СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 549.731.11+536.631+544.312

СИНТЕЗ И ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА ИНДАТА МАГНИЯ

© 2022 г. О. Н. Кондратьева^{*a*, *}, М. Н. Смирнова^{*a*}, Г. Е. Никифорова^{*a*}, А. В. Хорошилов^{*a*}, А. А. Архипенко^{*a*}, В. М. Гуревич^{*b*}

^аИнститут общей и неорганической химии им. Н.С. Курнакова РАН, Ленинский пр-т, 31, Москва, 119991 Россия ^bИнститут геохимии и аналитической химии им. В.И. Вернадского РАН, ул. Косыгина, 19, Москва, 119991 Россия

> *e-mail: olga.kondratieva@igic.ras.ru Поступила в редакцию 08.02.2022 г. После доработки 16.02.2022 г. Принята к публикации 24.02.2022 г.

Предложен способ получения индата магния и проведено экспериментальное исследование его термодинамических свойств. Порошок $MgIn_2O_4$ синтезирован путем высокотемпературного отжига смеси нанокристаллических оксидов индия и магния. Смесь получена в результате термического разложения гелеобразного прекурсора на основе глицина и нитратов магния и индия. Микроструктура, фазовый и химический состав порошка, полученного в результате высокотемпературного отжига, изучены методами сканирующей электронной микроскопии, рентгенофазового анализа и рентгенофлуоресцентной спектрометрии. Зависимость теплоемкости $MgIn_2O_4$ от температуры измерена с помощью релаксационной, адиабатической и дифференциальной сканирующей калориметрии в диапазоне от 4.2 до 1346 К. Установлено, что экспериментальная кривая теплоемкости в изученном температурном диапазоне не имеет аномалий. С использованием измеренных значений $MgIn_2O_4$ в диапазоне от 0 до1346 К.

Ключевые слова: MgIn₂O₄, шпинель, адиабатическая калориметрия, релаксационная калориметрия, ДСК, теплоемкость, термодинамические свойства **DOI:** 10.31857/S0044457X22080190

ВВЕДЕНИЕ

Двойные оксиды с общей формулой $A^{II}B_{2}^{III}O_{4}$ $(A^{II} = Mg, Zn; B^{III} = Al, Ga, In),$ обладающие кубической кристаллической структурой типа шпинели, получили широкую известность благодаря высоким физико-механическим [1-3], теплофизическим [3-7], электрическим и оптическим свойствам [7-10]. Широкий спектр функциональных свойств в сочетании с тугоплавкостью [7], химической инертностью и устойчивостью по отношению к ионизирующему излучению [11-14] делает эти материалы перспективными для применения в фотонике и силовой электронике [10], в качестве защитных жаростойких покрытий [15, 16] и матриц для хранения радиоактивных материалов и отходов [13]. По сравнению с другими оксидными шпинелями физико-химические свойства MgIn₂O₄ остаются малоизученными. Исследование кристаллического строения и катионного распределения показало, что MgIn₂O₄ имеет кристаллическую решетку полностью обращенной шпинели [17], в которой катионы магния преимущественно занимают октаэдрические позиции. Тепловое расширение его кристаллической решетки было изучено методом высокотемпературной рентгенографии [18]. Авторами этой работы было установлено, что MgIn₂O₄ обладает КТР, равным 11 × 10⁻⁶ K⁻¹. По данным измерений оптических и электрических характеристик, проведенных как на массивной керамике [19–24], так и на тонких пленках [25–27], индат магния относится к широкозонным полупроводникам ($E_g \sim 3.5 \Rightarrow B$) и обладает электропроводностью ~100 См/см (300 K) [23]. Такие свойства позволяют рассматривать его как перспективный материал для прозрачных проводящих электродов, а также компонентов фотоэлектрохимических солнечных элементов.

