СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 546.65.03+54.057+544.174+661.143

ЛЮМИНЕСЦЕНТНЫЕ СВОЙСТВА БОРАТОВ $La_{0.95}Eu_{0.05}BO_3: M$ И $La_{0.95}Eu_{0.05}(BO_2)_3: M$ (M = Tb, Bi), ПОЛУЧЕННЫХ ЭКСТРАКЦИОННО-ПИРОЛИТИЧЕСКИМ МЕТОДОМ

© 2022 г. Н. И. Стеблевская^{а, *}, М. В. Белобелецкая^а, М. А. Медков^а, Д. Х. Шлык^а

 a Институт химии ДВО РАН, n 100-летия Владивостока, 159, Владивосток, 690022 Россия

*e-mail: steblevskaya@ich.dvo.ru

Поступила в редакцию 16.12.2021 г. После доработки 03.03.2022 г. Принята к публикации 04.03.2022 г.

Синтез ортоборатов La $_{0.95}$ _ $_x$ Eu $_{0.05}$ Tb $_x$ BO $_3$, La $_{0.95}$ Eu $_{0.05}$ Bi $_x$ BO $_3$ и La $_{0.95}$ _ $_x$ Eu $_{0.05}$ Tb $_{0.02}$ Bi $_y$ BO $_3$, а также метаборатов La $_{0.95}$ _ $_x$ Eu $_{0.05}$ Tb $_x$ (BO $_2$) $_3$, La $_{0.95}$ Eu $_{0.05}$ Bi $_x$ (BO $_2$) $_3$ и La $_{0.95}$ _ $_x$ Eu $_{0.05}$ Tb $_{0.02}$ Bi $_y$ (BO $_2$) $_3$ (x = 0.005, 0.01, 0.02, 0.025, 0.05, 0.075, y = 0.005, 0.01, 0.02, 0.025, 0.05, 0.075) проведен экстракционно-пиролитическим методом при более низких температурах и меньшем времени по сравнению с другими известными способами. Соединения исследованы методами рентгенофазового анализа, ИК- и люминесцентной спектроскопии по спектрам возбуждения люминесценции и люминесценции. Рассчитаны параметры кристаллической решетки образцов ортоборатов и метаборатов различного состава. При допировании ионами Tb^{3+} или Bi^{3+} , как и совместно Tb^{3+} и Bi^{3+} , структуры орторомбической модификации арагонита для ортоборатов и моноклинной модификации α-типа для метаборатов сохраняются. При этом допирование ионом-активатором Eu³⁺ и ионами-сенсибилизаторами Tb³⁺ или Bi³⁺ приводит к некоторому изменению параметров кристаллических ячеек. Соединения показывают интенсивную люминесценцию в области 400—750 нм. Характер спектров возбуждения люминесценции ($\lambda_{\rm ex}=615$ нм), а также спектров люминесценции иона ${\rm Eu}^{3+}$ (положение полос переходов ${}^5D_0 - {}^7F_j$ (j=0,1,2,3,4) и распределение интенсивностей по полосам) при одинаковых длинах волн возбуждения ($\lambda_{\rm ex}$) в рядах ортоборатов или метаборатов при изменении концентрации допирующих ионов ${\rm Tb}^{3+}$ или ${\rm Bi}^{3+}$ остается неизменным, что свидетельствует об идентичности ближайшего окружения иона ${\rm Eu}^{3+}$. Введение иона ${\rm Tb}^{3+}$ и дальнейшее повышение его концентрации приводят к снижению люминесценции всех люминофоров. При добавлении иона ${\rm Bi}^{3+}$ до 5 мол. % в ортобораты ${\rm La}_{0.95-x}{\rm Eu}_{0.05}{\rm BO}_3$ и ${\rm La}_{0.95-x}{\rm Eu}_{0.05}{\rm Tb}_x{\rm BO}_3$ наблюдается увеличение интенсивности люминесценции, что может быть связано с возможностью передачи энергии от Bi³⁺ к ${\rm Eu^{3+}}$. Уменьшение интегральной интенсивности люминесценции в метаборатах при введении допирующих ионов ${\rm Tb^{3+}}$ и ${\rm Bi^{3+}}$ можно объяснить отличительными особенностями их кристаллической структуры.

Ключевые слова: бораты лантана, европий, тербий, висмут, допирование, пиролиз, люминесценция **DOI:** 10.31857/S0044457X22080268

ВВЕДЕНИЕ

Бораты лантана состава $LaBO_3$ и $La(BO_2)_3$, легированные оптически активными редкоземельными элементами и обладающие высокой термической стабильностью и прозрачностью в ультрафиолетовом диапазоне, являются высокоэффективными люминофорами, интерес к которым не ослабевает и в настоящее время [1–16]. Такие светоизлучающие люминофоры используют в качестве светодиодных источников белого света в осветительных системах с низким энергопотреблением, в плоских дисплеях, солнечных элементах, оптоволокне, датчиках температуры и флуоресцентных лампах. В качестве активаторов в люминофорах используют ионы Eu^{3+} , Tb^{3+} ,

 Sm^{3+} , Dy^{3+} , Gd^{3+} и Ce^{3+} , имеющие высокую эффективность люминесценции, большой стоксов сдвиг и узкополосное излучение в видимой и ближней инфракрасной областях при возбуждении ультрафиолетовым светом [1–4, 6–13]. Для повышения интенсивности люминесценции в люминофор добавляют ион-сенсибилизатор, который передает часть поглощенной энергии при возбуждении УФ-светом ионам-активаторам для дальнейшего свечения [14—26].

Явление передачи энергии используется не только для улучшения люминесцентных характеристик люминофоров, но и для расширения спектра возбуждения иона-активатора за счет передачи энергии от иона-сенсибилизатора, имею-

щего обычно более интенсивное поглощение на определенной длине волны по сравнению с ионом-активатором [14, 18, 20]. Так, ионы тербия Tb^{3+} , имея большой квантовый выход зеленой люминесценции в области 545 нм, могут усиливать излучение других оптически активных ионов, таких как Sm^{3+} , Ce^{3+} , Gd^{3+} , Eu^{3+} [10, 12, 14, 16—20]. Кроме того, в совместно легированных ионами Tb^{3+} и Eu^{3+} люминофорах может наблюдаться как зеленая люминесценция иона Tb^{3+} , так и красная люминесценция иона Eu^{3+} при длинах волн возбуждения иона Tb^{3+} [16, 18, 20]. При этом люминесценцию можно регулировать по цвету, меняя соотношение Tb^{3+}/Eu^{3+} и длину волны возбуждающего света.

Помимо некоторых ионов РЗЭ ион непереходного металла Ві³⁺, имея близкий к лантаноидам ионный радиус и поглощая в УФ-области при 260-300 нм, может быть эффективным сенсибилизатором люминесценции как иона Tb^{3+} , так и иона Eu^{3+} в люминофорах [21—26]. В этом случае также можно регулировать люминесценцию люминофора, меняя соотношение элементов и длину волны возбуждения. Известны допированные ионом Bi³⁺ метабораты P39, имеющие интенсивную управляемую люминесценцию [21, 22, 26]. Сообщается о совместно допированных ионами Eu^{3+}/Tb^{3+} и содержащих ион Bi^{3+} боратах иттрия YBO₃ и иттрия-гадолиния (Y,Gd)BO₃, варьирование концентраций Eu³⁺ и Tb³⁺ в которых позволило получить интенсивную люминесценцию, возбуждаемую УФ-светом с длиной волны 254 нм, что указывает на возможное применение люминофоров в люминесцентных лампах [25]. Висмут в качестве добавки вводят в процессе получения метаборатов РЗЭ с целью повышения устойчивости этих соединений [27].

Динамичное развитие методов получения эффективных люминофоров, имеющих в качестве матрицы орто- или метабораты лантана и легированных другими ионами, продолжается [2, 4—7]. Это связано прежде всего с влиянием на люминесцентные характеристики люминофоров ряда факторов: морфологии, размера частиц, соотношения концентрации легирующих ионов, что во многом определяется используемым методом синтеза люминофора. При этом следует учитывать также и экономичность метода получения материала.

