ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ, 2022, том 67, № 8, с. 1167–1171

ФИЗИКОХИМИЯ РАСТВОРОВ

УДК 544.35,537.86

РАДИОЯРКОСТНЫЕ СВОЙСТВА ВОДНЫХ РАСТВОРОВ ГИДРОКСИДОВ ЩЕЛОЧНЫХ МЕТАЛЛОВ В МИЛЛИМЕТРОВОЙ ОБЛАСТИ СПЕКТРА

© 2022 г. А. К. Лященко^{а,} *, А. Ю. Ефимов^а, И. М. Каратаева^а

^аИнститут общей и неорганической химии им. Н.С. Курнакова РАН, Ленинский пр-т, 31, Москва, 119991 Россия *e-mail: aklyas@mail.ru

Поступила в редакцию 19.01.2021 г. После доработки 28.02.2022 г. Принята к публикации 01.03.2022 г.

С помощью высокочувствительного радиометра на частоте 61.2 ГГц (в миллиметровой области спектра) в лабораторных условиях изучена радиояркость водных растворов щелочей (КОН, NaOH). Параметры радиояркости сопоставлены с расчетными данными из диэлектрических спектров в миллиметровой области. На примере растворов КОН выявлено соответствие экспериментальных и расчетных радиояркостных параметров в начальной области концентраций, где преобладают гидратационные изменения воды в растворах. Установлено, что даже в миллиметровой области необходимо учитывать спектральные вклады как дипольных, так и ионных потерь.

Ключевые слова: диэлектрическая спектроскопия, радиометрия, щелочи **DOI:** 10.31857/S0044457X22080207

введение

СВЧ-радиометрический метод широко используется для дистанционного исследования Земли из космоса [1]. Метод является крайне эффективным, он позволяет осуществлять контроль толшины земной поверхности и льда. чувствителен к шероховатостям и волнениям на поверхности суши и воды [2]. Изменения собственного теплового СВЧ-излучения исследуемых поверхностей могут быть выражены в радиояркостной температуре (T_{g}). Такие изменения T_{g} могут быть экспериментально получены с использованием высокочувствительных радиометров миллиметрового диапазона, появившихся в последнее время. Миллиметровая область спектра давно привлекает внимание исследователей, она нашла применение в медицине. Эффект влияния КВЧвоздействия на живые организмы обнаружен около полувека назад. Школа академика Н.Д. Девяткова занимает лидирующие позиции в развитии методик лечения с использованием метода миллиметровой терапии [3, 4].

Метод КВЧ-радиометрии (на частоте 61.2 ГГц) используется нами в лабораторной практике для определения характеристик излучения и отражения образцов воды и растворов разного состава и концентрации. Экспериментально полученные радиометрические параметры могут быть сопоставлены с расчетными диэлектрическими данными из сантиметровой области спектра. Работоспособность расчетной схемы связей диэлектрических и радиояркостных свойств ранее доказывалась нами на различных модельных системах — растворах электролитов и неэлектролитов [5–9].

В настоящей работе исследованы радиояркостные свойства водных растворов гидроксидов щелочных металлов (КОН, NaOH). Вопрос, который может быть поставлен в рамках настоящей работы, — будет ли гидроксид-анион в качестве нарушителя структуры воды элиминировать различия в действии на воду катионов с разной гидратацией — калия и натрия? Ранее в ряду хлоридов и нитратов щелочных металлов (К⁺, Na⁺) показаны разнознаковые радиояркостные эффекты, связанные с разным (противоположным по знаку) влиянием данных катионов на воду [10–12].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Методом радиометрии исследованы образцы бидистиллированной воды, растворов КОН и NaOH различных концентраций. Исследования проводили с использованием высокочувствительного радиометра с фиксированной частотой 61.2 ГГц (оборудование ИРЭ РАН, НПО "Исток", Фрязино [13]). Установка включает антенну (рупор), на которую помещается исследуемый образец, приемник, регистрирующее устройство (ПК), используется также вентилятор для предотвращения перегрева радиометра. Более подробное описание устройства радиометра и методики

Рис. 1. Сигналы излучения медной пластины, чистой воды и 2 М раствора гидроксида натрия: Си – медная пластина (для градуировки), *I* – вода, *2* – раствор.