Традиционно индат магния получают твердофазным способом [14, 19, 22, 23, 28], однако существует ряд работ, в которых были использованы методы растворной химии: совместного осаждения [17], золь-гель [18, 29] и др. [20, 21]. Следует отметить, что литературные данные о возможности получения беспримесного индата магния достаточно противоречивы. Так, в ряде работ [22, 28, 29] показано, что даже длительный (>120 ч) высокотемпературный (>120°С) отжиг смеси, состоящей из оксида (или карбоната) магния и оксида индия, не приводит к получению однофазного порошка $MgIn_2O_4$. По-видимому, это связано с очень узкой областью гомогенности индата магния. По мнению авторов работы [17], данная шпинель существует в присутствии небольшого избыточного количества ионов магния. Авторы [29], в свою очередь, показали, что на фазовый состав примеси и ее количество в $MgIn_2O_4$, образующемся в результате отжига продуктов термолиза геля на основе нитратов магния и индия, существенно влияет тип и количество используемого органического "топлива".

В последние годы были опубликованы расчетно-теоретические работы по изучению фазовых переходов в $MgIn_2O_4$ [30], а также его механических [31] и термоэлектрических [32] свойств. С помошью метода Монте-Карло было предсказано [30], что на кривой теплоемкости шпинели должны существовать максимумы (при 310 и 1100 К), отвечающие перераспределению катионов Mg²⁺ и In³⁺ внутри октаэдрической и между тетраэдрической и октаэдрической подрешетками. Экспериментальная проверка существования этих переходов путем измерения теплоемкости MgIn₂O₄ и сравнение полученных результатов с предсказанными представляют интересную научную задачу. В настоящей работе предложен способ получения шпинели MgIn₂O₄ и впервые представлены результаты измерения ее теплоемкости, а также результаты расчета термодинамических свойств в широком диапазоне температур.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез индата магния осуществляли в два этапа. Первый из них заключался в термическом разложении гелеобразного прекурсора, получаемого в результате выпаривания смеси водных растворов нитратов магния и индия с добавлением глицина и нитрата аммония, второй — в высокотемпературном отжиге полученного порошка.

В качестве исходных реактивов для получения растворов Mg(NO₃)₂ и In(NO₃)₃ использовали вчетверо разбавленную дистиллированной водой азотную кислоту (ГОСТ 11125-84, ос. ч. 18-4, $\omega(HNO_3) = 70\%)$ и металлические магний (ГОСТ 804-93, марка "Мг 90", $\omega(Mg) = 99.90\%)$ и индий (FOCT 10297-94, марка "Ин-0", $\omega(In) = 99.998\%$). К водному раствору Mg(NO₃)₂ и In(NO₃)₃ добавляли смесь глицина (ГОСТ 5860-75, х. ч., $\omega(NH_2CH_2COOH) = 99.8\%)$ и нитрата аммония (ГОСТ 22867-77, х. ч., ω (NH₄NO₃) = 99.9%), а затем при температуре около 80–90°С выпаривали до гелеобразного состояния. Дальнейшее нагревание реакционной смеси приводило к ее воспламенению и разложению, в результате которого образовывался серо-коричневый порошок. Уравнение протекающей реакции можно записать следующим образом:

$$Mg(NO_{3})_{2(p-p)} + 2In(NO_{3})_{3(p-p)} + + 2NH_{2}CH_{2}COOH_{(TB)} + 5NH_{4}NO_{3(TB)} = = MgIn_{2}O_{4(TB)} + 4CO_{2(r)} + + 10N_{2(r)} + 15H_{2}O_{(r)} + 8O_{2(r)}.$$

После охлаждения порошок-прекурсор в течение 0.5 ч размалывали в вибромельнице, а затем нагревали при температуре 1400°С в течение 8 ч. Полученный образец представлял собой белый тонкозернистый порошок.

Керамику для измерений получали методом холодного одноосного прессования. Предварительно перетертый под ацетоном и спрессованный под давлением ~200 МПа порошок $MgIn_2O_4$ спекали в платиновых тиглях при 1400°С в течение 8 ч. Плотность (ρ_{obs}) спеченных таблеток была определена геометрическим методом и выражена в процентах от теоретической (ρ_{XRD}) плотности.

Рентгенофазовый анализ (**РФА**) полученных порошков проводили на дифрактометре Bruker D8 Advance в геометрии Брэгга—Брентано в Cu K_{α} -излучении ($\lambda = 1.5418$ Å) с применением никелевого фильтра. Рентгенограммы регистрировали при комнатной температуре в диапазоне углов 20 от 10° до 60° с шагом 0.0133° (время накопления 0.5 с/шаг). Полученные результаты обрабатывали с использованием программного обеспечения Bruker TOPAS.

Микроструктуру порошка индата магния исследовали с помощью сканирующей электронной микроскопии (СЭМ) на установке Carl Zeiss NVision 40 CrossBeam. Содержание магния и индия в порошке определяли методом рентгенофлуоресцентной спектрометрии (РФС) на приборе Спектроскан МАКС-GVM.

Температурную зависимость теплоемкости $C_{p,m}(T)$ MgIn₂O₄ исследовали в интервале температур 4.21–1346 К. Измерение теплоемкости методом релаксационной калориметрии (**PK**) проводили на автоматизированной установке Quantum Design PPMS-9. Образцами для исследований служила керамика в форме таблеток (~2 × 2 × 1 мм), имеющих плотность ~90% от теоретической. Измерения теплоемкости в интервале 4.21–70.7 К проводили с использованием криогенной смазки Аріеzon N. По данным производителя, точность измерений теплоемкости в диапазоне от 2 до 300 К составляет ±5%.

Для измерения теплоемкости индата магния методом адиабатической калориметрии (**AK**) использовали автоматизированную теплофизическую установку БКТ-3 (Россия). Предварительно установку калибровали путем измерения теплоемкости бензойной кислоты марки K-2. Сравнение со справочными данными [33, 34] показало, что в интервале температур 79.3 $\leq T \leq 351$ K отно-

Рис. 1. Рентгенограммы порошков, полученных в результате разложения гелеобразного прекурсора (а); отжига порошка-прекурсора при температуре 1400°С в течение 8 ч (б).

сительные отклонения измеренных величин теплоемкости стандарта не превышали $\pm 0.5\%$.

Теплоемкость MgIn₂O₄ при высоких температурах (316—1346 K) изучали методом дифференциальной сканирующей калориметрии (ДСК). Измерения проводили на синхронном термическом анализаторе Netzsch STA 449 F1 Jupiter в платиновом тигле в потоке аргона высокой чистоты (марка 5.5, ϕ (Ar) = 99.9995%). Перед измерением кривой теплоемкости образца проводили измерение теплоемкости стандарта (ω (α -Al₂O₃) = = 99.95%). Сравнение с литературными данными [35] показало, что в интервале 316—1346 K относительное отклонение измеренных величин теплоемкости для α -Al₂O₃ не превышает ±2%.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Результаты РФА синтезированных порошков приведены на рис. 1а, 1б. Анализ рентгенограммы порошка, полученного в результате термического разложения гелеобразного прекурсора (рис. 1а), показал, что он состоит из смеси двух кубических нанокристаллических фаз: In_2O_3 со структурой биксбиита (PDF № 01-071-2194) и MgO со структурой галита (PDF № 00-045-0946). Кроме того, на рентгенограмме наблюдаются слабые широкие рефлексы, принадлежащие шпинели MgIn₂O₄ (PDF № 00-040-1402). Высокотемпературный отжиг полученного порошка привел к исчезновению рефлексов примесных фаз MgO и In_2O_3 , а также к появлению рефлексов MgIn₂O₄ и росту их интенсивности

Рис. 2. Результаты РФС образца MgIn₂O₄.

(рис. 16). Таким образом, можно утверждать, что в пределах точности рентгенофазового анализа порошок индата магния является однофазным. Синтезированный MgIn₂O₄ (пр. гр. $Fd\overline{3}m$) имеет следующие параметры элементарной ячейки: a = 0.88646 нм, V = 0.69660 нм³, $\rho_{XRD} = 6063$ кг/м³.

Результаты РФС (рис. 2) показали, что фактическое содержание металлов в полученном образце $MgIn_2O_4$ (9.19 мас. % Mg; 90.81 мас. % In) близко к теоретическому (9.57 мас. % Mg; 90.43 мас. % In).

Микрофотографии порошка индата магния, полученного после высокотемпературного отжига, показаны на рис. За, Зб. Можно отметить, что порошок обладает неоднородной микроструктурой. На микрофотографиях видны зерна MgIn₂O₄ с несовершенной октаэдрической огранкой, а также характерные для шпинелей скелетные формы роста. При этом на поверхности отдельных зерен MgIn₂O₄ размером ~2–3 мкм видны четкие треугольные ступени роста (рис. 36).

Экспериментальная кривая теплоемкости $C_{p,m}(T)$ MgIn₂O₄, полученная в результате объединения данных РК (4.21–70.7 К), АК (79.3–351 К) и ДСК (316–1346 К), приведена на рис. 4. Как и в случае MgGa₂O₄ [5], явных аномалий, наличие которых характерно для фазовых превращений, на температурной кривой теплоемкости индата магния не наблюдается. Можно отметить, что на участке 300–315 К наблюдается едва заметное изменение наклона кривой $C_{p,m} = f(T)$ (вставка на рис. 4). Однако эта особенность, на наш взгляд, обусловлена разбросом экспериментальных точек и не может быть отнесена к фазовому переходу, предсказанному в [30].

КОНДРАТЬЕВА и др.

Рис. 3. Микроструктура порошка MgIn₂O₄: а – общий вид; б – увеличенный фрагмент, иллюстрирующий зерна порошка со ступенями роста.

Результаты измерений теплоемкости на участке 4.21–1346 К были аппроксимированы с помощью полиномов (1), (3) [36, 37] и двух линейных комбинаций ортонормированных полиномов (2) [38]:

$$C_{p,m}(T) = aT^3 + bT + cT^5 + dT^7 + eT^9, \qquad (1)$$

$$C_{p,m}(T) = \sum_{j=0}^{r} A_j U^j, \quad U = \ln \frac{T}{400}, \quad j = 0, 1, 2, \dots, r, (2)$$

$$C_{p,m}(T) = k_0 + k_{\ln} \ln(T) + k_1 T^{-1} + k_2 T^{-2} + k_3 T^{-3}, \quad (3)$$

где $C_{p, m}(T)$ в Дж/(К моль); $a, b, c, d, e, k_0, k_{ln}, k_1, k_2, k_3 - коэффициенты полиномов (1) и (3); <math>A_j$ – коэффициенты ортонормированного полинома (2), j – степень полинома. Найденные значения коэффициентов полиномов (1)–(3) приведены в табл. 1.

Поскольку экспериментальные значения $C_{p, m}$ в области очень низких температур не подчиняются кубическому закону, для экстраполяция

Таблица 1. Коэффициенты полиномов (1)-(3)

Параметр	Величина параметра		
Полином (1) 0—17 К			
$a, Дж/(K^4 моль)$	1.59157×10^{-4}		
b , Дж/(K^2 моль)	2.18393×10^{-4}		
<i>с</i> , Дж/(К ⁶ моль)	2.31205×10^{-8}		
<i>d</i> , Дж/(К ⁸ моль)	8.99083×10^{-10}		
<i>е</i> , Дж/(К ¹⁰ моль)	-1.59671×10^{-12}		
Полином (2.1) 17-55 К			
<i>А</i> ₀ , Дж/(К моль)	-2.65497×10^4		
<i>А</i> ₁ , Дж/(К моль)	-8.21678×10^4		
<i>А</i> ₂ , Дж/(К моль)	-1.10127×10^{5}		
<i>А</i> ₃ , Дж/(К моль)	-8.37219×10^4		
<i>А</i> ₄ , Дж/(К моль)	-3.95192×10^4		
<i>А</i> ₅ , Дж/(К моль)	-1.18622×10^4		
<i>А</i> ₆ , Дж/(К моль)	-2.21103×10^{3}		
<i>А</i> ₇ , Дж/(К моль)	-233.979		
<i>А</i> ₈ , Дж/(К моль)	-10.7635		
Полином (2.2) 55-325 К			
<i>А</i> ₀ , Дж/(К моль)	153.407		
A_1 , