets I.L. // Russ. Chem. Rev. 2014. Vol. 83. N 2. P. 95. doi 10.1070/ RC2014v083n02ABEH004384

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 92 № 12 2022

- Чмутова М.К., Литвина М.Н., Прибылова Г.А., Иванова Л.А., Смирнов И.В., Шадрин А.Ю., Мясоедов Б.Ф. // Радиохимия. 1999. Т. 41. № 4. С. 331.
- Туранов А.Н., Карандашев В.К., Яркевич А.Н., Сафронова З.В., Харитонов А.В., Радыгина Н.И., Федосеев А.М. // Радиохимия. 2004. Т. 46. № 5. С. 427; Turanov A.N., Karandashev V.K., Yarkevich A.N., Safronova Z.V., Kharitonov A.V., Radygina N.I., Fedoseev A.M. // Radiochemistry. 2004. Vol. 46. N 5. P. 461. doi 10.1007/s11137-005-0010-0
- Туранов А.Н., Карандашев В.К., Яркевич А.Н. // Радиохимия. 2012. Т. 54. № 5. С. 439; Turanov A.N., Karandashev V.K., Yarkevich A.N. // Radiochemistry. 2012. Vol. 54. N 5. P. 477. doi 10.1134/ S1066362212050104
- Туранов А.Н., Карандашев В.К., Яркевич А.Н. // Радиохимия. 2016. Т. 58. № 4. С. 336; Turanov A.N., Karandashev V.K., Yarkevich A.N. // Radiochemistry. 2016. Vol. 58. N 4. P. 389. doi 10.1134/ S106636221604007X
- Туранов А.Н., Карандашев В.К., Артюшин О.И., Перегудов А.С., Хвостиков В.А., Бондаренко Н.А. // ЖНХ. 2020. Т. 65. № 6. С. 837. doi 10.31857/ S0044457X20060240; Turanov A.N., Karandashev B.K., Artyushin O.I., Khvostikov V.A., Bondarenko N.A. // Russ. J. Inorg. Chem. 2022. Vol. 92. N 6. P. 905. doi 10.1134/S0036023620060248
- Туранов А.Н., Карандашев В.К., Хвостиков В.А., Царькова К.В., Шарова Е.В., Артюшин О.И., Бондаренко Н.А. // ЖОХ. 2022. Т. 92. № 6. С. 973.

doi 10.31857/S0044460X22060166; *Turanov A.N., Karandashev B.K., Khvostikov V.A., Tcarkova K.V., Sharova E.V., Artyushin O.I., Bondarenko N.A. //* Russ. J. Gen. Chem. 2022. Vol. 92. N 6. P. 1049. doi 10.1134/ S1070363222060160

- Бондаренко Н.А., Харламов А.В., Вендило А.Г. // Изв. АН. Сер. хим. 2009. № 9. С. 1814; Bondarenko N.A., Kharlamov A.V., Vendilo A.G. // Russ. Chem. Bull. 2009. Vol. 58. N 9. P. 1872. doi 10.1007/s11172-009-0256-3
- Евреинов В.И., Сафронова З.В., Яркевич А.Н., Харитонов А.В., Бондаренко Н.А., Цветков Е.Н. // ЖОХ. 1999. Т. 69. № 7. С. 1088; Evreinov V.I., Safronova Z.V., Yarkevich A.N., Kharitonov A.V., Bondarenko N.A., Tsvetkov E.N. // Russ. J. Gen. Chem. 1999. Vol. 69. N 7. P. 1047.
- Keglevich G., Balint E. // Molecules. 2012. Vol. 17. N 11. P. 12821. doi 10.3390/molecules171112821
- Tripolszky A., Balint E., Keglevich G. // Phosphorus, Sulfur, Silicon, Relat. Elem. 2019. Vol. 194. N 1–4. P. 345. doi 10.1080/10426507.2018.1541898
- Бондаренко Н.А., Белусь С.К., Артюшин О.И., Перегудов А.С. // ЖОХ. 2020. Т. 90. № 12. С. 1867. doi 10.31857/S00444460X20120094; Bondarenko N.A., Belus' S.K., Artyushin O.I., Peregudov A.S. // Russ. J. Gen. Chem. 2020. Vol. 90. N 12. P. 2273. doi 10.1134/ S1070363220120099
- Гордон А.Д., Форд Р.А. Спутник химика. М.: Мир, 1976. 541 с.; Gordon A.J., Ford R.A., The Chemists Companion: A Handbook of Practical Date, Techniques and References. New York: Wiley, 1972.

Diphenyl(N-alkyl-N-diphenylphosphinylmethyl)carbamoylmethylphosphine Oxides: Synthesis and NMR Spectroscopy Study

O. I. Artyushin^a, K. V. Tcarkova^{b,c}, A. S. Peregudov^a, N. A. Bondarenko^{b,c,*}

^a A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, 119991 Russia ^b Institute of Chemical Reagents and High Purity Chemical Substances of National Research Centre "Kurchatov Institute", Moscow, 107076 Russia

> ^cNational Research Center "Kurchatov Institute", Moscow, 123098 Russia *e-mail: bond039@mail.ru

> Received October 5, 2022; revised October 31, 2022; accepted November 3, 2022

Modified tridentate carbamoylmethylphosphine oxides $Ph_2P(O)CH_2N(R)CH_2P(O)Ph_2$ (R = Et, *i*-Pr, Bu, Oct) were synthesized by the reaction of phosphorylated amines $Ph_2P(O)CH_2NHR$ (R = Et, *i*-Pr, Bu, Oct) with diphenylphosphinylacetic acid in the presence of diisopropylcarbodiimide or by reacting with diphenylphosphinylacetyl chloride. According to the NMR ¹H, ¹³C{¹H}, ³¹P{¹H} spectroscopy data, in CDCl₃ solutions, the modified carbamoylmethylphosphine oxides exist in two conformers in the ratio of approximately 1.3:1 (R = Et), 1.5:1 (R = *i*-Pr) or 1:1 (R = Bu, Oct).

Keywords: carbamoylmethylphosphine oxides, *N*-alkyl-*N*-(diphenylphosphinylmethyl)amines, amidation, diphenylphosphinylacetic acid, diisopropylcarbodiimide, *N*-alkyl-*N*-(diphenylphosphinylmethyl)diphenylphosphinylacetamides