Метод твердофазного синтеза является одним из первых и сводится к одной основной схеме, включающей тщательное измельчение и смешивание в стехиометрическом соотношении исходных оксидов бора B_2O_3 или борной кислоты H_3BO_3 , оксида лантана La_2O_3 (при легировании боратов добавляют в необходимом количестве оксид другого металла) с дальнейшим прокалива-

нием при температуре 700—1100°С в течение 7—15 ч [1, 2, 15, 21, 24, 25]. Для модифицирования метода с целью достижения фазовой однородности используют различные приемы: промежуточную гомогенизацию шихты, горячее прессование прекурсоров [5], предварительное нагревание подготовленной смеси при температуре ~500°С в течение 2—3 ч [2], механохимическую активацию смеси исходных оксидов [6] и т.п.

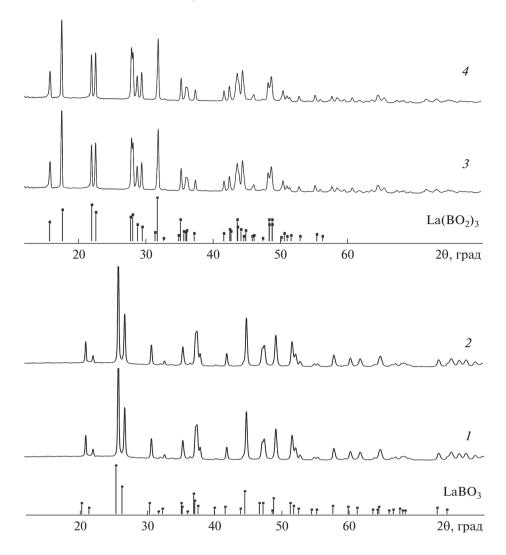
Растворные методы синтеза, такие как гидротермальный и золь-гель, дают возможность контролировать морфологию и микроструктуру и получать соединения высокой чистоты [7, 8, 26, 28]. В гидротермальном методе после полного гомогенного перемешивания водных растворов нитратов или других солей Eu(III) и Tb(III) и оксида бора В₂О₃ для получения осадка добавляют раствор аммиака [28]. Конечный порошковый пролукт после выдержки в автоклаве из нержавеюшей стали с тефлоновым покрытием при температуре 210°C в течение 12 ч промывают, сушат в печи при 80°C и прокаливают в муфельной печи 4 ч при 700°С. Для осаждения иногда используют органические растворители, например, ацетон [9]. Золь-гель метод обеспечивает высокую кристалличность и малые размеры частиц синтезированных люминофоров на основе боратов РЗЭ [7, 26]. В растворе, содержащем соли РЗЭ, гидроксикарбоновые кислоты (лимонную или винную) и этиленгликоль, происходит внедрение соли РЗЭ в структуру геля, образующегося при комплексообразовании этиленгликоля с лимонной или винной кислотой. В некоторых случаях этиленгликоль не добавляют [8]. Полученный прекурсор после длительного нагревания (~24 ч) при 80°C подвергают термическому разложению при 800-1000°С на воздухе в течение 3–4 ч [7, 8, 26].

Каждый из перечисленных методов синтеза боратов РЗЭ имеет свои преимущества и недостатки. Метод твердофазного синтеза состоит из большого числа длительных стадий, требует высоких температур и измельчения конечных продуктов и не позволяет получать однофазные материалы, что отрицательно сказывается на люминесцентных характеристиках боратов Гидротермальный и золь-гель методы лишены некоторых из указанных недостатков, в частности, проводятся при более низких температурах и позволяют получать материалы с высокой фазовой однородностью. Используемый метод определяет состав, структуру, размеры частиц получаемого материала и, как следствие, его функциональные свойства, а также технологичность процесса получения. Поэтому разработка и модификация методов синтеза люминофоров на основе боратов РЗЭ остаются актуальной задачей.

В настоящей работе изучена возможность синтеза боратов лантана, совместно легированных

ионами Eu³⁺, Tb³⁺ и Bi³⁺, не используемым ранее экстракционно-пиролитическим методом и исследованы состав и спектрально-люминесцентные характеристики полученных люминофоров.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ


Для синтеза боратов лантана LaBO₃: Eu и La(BO₂)₃: Eu, совместно допированных ионами Тb³⁺ и Вi³⁺, использовали органические прекурсоры – насыщенные экстракты лантана, европия, тербия, висмута. Экстракцию РЗЭ проводили из водных нитратных растворов, содержащих 0.012 моль/л La³⁺, 6.6×10^{-3} моль/л Eu³⁺, $6.3 \times$ $\times 10^{-3}$ моль/л Tb^{3+} , смешанными растворами 1.95 моль/л ацетилацетона и 0.0167 моль/л 1,10фенантролина в бензоле. Значение рН водной фазы (7.0-7.5), необходимое для получения насыщенных металлами органических фаз, создавали добавлением водного раствора аммиака и контролировали при помощи pH-метра Radelkis OP-211/1. Висмут из нитратного раствора 9.6 × $\times 10^{-3}$ моль/л ${\rm Bi^{3+}}$ экстрагировали 0.45 M раствором три-н-октиламина в бензоле. Насыщенный по бору экстракт получали экстракцией таким же раствором три-н-октиламина из водной фазы, содержащей 0.5 моль/л борной и 0.7 моль/л винной кислот. Органическую и водную фазы в отношении 1:1 интенсивно перемешивали при комнатной температуре в течение 30 мин на механическом встряхивателе SK-30 (Южная Корея). Количественный состав водных и органических фаз контролировали атомно-абсорбционным и рентгенофлюоресцентным методами анализа. При синтезе соединений LaBO3 и La(BO2)3 мольные отношения La: В в смешиваемых экстрактах составляли 1:1.2 и 1:4 соответственно. Для получения допированных боратов лантана в такой экстракт вводили определенные количества экстрактов, содержащих европий, тербий и висмут в требуемых соотношениях. Гомогенные смешанные экстракты нагревали на воздухе при 60-80°C до образования паст, которые подвергали пиролизу при различных температурах в муфельной печи в течение 2 ч.

Рентгенографический анализ образцов осуществляли на дифрактометре D8 Advance Bruker AXS (Германия) в CuK_{α} -излучении с использованием программы поиска EVA с банком порошковых данных PDF-2. Спектры возбуждения люминесценции и люминесценции люминофоров регистрировали в одинаковых условиях при 300 K на спектрофлуориметре Shimadzu RF-5301 PC. ИК-спектры образцов записывали при комнатной температуре на приборе Vertex 70 в области $4000-400 \text{ cm}^{-1}$.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Экстракционно-пиролитический (ЭП) метод позволяет с большой точностью вводить легирующие добавки в широком диапазоне соотношений элементов и, меняя температуру и время процесса пиролиза, влиять на состав, размеры частиц, структуру и свойства функционального материала [29, 30]. Ранее нами показана перспективность использования экстракционно-пиролитического метода для синтеза ортобората лантана LaBO₃ и метабората лантана α -La(BO₂)₃, в том числе допированных ионами Eu³⁺ [31]. При этом повышение температуры пиролиза прекурсоров от 550 до 900°C приводит к образованию LaBO₃ сначала в виде смеси орторомбической фазы арагонита и высокотемпературной моноклинной фазы, а затем в виде индивидуальной орторомбической фазы арагонита (пр. гр. $P2_1/m$, (11), a = 5.872, b = 8.257, c = 5.107 Å, $\alpha = 90^{\circ}$, $\beta =$ $= 90^{\circ}$, $\gamma = 90^{\circ}$, Z = 4) [7]. Температура перехода в индивидуальную фазу арагонита при использовании ЭП-метода снижается по сравнению с твердофазным синтезом с 800-1000°C [2, 6, 8, 15], а по сравнению с золь-гель методом с 900°C [7] до 650-750°С [31]. Образование кристаллической моноклинной модификации метабората лантана α -La(BO₂)₃ (пр. гр. C2/c, (15), a = 7.956, b = 8.161, $c = 6.499 \text{ Å}, \alpha = 90^{\circ}, \beta = 93.63^{\circ}, \gamma = 90^{\circ}, Z = 4) \text{ B } \ni \Pi$ методе, как показано нами в [31], происходит также при более низкой температуре (800°C). При допировании ионами Eu³⁺ ортобораты состава $La_{1-x}Eu_xBO_3$ (x = 2.5, 5, 7.5 мол. %), как и метабораты состава $\text{La}_{1-x}\text{Eu}_x(\text{BO}_2)_3$ (2.5, 5, 7.5 мол. %), кристаллизуются в фазах арагонита и моноклинной модификации α-типа соответственно [31].

Для дополнительного допирования ионами Tb³⁺ и Bi^{3+} использовали ортоборат состава $La_{0.95}Eu_{0.05}BO_3$ и метаборат состава $La_{0.95}Eu_{0.05}(BO_2)_3$, которые показывают, согласно данным [31], наиболее интенсивную люминесценцию с максимумом в области ~615 нм. При добавлении в состав $La_{0.95}Eu_{0.05}BO_3$ ионов Tb^{3+} или Bi^{3+} , как и совместно Tb^{3+} и Bi^{3+} , структура арагонита, как видно на дифрактограммах полученных соединений, также сохраняется (рис. 1, кривые 1, 2) [31]. Следует отметить, что как и в случае с LaBO₃ и La_{0.95}Eu_{0.05}BO₃ [30], для совместно допированных ЭП-методом ортоборатов лантана $La_{0.95-x}Eu_{0.05}Tb_xBO_3$ и $La_{0.95}Eu_{0.05}Bi_xBO_3$ (x = 0.005, 0.01, 0.02, 0.025, 0.05, 0.075), а также $La_{0.95 - x}Eu_{0.05}Tb_{0.02}Bi_{v}BO_{3}$ (y = 0.005, 0.01, 0.02,0.025, 0.05, 0.075) сохраняется температурная последовательность смены фаз: при 550°C образуются орторомбическая фаза арагонита и высокотемпературная моноклинная фаза, а при 650-750°C наблюдается полный переход в фазу арагонита. Известно, что бораты EuBO₃ и ТbBO₃ кристаллизуются в структуре ватерита [2, 6, 7]. В этом

Рис. 1. Дифрактограммы: $1 - \text{La}_{0.95-x}\text{Eu}_{0.05}\text{Tb}_x\text{BO}_3$, $2 - \text{La}_{0.93-y}\text{Eu}_{0.05}\text{Tb}_{0.02}\text{Bi}_y\text{BO}_3$, $3 - \text{La}_{0.95-x}\text{Eu}_{0.05}\text{Bi}_x(\text{BO}_2)_3$, $4 - \text{La}_{0.93-y}\text{Eu}_{0.05}\text{Tb}_{0.02}\text{Bi}_y(\text{BO}_2)_3$.

случае ионы Eu³⁺ и Tb³⁺ координированы восемью ионами кислорода [4, 8, 28], в то время как в структуре арагонита LaBO₃ ион La³⁺ координирован девятью ионами кислорода [2, 6, 7]. Тем не менее при введении в состав $La_{0.95}Eu_{0.05}BO_3$ как ионов Tb^{3+} , так и ионов Bi^{3+} или $Tb^{3+} + Bi^{3+}$ структура арагонита остается неизменной, что свидетельствует о замещении иона La³⁺ в решетке LaBO₃ указанными ионами. Дифрактограммы образцов соединений не содержат никаких примесных пиков, а имеющие близкие ионные радиусы замещающие ионы не влияют на кристаллическую структуру. Следует отметить, что в пределах используемых в настоящей работе концентраций допирующих ионов Eu^{3+} , Tb^{3+} и Bi^{3+} происходит заместительное легирование LaBO₃ с сохранением фазы арагонита (для $La_{0.95}Eu_{0.05}BO_3$ этот факт отмечался ранее в работе [31]). В то время как в работах [9, 11, 28] обнаружено, что при больших концентрациях ионов-активаторов (>15%) помимо заместительного происходит интерстициальное легирование арагонита $LaBO_3$ с появлением характерной для $EuBO_3$ и $TbBO_3$ фазы ватерита.

Введение в метаборат $La_{0.95}Eu_{0.05}(BO_2)_3$ добавок Tb^{3+} или Bi^{3+} и $Tb^{3+}+Bi^{3+}$ в тех же соотношениях, что и для ортобората $La_{0.95}Eu_{0.05}BO_3$, также не приводит к изменению кристаллической структуры моноклинной модификации α -типа (рис. 1, кривые 3, 4) [31], образование которой в метаборатах с ионами-сенсибилизаторами начинается в 3Π -методе при 700° С, а заканчивается при 800° С, как и для метаборатов α -La(BO_2) $_3$ и $La_{0.95}Eu_{0.05}(BO_2)_3$ [31].

Следует ожидать, что при сохранении структуры в случае допирования боратов $LaBO_3$ и $La(BO_2)_3$ ионом-активатором Eu^{3+} и ионами-сенсибилизаторами Tb^{3+} или Bi^{3+} параметры кри-

Фазовый состав	a, Å	$b, \mathrm{\AA}$	c, Å	α	β	γ	wRp, %
LaBO ₃ : Eu 2.5%	5.876(2)	8.248(2)	5.102(1)	90	90	90	3.54
LaBO ₃ : Eu 5%	5.858(2)	8.229(2)	5.100(1)	90	90	90	2.98
LaBO ₃ : Eu 7.5%	5.852(2)	8.212(2)	5.097(1)	90	90	90	3.71
LaBO ₃ : Eu 10%	5.848(2)	8.202(2)	5.094(1)	90	90	90	3.12
LaBO ₃ : Eu 5% + 5% Tb	5.8343(3)	8.1816(3)	5.0823(2)	90	90	90	7.81
LaBO ₃ : Eu 5% + 2.5% Bi	5.8500(4)	8.2081(6)	5.0920(3)	90	90	90	6.51
LaBO ₃ : Eu 5% + 2.5% Bi + 2% Tb	5.841(1)	8.210 (2)	5.089(1)	90	90	90	8.21
LaBO ₃ : Eu 5% + 2% Tb + 5% Bi	5.838(1)	8.215(2)	5.087(1)	90	90	90	7.45
La(BO ₂) ₃ : Eu 5%	7.9425(3)	8.1529(3)	6.4807(2)	90	93.560(3)	90	3.36
La(BO ₂) ₃ : Eu 5% + 2%Tb	7.9287(2)	8.1393(2)	6.4587(2)	90	93.531(2)	90	2.23
La(BO ₂) ₃ : Eu 5% + 2.5% Bi	7.9399(2)	8.1496(2)	6.4787(2)	90	93.555(2)	90	3.21
$La(BO_2)_2$: Eu 5% + 2%Tb + 2.5%Bi	7.9383(2)	8.1480(2)	6.4664(1)	90	93.521(2)	90	2.84

Таблица 1. Параметры кристаллической решетки образцов ортоборатов и метаборатов различного состава

сталлических ячеек будут изменяться, так как указанные ионы хоть и незначительно, но отличаются значениями ионных радиусов (La^{3+} — 0.114 пм, Eu^{3+} — 0.107 пм, Tb^{3+} — 0.104 пм, Bi^{3+} — 0.103 пм [7, 10, 12]. В табл. 1 для примера приведены параметры ячеек некоторых из полученных соединений. Как видно из табл. 1, при замещении иона La^{3+} в ортоборате $LaBO_3$ и метаборате $La(BO_2)_3$ ионами Eu^{3+} , имеющими меньший ионный радиус, чем у La^{3+} , параметры элементарной ячейки несколько уменьшаются. Аналогичная зависимость прослеживается при дальнейшем допировании $La_{0.95}Eu_{0.05}BO_3$ и $La_{0.95}Eu_{0.05}(BO_2)_3$ ионами Tb^{3+} и Bi^{3+} с меньшими, чем у La^{3+} , и примерно сравнимыми с Eu^{3+} ионными радиусами.

Результаты ИК-спектроскопического исследования полученных ранее ЭП-методом ортоборатов $LaBO_3$, $La_1 _ xEu_xBO_3$ и метаборатов $La(BO_2)_3, La_{1-x}Eu_x(BO_2)_3$ подробно рассмотрены в [31]. При легировании La_{0.95}Eu_{0.05}BO₃ и $La_{0.95}Eu_{0.05}(BO_2)_3$ ионами Tb^{3+} или Bi^{3+} изменений в ИК-спектрах соединений не наблюдается (табл. 2). В ИК-спектрах орторомбической фазы арагонита LaBO₃ и LaBO₃ с ионами-активаторами Eu³⁺, Tb^{3+} или Bi^{3+} проявляются интенсивные полосы поглощения, характерные для колебаний планарных тригональных $[BO_3]^{3-}$ -групп, при 1400-550 см⁻¹ [9, 11. 31. 321. В области 1250—1400 см⁻¹ присутствуют полосы асимметричных (v_3) (B—O) и деформационных $\delta(B-O)$ колебаний в $[BO_3]^{3-}$ -группах. Слабые полосы поглощения при \sim 592 и \sim 613 см $^{-1}$ отвечают внутриплоскостным (у4), а интенсивная полоса при \sim 719 см⁻¹ — внеплоскостным (ν_2) колебаниям связей B-O, полоса при ~941 см⁻¹ (v_1)

связана с симметричными колебаниями B-O в $[BO_3]^{3-}$ -группах.

В ИК-спектрах образцов метаборатов $La_{0.95-x}Eu_{0.05}Tb_x(BO_2)_3$ и $La_{0.95-x}Eu_{0.05}Bi_x(BO_2)_3$, а также $La_{0.95}Eu_{0.05} = {}_xTb_{0.02}Bi_y(BO_2)_3$ проявляются полосы поглощения колебаний тетраэдрических групп $[BO_4]^{5-}$ и тригональных групп $[BO_3]^{3-}$, из которых построена кристаллическая структура моноклинной фазы метабората (табл. 2) [5, 8, 10, 32]. Полосы поглощения в области 1400—1150 см⁻¹ (v_3) , ~806 cm⁻¹ (v_2) , ~580 cm⁻¹ (v_1) относятся к колебаниям В-О тригональных [ВО₃]³⁻-групп, две интенсивные полосы при ~ 964 и ~ 895 см $^{-1}$ — к симметричным колебаниям $B-O(v_1)$ тригональных $[BO_3]^{3-}$ -групп и колебаниям B-O (v_2) тетраэдрических $[BO_4]^{5-}$ -групп. В области 1085-1045 см-1 наблюдаются полосы симметричных колебаний B-O (v_1) тетраэдрических $[BO_4]^{5-}$ групп, в интервале $675-610 \text{ см}^{-1}$ — полосы асимметричных колебаний (v_3), а при 580-500 см⁻¹ – V_4 -колебания тетраэдрических $[BO_4]^{5-}$ -групп.

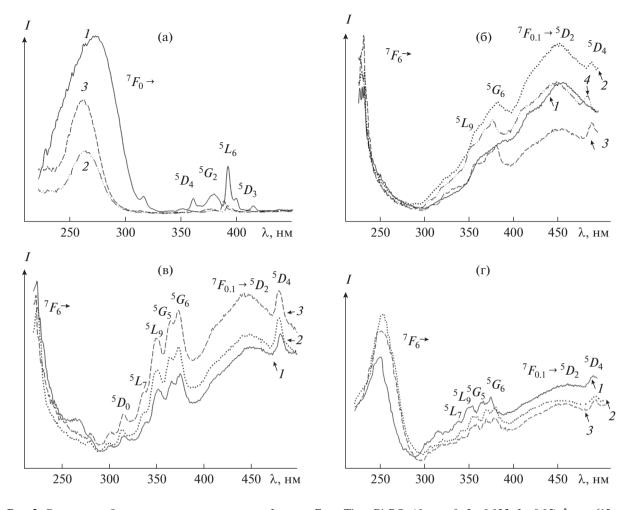

Ранее нами в работе [31] отмечалось, что спектры возбуждения люминесценции Eu^{3+} в ортоборатах $La_{1-x}Eu_xBO_3$ и метаборатах $La_{1-x}Eu_x(BO_2)_3$ при возбуждении светом с длиной волны $\lambda_{\rm em}=615$ нм (максимум люминесценции иона Eu^{3+}) идентичны. При введении в состав указанных соединений добавок как ионов-сенсибилизаторов Tb^{3+} или Bi^{3+} , так и совместно Tb^{3+} и Bi^{3+} спектры возбуждения люминесценции ($\lambda_{\rm em}=615$ нм) образцов, полученных при одинаковой температуре отжига прекурсоров, в ряду ортоборатов $La_{0.95}$ $_{-x}Eu_{0.05}Tb_xBO_3$, $La_{0.95}$ $_{-x}Eu_{0.05}Bi_xBO_3$, $La_{0.93}$ $_{-y}Eu_{0.05}Tb_{0.02}Bi_yBO_3$ или в ряду метаборатов

Таблица 2. Важнейшие колебательные частоты (cm^{-1}) в ИК-спектрах допированных ортоборатов и метаборатов лантана

$LaBO_3$	La(BO ₂) ₃			
$La_{0.95}Eu_{0.05}BO_3$	$La_{0.95}Eu_{0.05}(BO_2)_3$			
$La_{0.95}Eu_{0.05}BO_3$: Tb	$La_{0.95}Eu_{0.05}(BO_2)_3$: Tb	Отнесение		
$La_{0.95}Eu_{0.05}BO_3$: Bi	$La_{0.95}Eu_{0.05}(BO_2)_3$: Bi			
$La_{0.95}Eu_{0.05}BO_3$: Tb + Bi	$La_{0.95}Eu_{0.05}(BO_2)_3$: Tb + Bi			
1462	1458			
1377	1377			
1296	1209			
1271	1171			
	1003			
	1082	$v_{1s}(B-O) BO_4^-$		
	1047			
941	964	$v_{1s}(B-O) BO_3^-$		
	00.4			
	894	$+ v_2(B-O) BO_4^-$		
719	806			
719	000	$v_2(B-O) BO_3^-$		
	673	(B, Q) BQ ⁻		
2.5		$v_{3 as}(B-O) BO_4^-$		
613	619	$+ v_4(B-O) BO_3^-$		
592				
	581	$+ v_{1s}(B-O) BO_3^-$		
	528			
	494	$+ v_4(B-O) BO_4^-$		
462				

 $La_{0.95} - _xEu_{0.05}Tb_x(BO_2)_3$, $La_{0.95} - _xEu_{0.05}Bi_x(BO_2)_3$, ${\rm La_{0.93}}_{-y}{\rm Eu_{0.05}Tb_{0.02}Bi_y(BO_2)_3}$ не изменяются. На рис. 2а для примера приведен спектр возбуждения люминесценции ($\lambda_{em} = 615$ нм) ортобората $La_{0.93-y}Eu_{0.05}Tb_{0.02}Bi_{y}BO_{3}$. Интенсивная широкая полоса в спектре возбуждения люминесценции при 260-275 нм, регистрируемая при возбуждении в максимуме люминесценции иона Eu³⁺ $(\lambda_{em} = 615 \text{ нм, рис. } 2a),$ характерна для перехода с заполненной 2p-оболочки O^{2-} на частично заполненную 4f-оболочку Eu^{3+} (полоса переноса заряда $O^{2-} \rightarrow Eu^{3+}$) [30, 31, 33]. Уширение указанной полосы в данном случае по сравнению с узкими полосами в спектрах возбуждения люминесценции оксида европия Еи₂О₃ свидетельствует об участии $[BO_3]^{3-}$ - и $[BO_4]^{5-}$ -групп в передаче энергии иону Eu^{3+} в боратах европия [30, 33]. Следует отметить,

что в спектрах возбуждения люминесценции соединений, содержащих ион Bi³⁺, в области длин волн 230—280 нм может наблюдаться широкая интенсивная полоса с максимумом при ~262 нм перехода ${}^{1}S_{0} \rightarrow {}^{3}P_{1}$ в ионе Bi³⁺ [21, 24, 26]. Как видно на рис. 2а, при добавлении к $La_{0.93}Eu_{0.05}Tb_{0.02}BO_3$ ионов Bi^{3+} наблюдается сдвиг полосы от λ_{max} = 273 нм (рис. 2а, кривая 1) в коротковолновую область (рис. 2a, кривые 2u 3). При этом увеличение концентрации Bi^{3+} в соединении $La_{0.93}$ _ $_{\nu}$ Eu $_{0.05}$ Tb $_{0.02}$ Bi $_{\nu}$ (BO $_{2}$) $_{3}$ в 2 раза (y=0.025 и 0.05) приводит к незначительному сдвигу этой полосы снова в длинноволновую область ($\lambda_{max} = 262$ и 264 нм соответственно, рис. 2а, кривые 2 и 3). Этот факт коррелирует с данными параметров элементарной ячейки. Как видно из табл. 2, при введении в состав $La_{0.93}Eu_{0.05}Tb_{0.02}BO_3$ ионов Bi^{3+} пара-

Рис. 2. Спектры возбуждения люминесценции: а — La_{0.93 — y}Eu_{0.05}Tb_{0.02}Bi_yBO₃ (I-y=0, 2-0.025, 3-0.05), $\lambda_{\rm em}=615$ нм, б — La_{0.95 — x}Eu_{0.05}Tb_xBO₃ (I-x=0, 2-0.01, 3-0.025, 4-0.05), $\lambda_{\rm em}=545$ нм, в — La_{0.95 — x}Eu_{0.05}Tb_x(BO₂)₃ (I-0.01, 2-0.025, 3-0.05), $\lambda_{\rm em}=545$ нм, г — La_{0.93 — y}Eu_{0.05}Tb_{0.02}Bi_y(BO₂)₃ (I-0.005, 2-0.025, 3-0.05), $\lambda_{\rm em}=545$ нм.

метры элементарной ячейки увеличиваются, а при увеличении концентрации Bi^{3+} уменьшаются. Ранее нами в работе [31] отмечался подобный сдвиг полосы переноса заряда в длинноволновую область при увеличении концентрации иона Eu^{3+} в ортоборатах состава $\mathrm{La}_{1-x}\mathrm{Eu}_x\mathrm{BO}_3$. Как видно из табл. 2, расчеты параметров элементарных ячеек показали, что увеличение концентрации иона Eu^{3+} в указанных соединениях также приводит к уменьшению параметров элементарной ячейки, а значит, к уменьшению расстояния между ионами $\mathrm{Eu}^{3+}\mathrm{-O}^{2-}$ и, как следствие, к уменьшению разницы между электроотрицательностью данных ионов [9, 12, 31, 33].

Отмеченная выше корреляция сдвига полосы в области длин волн $\sim\!260$ нм в спектре возбуждения люминесценции ортоборатов ${\rm La_{0.93}}_{-\ y}{\rm Eu_{0.05}Tb_{0.02}Bi_yBO_3}$ в длинноволновую область при увеличении концентрации ионов ${\rm Bi^{3+}}$ наблюдается также в спектре возбуждения мета-

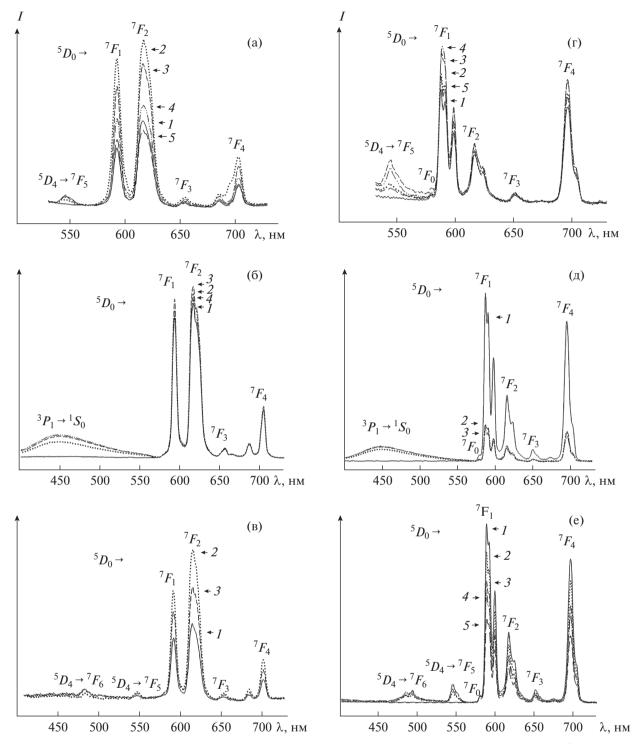
боратов $La_{0.93\ -\ y}Eu_{0.05}Tb_{0.02}Bi_y(BO_2)_3$ (рис. 2r): полоса перехода для соединений состава $La_{0.925}Eu_{0.05}Tb_{0.02}Bi_{0.005}(BO_2)_3$, $La_{0.905}Eu_{0.05}Tb_{0.02}Bi_{0.025}(BO_2)_3$ и $La_{0.88}Eu_{0.05}Tb_{0.02}Bi_{0.05}(BO_2)_3$ сдвигается от 250 до 253 и 260 нм соответственно.

В спектрах возбуждения люминесценции ортоборатов и метаборатов (рис. 2г), регистрируемых при $\lambda_{\rm em} = 545$ нм и содержащих ион ${\rm Bi}^{3+}$, в области длин волн 230-280 нм присутствует широкая интенсивная полоса с максимумом при $\sim\!262$ нм, которая может быть отнесена, как отмечалось выше, к переходу $^1S_0 \to {}^3P_1$ в ионе ${\rm Bi}^{3+}$ [21, 24, 26]. Интенсивность данной полосы увеличивается при повышении концентрации ${\rm Bi}^{3+}$ (рис. 2а). При этом в области ниже 260 нм на эту полосу накладывается менее интенсивная полоса при $\sim\!235$ нм перехода $4f^8 \to 4f^75d^1$ в ионе ${\rm Tb}^{3+}$ (рис. 2г), которая явно проявляется при $\lambda_{\rm em} = 545$ нм (одна из полос люминесценции иона ${\rm Tb}^{3+}$) в допированных ука-

занным ионом ортоборатах (рис. 26) и метаборатах (рис. 2в) [9, 10, 25, 28].

Узкие полосы в области 310-420 нм в спектрах возбуждения люминесценции соединений при $\lambda_{\rm em}=615$ нм соответствуют резонансному возбуждению иона ${\rm Eu}^{3+}$ и переходам f-электронов из основного состояния на возбужденные уровни 5D_1 , 5D_4 , 5L_6 , $^5G_{4.5}$ (рис. 2a) [9, 18, 25, 33]. В спектрах возбуждения люминесценции ортоборатов ${\rm La}_{0.95-x}{\rm Eu}_{0.05}{\rm BO}_3$ и метаборатов ${\rm La}_{0.95-x}{\rm Eu}_{0.05}({\rm BO}_2)_3$, допированных ионами ионами ${\rm Tb}^{3+}$ и ${\rm Bi}^{3+}$, при длине волны $\lambda_{\rm em}=545$ нм в интервале длин волн 300-350 нм наблюдаются также полосы разной интенсивности и ширины, относящиеся к переходам с основного уровня иона ${\rm Tb}^{3+}$ 7F_6 на возбужденные уровни 5D_0 , 5D_4 , 5L_7 , 5L_9 , 5G_5 , 5G_6 [9, 10, 25, 28].

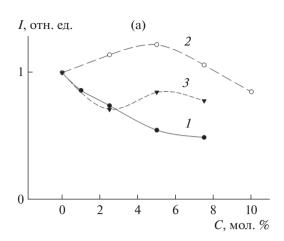
В длинноволновой области спектров возбуждения соединений (рис. 2) в интервале длин волн 350-450 нм могут наблюдаться также полосы переходов из основного состояния иона Eu^{3+} 7F_0 на возбужденные уровни 5D_1 , 5D_4 , 5L_6 , $^5G_{4.5}$ [9, 18, 25, 33]. При \sim 450 нм в спектрах возбуждения ортоборатов и метаборатов присутствует широкая полоса, которую можно отнести к переходу с основного уровня иона Eu^{3+} 7F_0 на возбужденный уровень 5D_2 [9, 10, 33].


Спектры люминесценции образцов некоторых исследуемых ортоборатов и метаборатов приведены на рис. 3. Спектры люминесценции допированных ионами Eu^{3+} , Tb^{3+} , Bi^{3+} ортоборатов и метаборатов лантана, регистрируемые при длинах волн возбуждени $\lambda_{ex} = 260$ и 235 нм, состоят из серии полос в области 450-750 нм, соответствующих переходам между мультиплетами ${}^5D_0-F_i$ (j = 0, 1, 2, 3, 4) и характерных для иона Eu³⁺ [8– 25, 30, 33]. Характер спектров люминесценции иона Eu^{3+} — положение полос переходов ${}^5D_0 - {}^7F_i$ (j = 0, 1, 2, 3, 4) и распределение интенсивностей по полосам – при одинаковых длинах волн возбуждения (λ_{ex}) в рядах ортоборатов $La_{0.95-x}Eu_{0.05}Tb_xBO_3$, $La_{0.95} - {}_{x}Eu_{0.05}Bi_{x}BO_{3}, La_{0.93} - {}_{y}Eu_{0.05}Tb_{0.02}Bi_{y}BO_{3}$ или метаборатов $La_{0.95}$ _ $_xEu_{0.05}Tb_x(BO_2)_3$, $La_{0.95}$ _ $_xEu_{0.05}Bi_x(BO_2)_3$, $La_{0.93}$ _ $_yEu_{0.05}Tb_{0.02}Bi_y(BO_2)_3$ при изменении концентрации допирующих ионов Tb^{3+} или Bi^{3+} остается неизменным. Этот факт указывает на идентичность и сохранение симметрии ближайшего окружения иона Eu³⁺ в кристаллической структуре соединений (ортоборатов и метаборатов) в исследуемой области концентраций допирующих ионов.

При длине волны возбуждения $\lambda_{ex}=235$ нм в спектрах люминесценции допированных ионами Tb^{3+} и Bi^{3+} ортоборатов $La_{0.95}Eu_{0.05}BO_3$ и метаборатов $La_{0.95}Eu_{0.05}(BO_2)_3$ помимо полос переходов

 5D_0 — 7F_j иона Eu³⁺ появляется полоса при \sim 545 нм 5D_4 — 7F_5 -перехода в ионе Tb³⁺ [13—16, 18] (рис. 3а—3д), а при длине волны возбуждения $\lambda_{\rm ex}=260$ нм в области 420—450 нм наблюдается широкая малоинтенсивная полоса перехода 3P_1 — 1S_0 в ионе Bi³⁺ (рис. 36, 3д) [21, 24, 26].

Как и ранее [31], для ортоборатов $La_{1-x}Eu_xBO_3$ и метаборатов $La_{1-x}Eu_x(BO_2)_3$ спектры люминесценции образцов в ряду $La_{0.95} = {}_{x}Eu_{0.05}Tb_{x}BO_{3}$, $La_{0.95} = {}_{x}Eu_{0.05}Bi_{x}BO_{3}, La_{0.93} = {}_{y}Eu_{0.05}Tb_{0.02}Bi_{y}BO_{3}$ значительно отличаются от спектров образцов в ряду метаборатов $La_{0.95} = {}_x Eu_{0.05} Tb_x (BO_2)_3$, $La_{0.95} - {}_{x}Eu_{0.05}Bi_{x}(BO_{2})_{3}, La_{0.93} - {}_{v}Eu_{0.05}Tb_{0.02}Bi_{v}(BO_{2})_{3},$ что и должно происходить при изменении кристаллической структуры [33]. В спектрах наблюдаются изменения в перераспределении интенсивностей по характерным для иона $Eu^{3+5}D_0-^7F_i$ переходам, некоторое смещение положения полос этих переходов, различия в тонкой структуре расщепления полос ${}^5D_0 - {}^7F_1$ - и ${}^5D_0 - {}^7F_2$ -переходов (рис. 3). В отличие от ортоборатов (рис. 3а-3в), в спектрах образцов метаборатов проявляется слабая полоса ${}^5D_0 - {}^7F_0$ -перехода ($\lambda \sim 580$ нм) иона Eu³⁺ (рис. 3г—3е). Основная доля энергии излучения иона Eu^{3+} в спектрах люминесценции $La_{1-x}Eu_xBO_3$, содержащем допирующие ионы Tb³⁺ и Bi³⁺, приходится на доминирующий электродипольный $^{5}D_{0}-^{7}F_{2}$ -переход ($\lambda \sim 625$ нм). Полоса магнитнодипольного ${}^5D_0 - {}^7F_1$ -перехода ($\lambda \sim 595$ нм) имеет чуть меньшую интенсивность. В спектрах люминесценции $La_{1-x}Eu_{x}(BO_{2})_{3}$ с такими же допирующими ионами основная доля энергии излучения иона ${\rm Eu^{3+}}$ приходится на переходы ${}^5D_0 - {}^7F_1$ ($\lambda \sim$ ~ 595 нм) и $^5D_0-^7F_4$ ($\lambda \sim 700$ нм). При этом наибольшую интенсивность имеет полоса, соответствующая магнитно-дипольному ${}^5D_0 - {}^7F_1$ -переходу ($\lambda \sim 580$ нм), интенсивность полосы $^5D_0 - F_4$ -перехода немного меньше. Оценка степени искажения ближайшего окружения ионов Eu³⁺ может быть проведена по отношению к интенсивности полос ${}^5D_0 - {}^7F_1$ - и ${}^5D_0 - {}^7F_2$ -переходов: при низкой симметрии наиболее интенсивной является полоса электродипольного $^5D_0 - ^7F_2$ -перехода, а при возрастании центросимметричности — полоса магнитно-дипольного ${}^5D_0 - {}^7F_1$ -перехода в спектре люминесценции [33].


Зависимость интенсивности люминесценции, определенной интегрированием площади под полосами в спектрах люминесцении ($\lambda_{ex}=260$ нм) образцов люминофоров, от концентрации допирующих ионов Tb^{3+} и Bi^{3+} носит в пределах исследуемых концентраций сложный характер. Введение в состав $La_{0.95}Eu_{0.05}BO_3$ и $La_{0.95}Eu_{0.05}(BO_2)_3$ иона Tb^{3+} приводит к монотонному ослаблению

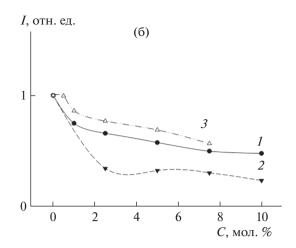


Рис. 3. Спектры люминесценнции: a — La $_{0.95}$ — $_x$ Eu $_{0.05}$ Tb $_x$ BO $_3$ (1-x=0,2-0.01,3-0.025,4-0.05,0.075), $\lambda_{\rm ex}=235$ нм, 6 — La $_{0.95}$ — $_x$ Eu $_{0.05}$ Bi $_x$ BO $_3$ (1-x=0,2-0.025,3-0.05,4-0.075), $\lambda_{\rm ex}=260$ нм, B — La $_{0.93}$ — $_y$ Eu $_{0.05}$ Tb $_{0.02}$ Bi $_y$ BO $_3$ (1-x=0,2-0.05,3-0.075), $\lambda_{\rm ex}=235$ нм, τ — La $_{0.95}$ — $_x$ Eu $_{0.05}$ Tb $_x$ (BO $_2$) $_3$ (1-0,2-0.01,3-0.025,4-0.05,5-0.075), $\lambda_{\rm ex}=235$ нм, τ — La $_{0.95}$ — $_x$ Eu $_{0.05}$ Bi $_x$ (BO $_2$) $_3$ (1-x=0,2-0.025,3-0.05), $\lambda_{\rm ex}=260$ нм, e — La $_{0.93}$ — $_y$ Eu $_{0.05}$ Tb $_{0.02}$ Bi $_y$ (BO $_2$) $_3$ (1-0,2-0.005,3-0.01,4-0.05,5-0.075), $\lambda_{\rm ex}=235$ нм.

интенсивности люминесценции соединений (рис. 4, кривые I), что связано, по-видимому, с безызлучательным переносом энергии между ионами Tb^{3+} — концентрационным тушением [13,

14, 16, 18]. Добавление иона $\mathrm{Bi^{3+}}$ до 5 мол. % в ортоборат $\mathrm{La_{0.95}Eu_{0.05}BO_3}$ приводит к росту интенсивности люминесценции иона $\mathrm{Eu^{3+}}$ (рис. 4а, кривая 2), что может быть связано с возможно-

Рис. 4. Зависимость интегральной интенсивности люминесценции от концентрации ионов Tb^{3+} и Bi^{3+} : а $-La_{0.95-x}Eu_{0.05}Tb_xBO_3$ (*I*), $La_{0.95-x}Eu_{0.05}Bi_xBO_3$ (*S*), $La_{0.93-y}Eu_{0.05}Tb_{0.02}Bi_yBO_3$ (*S*); б $-La_{0.95-x}Eu_{0.05}Tb_x(BO_2)_3$ (*I*), $La_{0.95-x}Eu_{0.05}Bi_x(BO_2)_3$ (*S*), $La_{0.93-y}Eu_{0.05}Tb_x(BO_2)_3$ (*S*), $La_{0.93-y}Eu_{0.05}Bi_x(BO_2)_3$ (*S*), $La_{0.93-y}Eu_{0.93-y}Eu_{0.05}Bi_x(BO_2)_3$ (*S*), $La_{0.93-y}Eu_{0.93$

стью передачи энергии от иона Bi^{3+} к иону Eu^{3+} . Bто же время при введении Bi³⁺ в состав метабората $La_{0.95}Eu_{0.05}(BO_2)_3$ интенсивность люминесценции иона Eu^{3+} уменьшается (рис. 46, кривая 2). Дальнейшее увеличение концентрации иона Bi³⁺ приводит к ослаблению интенсивности люминесценции как ортоборатов, так и метаборатов, что, как и в случае с тербием, связано с концентрационным тушением. Добавление в состав $La_{0.95-x}Eu_{0.05}Tb_xBO_3$ дополнительно 5 мол. % иона Ві³⁺ приводит к росту интенсивности люминесценции иона Eu^{3+} (рис. 4а, кривая 3), что предполагает, по-видимому, согласно данным [12], передачу энергии от ионов Bi^{3+} через ионы Tb^{3+} к ионам Eu³⁺ в результате разрешенных переходов 4f-5d. Однако для метаборатов состава $La_{0.95}$ " $Eu_{0.05}Bi_{\nu}(BO_{2})_{3}$ и $La_{0.93}$ " $Eu_{0.05}Tb_{0.02}Bi_{\nu}(BO_{2})_{3}$ аналогичного увеличения интегральной интенсивности люминесценции, как для ортоборатов состава $La_{0.95\,-\,x}Eu_{0.05}Bi_xBO_3$ и $La_{0.93\,-\,y}Eu_{0.05}Tb_{0.02}Bi_yBO_3$, не происходит (рис. 4б, кривая 3). Возможным объяснением данного факта, по-видимому, являются отличительные особенности кристаллических структур исследуемых ортоборатов и метаборатов. Кристаллическая структура ортобората LaBO3 и изоструктурных ортоборатов лантана, допированных ионами Eu^{3+} , Tb^{3+} , Bi^{3+} , построена из многогранников LaO₉ (среднее расстояние La-O 2.593 Å) и тригональных $[BO_3]^{3-}$ -групп (среднее расстояние B-O 1.373 Å) [2, 6, 7]. Редкоземельные ионы координированы девятью атомами кислорода и расположены между тригональными $[BO_3]^{3-}$ -группами. В метаборатах лантана моноклинной модификации α -типа α -La(BO₂)₃ и изоструктурных ей метаборатах лантана, допированных ионами Eu^{3+} , Tb^{3+} , Bi^{3+} , кристаллическая

структура построена из анионов $[B_6O_{12}]^{6-}$, состоящих из четырех тригональных групп $[BO_3]^{3-}$ и двух тетраэдров $[BO_4]^{5-}$, которые образуют связанные вместе редкоземельными ионами линейные цепи. При этом редкоземельные ионы располагаются в одномерных цепочках на расстоянии \sim 4 Å в цепочке, а четыре ближайших иона расположены в разных цепях на расстоянии \sim 5 Å [11]. Вероятно, уменьшение интенсивности люминесценции ($\lambda_{\rm ex}=260\,$ нм) иона Eu^{3+} в метаборатах $La_{0.95-x}Eu_{0.05}Bi_x(BO_2)_3$ и $La_{0.93-y}Eu_{0.05}Tb_{0.02}Bi_y(BO_2)_3$ происходит вследствие невозможности передачи энергии от иона Bi^{3+} и безызлучательного переноса энергии между данными ионами.

ЗАКЛЮЧЕНИЕ

Экстракционно-пиролитическим методом получены ортобораты $La_{0.95} = {}_xEu_{0.05}Tb_xBO_3$, $La_{0.95}Eu_{0.05}Bi_xBO_3$ и $La_{0.95} = {}_xEu_{0.05}Tb_{0.02}Bi_yBO_3$, а также метабораты $La_{0.95} = {}_xEu_{0.05}Tb_{x}(BO_2)_3$, $La_{0.95}Eu_{0.05}Bi_x(BO_2)_3$ и $La_{0.95} = {}_xEu_{0.05}Tb_{0.02}Bi_y(BO_2)_3$ (x = 0.005, 0.01, 0.02, 0.025, 0.05, 0.075, y = 0.005, 0.01, 0.02, 0.025, 0.05, 0.075, y = 0.005, 0.01, 0.02, 0.025, 0.05, 0.075). Указанный метод является более технологичным по сравнению с известным твердофазным синтезом за счет снижения температуры (750°C для ортоборатов и 800°C для метаборатов) и времени (2 ч) процесса синтеза.

В пределах используемых в данной работе концентраций допирующих ионов Tb^{3+} и Bi^{3+} происходит заместительное легирование ортобората $La_{0.95}Eu_{0.05}BO_3$ с сохранением фазы арагонита. При этом для метабората $La_{0.95}Eu_{0.05}(BO_2)_3$ не наблюдается изменения кристаллической структуры моноклинной модификации α -типа. ИК-

спектроскопическое исследование подтверждает данный вывод.

Рассчитаны параметры кристаллической решетки образцов ортоборатов и метаборатов различного состава. При допировании ионами Eu^{3+} , Tb^{3+} и Bi^{3+} , имеющими меньший ионный радиус, чем La^{3+} , параметры элементарной ячейки несколько уменьшаются.

При введении в состав $La_{0.95}Eu_{0.05}BO_3$ или метабората $La_{0.95}Eu_{0.05}(BO_2)_3$ добавок ионов-сенсибилизаторов Tb^{3+} , Bi^{3+} или $Tb^{3+} + Bi^{3+}$ характер спектров возбуждения люминесценции иона Eu³⁺ $(\lambda_{em} = 615 \text{ нм})$ в полученных при одинаковой температуре отжига прекурсоров образцах в ряду ортоборатов или метаборатов, как и характер спектров люминесценции иона Eu³⁺ (положение полос переходов ${}^5D_0 - {}^7F_i$ (j = 0, 1, 2, 3, 4) и распределение интенсивностей по полосам), при одинаковых длинах волн возбуждения (λ_{ex}) не изменяется. Это свидетельствует об идентичности ближайшего окружения иона Eu³⁺. Помимо полос переходов ${}^5D_0 - {}^7F_i$ в ионе $\mathrm{Eu^{3+}}$ при $\lambda_\mathrm{ex} = 235$ нм в спектрах люминесценции регистрируется полоса при ~545 нм ${}^5D_4 - {}^7F_5$ -перехода в ионе ${\rm Tb}^{3+}$, а при $\lambda_{\rm ex} = 260$ нм в области 420—450 нм — широкая малоинтенсивная полоса перехода ${}^{3}P_{1}-{}^{1}S_{0}$ в ионе ${\rm Bi}^{3+}$.

Основная доля энергии излучения иона Eu^{3+} в спектрах люминесценции $La_{1-x}Eu_xBO_3$, содержащем допирующие ионы Tb^{3+} и Bi^{3+} , приходится на доминирующий электродипольный $^5D_0-^7F_2$ -переход ($\lambda \sim 625$ нм) и чуть менее интенсивный магнитно-дипольный $^5D_0-^7F_1$ -переход ($\lambda \sim 595$ нм). В спектрах люминесценции $La_{1-x}Eu_x(BO_2)_3$ с такими же допирующими ионами основная доля энергии излучения иона Eu^{3+} приходится на переходы $^5D_0-^7F_1$ ($\lambda \sim 595$ нм) и $^5D_0-^7F_4$ ($\lambda \sim 700$ нм).

Введение иона Ть3+ и дальнейшее повышение его концентрации приводят к снижению люминесценции всех люминофоров. При добавлении иона Bi^{3+} до 5 мол. % в ортобораты $\mathrm{La}_{0.95}$ " $\mathrm{Eu}_{0.05}\mathrm{BO}_3$ и $La_{0.95-x}Eu_{0.05}Tb_xBO_3$ наблюдается увеличение интенсивности люминесценции, что может быть связано с возможностью передачи энергии от Bi³⁺ к Eu³⁺. Дальнейшее увеличение концентрации иона Bi³⁺ приводит к ослаблению интенсивности люминесценции как ортоборатов, так и метаборатов, что, как и в случае с тербием, связано с концентрационным тушением. Уменьшение интегральной интенсивности люминесценции в метаборатах при введении допирующих ионов Ть³⁺ и Bi³⁺ можно объяснить отличительными особенностями их кристаллической структуры.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Beihoucif R., Velazquez M., Platevin O. et al. // Opt. Mater. 2017. V. 73. P. 658. https://doi.org/10.1016/j.optmat.2017.09.026
- Wei H.W., Shao L.M., Jiao H. // Opt. Mater. 2018.
 V. 75. P. 442. https://doi.org/10.1016/j.optmat.2017.10.011
- 3. *Pytalev D.S., Cauran D., Majérus O. et al.* // J. Alloys Compd. 2015. V. 641. P. 43. https://doi.org/10.1016/j.jallcom.2015.03.244
- Halefoglu Y.Z. // Appl. Radiat. Isotopes. 2019. V. 148.
 № 1. P. 40. https://doi.org/10.1016/j.apradiso.2019.03.011
- Sari S., Senberber F.T., Yildirim M.S. et al. // Mater. Chem. Phys. 2017. V. 200. P. 196. https://doi.org/10.1016/j.matchemphys.2017.07.056
- 6. *Nayar R., Tamboli S., Sahu A.K. et al.* // J. Fluor. 2017. V. 27. № 1. P. 251. https://doi.org/10.1007/s10895-016-1952-7
- Omanwar S.K., Sawala. N.S. // Appl. Phys. A. 2017.
 V. 123. № 11. P. 673.
 https://doi.org/10.1007/s00339-017-1268-8
- 8. Fuchs B., Huppertz H. // Z. Naturforsch., B: Chem. Sci. 2019. V. 74. № 9. P. 685. https://doi.org/10.1515/znb-2019-0117
- Szczeszak A., Kubasiewicz K., Lis S. // Opt. Mater. 2013.
 V. 35. № 6. P. 1297. https://doi.org/10.1016/j.optmat.2013.02.001
- 10. *Velchuri R., Kumar B.V., Devi V.R. et al.* // Mater. Res. Bull. 2011. V. 46. № 8. P. 1219. https://doi.org/10.1016/j.materresbull.2011.04.006
- Heymann G., Soltner T., Huppertz H. // Solid State Sci. 2006. V. 8. № 7. P. 827. https://doi.org/10.1016/j.solidstatesciences.2006.03.002
- Abaci O.G.H., Esenturk O., Yılmaz A. et al. // Opt. Mater. 2019. V. 98. P. 109487. https://doi.org/10.1016/j.optmat.2019.109487
- 13. *Zhang J.*, *Yang M.*, *Jin H. et al.* // Mater. Res. Bull. 2012. V. 47. № 2. P. 247. https://doi.org/10.1016/j.materresbull.2011.11.015
- 14. *Górny A.*, *Sołtys M.*, *Pisarska J. et al.* // J. Rare Earths. 2019. V. 37. № 11. P. 1145. https://doi.org/10.1016/j.jre.2019.02.005
- Xu Y.W., Chen J., Zhang H. et al. // J. Mater. Chem. 2020. V. 8. P. 247. https://doi.org/10.1039/c9tc05311e
- Gopi S., Jose S.K., Sreeja E. et al. // J. Lumin. 2017.
 V. 192. P. 1288. https://doi.org/10.1016/j.jlumin.2017.09.009
- 17. *Steudel F., Ahrens B., Schweizer S.* // J. Lumin. 2017. V. 181. P. 31. https://doi.org/10.1016/j.jlumin.2016.08.066
- Wang R., Zhou D., Qiu J. et al. // J. Alloys Compd. 2015.
 V. 629. P. 310. https://doi.org/10.1016/j.jallcom.2014.12.233

- Loos S., Mungra M., Ahrens B. et al. // J. Lumin. 2017.
 V. 187. P. 298. https://doi.org/10.1016/j.jlumin.2017.03.030
- Sołtys M., Pisarska J., Leśniak M. et al. // J. Mol. Struct. 2018. V. 1163. P. 418. https://doi.org/10.1016/j.molstruc.2018.03.021
- 21. *Ma C.*, *Li X.*, *Zhang M. et al.* // Ceram. Int. 2018. V. 44. № 15. P. 18462. https://doi.org/10.1016/j.ceramint.2018.07.064
- 22. *GaoY., Jiang P., Gao W. et al.* // J. Solid State Chem. 2019. V. 278. P. 120915. https://doi.org/10.1016/j.jssc.2019.120915
- 23. *Zhu Q.*, *Fan Z.*, *Li S.*, *Li J.-G.* // J. Asian Ceram. Soc. 2020. V. 8. № 2. P. 542. https://doi.org/10.1080/21870764.2020.1761084
- Liang Z., Mo F., Zhang X. et al. // J. Lumin. 2014.
 V. 151. P. 47. https://doi.org/10.1016/j.jlumin.2014.02.001
- 25. *Gao J., Song L., Liu X. et al.* // J. Rare Earths. 2011. V. 29. № 4. P. 335.
- Yang R., Qi Y., Gao Y. et al. // J. Lumin. 2020. V. 219. P. 116880. https://doi.org/10.1016/j.jlumin.2019.116880

- 27. *Sun X.R.*, *Yang R.R.*, *Song R.X. et al.* // Inorg. Chem. 2016. V. 55. № 18. P. 9276. https://doi.org/10.1021/acs.inorgchem.6b01361
- 28. Sohn Y. // Ceram. Int. 2014. V. 40. № 1. P. 2467.
- 29. *Холькин А.И.*, *Патрушева Т.Н.* // Хим. технология. 2015. Т. 16. № 10. С. 576. [*Khol'kin A.I.*, *Patrusheva T.N.* // Theor. Found. Chem. Eng. 2016. V. 50. № 5. P. 785.]
- 30. Стеблевская Н.И., Медков М.А. Координационные соединения РЗЭ. Экстракция и получение нанокомпозитов. Саарбрюккен: Palmarium academic publishing, 2012. 371 с.
- 31. Стеблевская Н.И., Белобелецая М.В., Медков М.А. // Журн. неорган. химии. 2021. Т. 66. № 4. С. 440. [Steblevskaya N.I., Belobeletskaya M.V., Medkov M.A. // Russ. J. Inorg. Chem. 2021. V. 66. № 4. Р. 468.] https://doi.org/10.1134/S0036023621040215
- 32. *Nakamoto K*. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part A: Theory and Applications in Inorganic Chemistry. N.Y.: John Wiley and Sons Inc., 2009.
- 33. *Blasse G, Grabmaier B.C.* Luminescent materials. Berlin: Springer-Verlag, 1994. 233 p.