проведения измерений и расчетов приведено в работах [5, 10, 13, 14]. Показания прибора оцифровываются и передаются на ПК, где с помощью специальной программы ведется запись и дальнейшая обработка сигнала. Запись сигнала ведется следующим образом: на оси абсцисс откладывается время проведения измерений (в часах, минутах, секундах), а по оси ординат – радиофизический отклик (напряжение на выходе рупора в вольтах, U). Градуировка шкалы прибора осуществляется с использованием полированной медной пластины, имеющей высокую отражательную способность [5]. Уровень сигнала от металлической (медной) пластины принимается за нулевой. Максимальный отсчет для медной поверхности

Таблица 1. Разность сигналов ΔU_{cp} , коэффициенты излучения χ и радиояркостные температуры T_{g} растворов КОН и NaOH, полученные с помощью радиометра на частоте 61.2 ГГц

Система	Моляльность, моль/кг H ₂ O	$\Delta U_{ m cp},$ мВ	χ	<i>Т</i> _я , К
H ₂ O	0	0	0.506	150.9
КОН	1.7	-2.5	0.479	142.8
	3.1	-3.9	0.458	136.6
	4.3	-5.6	0.456	135.9
NaOH	0.4	-0.1	0.505	150.6
	1.0	-0.9	0.497	148.2
	2.0	-1.4	0.492	146.7
	3.0	-2.8	0.478	142.5
	4.0	-4.5	0.461	137.4

соответствует минимальному излучению (нулевой сигнал), а минимальные показания прибора для воды и растворов отвечают максимальному эффекту. Таким образом, радиометр имеет обратную шкалу. В качестве примера регистрируемые сигналы для медной пластины, дистиллированной воды и раствора гидроксида натрия показаны на рис. 1, из которого видно, что излучение растет при переходе от медной пластины к воде и раствору. При переходе от воды к 2 М раствору гидроксида натрия излучение падает.

В ходе измерений сигнал от радиометра периодически флуктуирует. Величины U для медной пластины, воды и раствора могут меняться даже при незначительных изменениях температуры, поэтому радиояркостные параметры для воды и растворов целесообразнее сравнивать, используя относительный метод анализа. Так, величина $\Delta U = U_{\text{раствора}} - U_{\text{воды}}$ практически не зависит от температуры в комнате и меняется лишь при изменении концентрации растворов. Для сведения к минимуму погрешности измерений и повышения точности результатов парные измерения $U_{\rm раствора}$ и $U_{\rm воды}$ проводили не менее 5 раз. Значение $\Delta U_{cp} = (\Delta U_1 + \Delta U_2 + \Delta U_3 + \Delta U_4 + \Delta U_5)/5$ может быть использовано для расчета пропорциональных ему параметров χ (коэффициент излучения) и $T_{\rm s}$ (радиояркостной температуры). Величины ΔU_{cp} , коэффициенты излучения χ и радиояркостные температуры T_{g} растворов КОН и NaOH, полученные с помощью радиометра на частоте 61.2 ГГц, представлены в табл. 1.

Система	Моляльность, моль/кг Н ₂ О	χ(d)*	χ	$T_{\mathfrak{g}}(d)^*, \mathbf{K}$	<i>Т</i> _я , К
H ₂ O	0	0.506	0.506	150.9	150.9
КОН	0.5	0.518	0.494	154.4	147.3
	1.0	0.532	0.490	158.6	146.1
	1.6	0.543	0.486	161.9	144.9
	2.1	0.553	0.481	164.9	143.4
	2.6	0.563	0.479	167.8	142.8
NaOH**	0.4	0.515	0.495	153.5	147.6

Таблица 2. Коэффициенты излучения χ и радиояркостная температура $T_{\rm s}$ водных растворов КОН и NaOH на частоте 61.2 ГГц, полученные экстраполяцией диэлектрических данных из диапазона частот 7–25 ГГц

* Расчет без учета ионной составляющей.

** По экспериментальным данным [19].

РАСЧЕТНАЯ СХЕМА

Оптические и диэлектрические свойства растворов связаны друг с другом посредством соотношения коэффициента отражения R(v) и комплексной диэлектрической проницаемости $\varepsilon^*(v)$ (формула Френеля, случай нормально падающей волны) [15, 16]:

$$R(\mathbf{v}) = \left| \frac{\sqrt{\varepsilon^*(\mathbf{v})} - 1}{\sqrt{\varepsilon^*(\mathbf{v})} + 1} \right|^2.$$
(1)

Комплексная диэлектрическая проницаемость $\varepsilon^*(v)$ определяется с помощью экспериментально измеряемых диэлектрической проницаемости $\varepsilon'(v)$ и диэлектрических потерь $\varepsilon''(v)$ [17]:

$$\varepsilon^*(\mathbf{v}) = \varepsilon'(\mathbf{v}) - i\varepsilon''(\mathbf{v}), \quad i = \sqrt{-1}.$$
 (2)

Чтобы получить значения є' и є" для иной частоты v (в данном случае для v = 61.2 ГГц), требуется аппроксимировать диэлектрические данные, полученные для других частот, в рамках заданной релаксационной модели спектра комплексной диэлектрической проницаемости. В настоящей работе диэлектрические данные є' и є" в области максимума дисперсии воды в диапазоне частот 7–25 ГГц для водных растворов гидроксидов щелочных металлов [18, 19] аппроксимировали функциями вида:

$$\varepsilon(\mathbf{v}) = \varepsilon_{\infty} + \frac{\varepsilon_{S} - \varepsilon_{\infty}}{1 + (2\pi i v \tau)^{1 - \alpha}},\tag{3}$$

где ε_{∞} — высокочастотный предел для рассматриваемой области дисперсии, ε_{s} — статическая диэлектрическая проницаемость, τ — время релаксации, α — параметр распределения времени релаксации [20].

Диэлектрические потери электролитов (є") складываются из двух составляющих: дипольных и ионных потерь:

$$\varepsilon^{"}(\mathbf{v}) = \varepsilon^{"}(\mathbf{v})_d + \varepsilon^{"}(\mathbf{v})_i.$$
⁽⁴⁾

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 67 № 8 2022

Дипольные потери связаны с поглощением излучения из-за переориентации дипольных молекул. В растворах электролитов, в дополнение к дипольной составляющей потерь, присутствуют движения заряженных ионов под действием излучения (ионный вклад в потери). Частотная зависимость ионного вклада выражается формулой [21]:

$$\varepsilon''(\mathbf{v})_i = \frac{\sigma}{2\pi\varepsilon_0 \mathbf{v}},\tag{5}$$

где ε_0 – электрическая постоянная, σ – электропроводность раствора, См/м.

Значения параметров моделей диэлектрических спектров, использованных при экстраполяции диэлектрических данных из диапазона частот 7—25 ГГц на частоту 61.2 ГГц для растворов КОН [18], приведены в табл. 2. Для растворов NaOH в литературе [19] имеются данные по диэлектрическим свойствам только для одной концентрации (0.4 М) в отличающемся интервале частот.

Коэффициент отражения R связан с измеряемым в радиометрическом эксперименте коэффициентом излучения χ простым соотношением:

$$\chi = 1 - R.$$

Радиояркостная температура $T_{\rm s}$ находится из выражения:

$$T_{\rm g} = (1 - R)T = \chi T$$

(в данной работе термодинамическая температура T = 298.15 K).

Коэффициенты излучения χ и радиояркостная температура $T_{\rm g}$ водных растворов КОН и NaOH на частоте 61.2 ГГц, полученные экстраполяцией диэлектрических данных из диапазона частот 7–25 ГГц, представлены в табл. 2. Сопоставлены два варианта рассчитанных параметров. В одном случае учитываются как ионные, так и дипольные диэлектрические потери (χ , $T_{\rm g}$), а в другом (χ (d), $T_{\rm g}(d)$) – только дипольный вклад в ε ".

Рис. 2. Концентрационные зависимости коэффициентов излучения χ на частоте 61.2 ГГц. Растворы: *1* – NaOH (расчетные значения по экспериментальным параметрам [19]), *2* – NaOH (радиометрические данные); *3* – КOH (расчетные значения по экспериментальным данным [18]), *4* – КOH (радиометрические данные).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Обзор существующей литературы по характеристикам измерений водных растворов щелочей и кислот показывает, что данные соединения представляют особый случай, в них протон и гидроксид-анион обладают аномальной проводимостью. Следовательно, для учета потерь, вносимых сквозной проводимостью, необходимо измерять низкочастотную удельную электропроводность. Радиометрический метод, учитывающий обе составляющие, вполне позволяет охарактеризовать параметры собственного излучения растворов с разными ионами в мм-области спектра и открывает возможности для более точного подбора релаксационной модели для описания спектров в сантиметровой области.

Из рис. 2 видно, что параметры радиояркости для рассматриваемых систем уменьшаются при переходе от воды к раствору. Это следует как из экспериментальных, так и расчетных данных. В случае растворов солей уменьшение параметров радиояркости в первую очередь связано со слабой гидратацией ионов (ион K⁺). Ион Na⁺, более сильно гидратирующийся по сравнению с ионом калия, дает обратное изменение. Например, это видно для растворов хлоридов щелочных металлов [11, 15, 16]. Однако аномально подвижный гидроксид-ион привносит превалирующий эф-

Рис. 3. Зависимости $\Delta T_{g} = T_{g}$ (раствора) – T_{g} (воды) от концентрации раствора КОН по радиометрическим и диэлектрическим данным: 1 – расчет без учета ионных потерь, 2 – радиометрические данные, 3 – расчет с учетом дипольных и ионных потерь.

фект. Из рис. 2 видно, что эффекты радиояркости как для гидроксида натрия, так и для гидроксида калия дают изменения одного знака.

Нами сопоставлены рассчитанные и измеренные радиояркостные параметры. Для растворов КОН выявлено согласие данных в начальной области концентраций, где преобладают гидратационные изменения воды в растворах. Для растворов NaOH такое сопоставление только качественное. Диэлектрические параметры для расчета имеются только для одной концентрации и получены для отличающегося набора частот.

В случае растворов КОН были также рассчитаны величины $\Delta T_{\rm g}$, связанные только с дипольными диэлектрическими потерями. Как видно из рис. 3, в этом случае не наблюдается соответствия экспериментальных и рассчитанных величин. Это следует даже по знаку изменений. В миллиметровой области необходимо учитывать спектральные вклады как дипольных, так и ионных потерь.

ЗАКЛЮЧЕНИЕ

Метод измерения радиотеплового излучения миллиметрового диапазона длин волн оказывается информативным для определения изменений гидратации и динамики ионов, что наблюдается в случае растворов гидроксидов щелочных металлов. Ранее этот факт был продемонстрирован для водных растворов солей и кислот. Следовательно, подход является достаточно общим для водноэлектролитных сред разного состава и концентрации. Он требует более подробного изучения в случае других частот миллиметровой области спектра.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках государственного задания ИОНХ РАН в области фундаментальных научных исследований.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Садовский И.Н., Шарков Е.А., Кузьмин А.В. и др. // Исследование земли из космоса. 2014. № 6. С. 79. https://doi.org/10.7868/S0205961414060050
- 2. Шутко А.М. СВЧ-радиометрия водной поверхности. М.: Наука, 1986. 188 с.
- 3. Девятков Н.Д. // Успехи физ. наук. 1973. Т. 10. Вып. 3. С. 453.
- 4. Девятков Н.Д. // Электронная техника. Сер. 1. Электроника СВЧ. 1970. Вып. 4. С. 130.
- 5. Лященко А.К., Каратаева И.М., Дуняшев В.С. // Журн. физ. химии. 2019. Т. 93. № 4. С. 552. [Lvashchenko A.K., Karataeva I.M., Dunyashev V.S. // Russ. J. Phys. Chem. 2019. V. 93. № 4. P. 682.] https://doi.org/10.1134/S0036024419040204
- 6. Ляшенко А.К., Ефимов А.Ю., Луняшев В.С., Каратаева И.М. // Журн. неорган. химии. 2020. Т. 65. № 2. C. 237. [Lyashchenko A.K., Efimov A.Yu., Dunyashev V.S., Karataeva I.M. // Russ. J. Inorg. Chem. 2020. V. 65. № 2. P. 241.1

https://doi.org/10.1134/S0036023620020096

- 7. Лященко А.К., Ефимов А.Ю., Дуняшев В.С., Ефименко И.А. // Журн. неорган. химии. 2020. Т. 65. № 11. C. 1565. [Lyashchenko A.K., Efimov A.Yu., Dunyashev V.S., Efimenko I.A. // Russ. J. Inorg. Chem. 2020. V. 65. № 11. P. 1776. https://doi.org/10.1134/S003602362011011X]
- 8. Лященко А.К., Ефимов А.Ю., Дуняшев В.С. // Журн. физ. химии. 2021. Т. 95. № 4. С. 558. [Lyashchenko A.K., Efimov A.Y., Dunyashev V.S. // Russ. J. Phys. Chem. A. 2021. V. 95. № 4. P. 713.] https://doi.org/10.1134/S0036024421040154

9. Лященко А.К., Каратаева И.М., Дуняшев В.С., Ефимов А.Ю. // Журн. физ. химии. 2021. Т. 95. № 8. C. 1211. [Lyashchenko A.K., Karataeva I.M., Dunyashev V.S., Efimov A.Y. // Russ. J. Phys. Chem. A. 2021. V. 95. № 8. P. 1601.] https://doi.org/10.1134/S0036024421080197

10. Лященко А.К., Каратаева И.М., Козьмин А.С., Бецкий О.В. // Докл. АН. 2015. Т. 462. № 5. С. 561. [Lyashchenko A.K., Karataeva I.M., Kozmin A.S., Betskii O.V. // Dokl. Phys. Chem. 2015. V. 462. № 2. P. 127.] https://doi.org/10.1134/S0012501615060032

11. Лященко А.К. // З-я Всероссийская конф. "Физика

- водных растворов". Тез. докл. 14-15 декабря 2020 г. M., 2020.
- 12. Ляшенко А.К. // Журн. РЭНСИТ. 2020. Т. 12. № 1. C. 81. https://doi.org/10.17725/rensit.2020.12.081
- 13. Криворучко В.И. // Изв. вузов. Радиофизика. 2003. T. 46. № 8–9. C. 782.
- 14. Козьмин А.С. Низкоинтенсивное электромагнитное излучение миллиметрового диапазона воды и водных растворов. Дис. ... канд. физ.-мат. наук. Волгоград, 2011. 180 с.
- 15. Засецкий А.Ю., Ляшенко А.К. Квазиоптический метод измерения комплексной диэлектрической проницаемости водных растворов электролитов в миллиметровом диапазоне длин волн и релаксационные характеристики растворов. Деп. ВИНИТИ 06.07.99. M., 1999. № 2181-B99. 62 c.
- 16. Lvashchenko A.K., Zasetsky A.Yu. // J. Mol. Liq. 1998. V. 77. P. 61. https://doi.org/10.1016/S0167-7322(98)00068-3
- 17. Поплавко Ю.М. Физика диэлектриков. Киев: Вища школа, 1980. 400 с.
- 18. Лилеев А.С., Логинова Д.В., Лященко А.К. // Журн. неорган. химии. 2011. Т. 56. № 6. С. 1017.
- 19. Kaatze V.U. // J. Chem. Phys. 1973. T. 77. № 6. C. 447.
- 20. Cole K.S., Cole R.H. // J. Chem. Phys. 1942. V. 10. P. 98.

https://doi.org/10.1063/1.1723677

21. Barthel J., Buchner R., Munsterer M. Electrolyte data collection. Part 2: Dielectric properties of water and aqueous electrolyte solutions. DECHEMA Chemistry Data Series, 1995. V. 12.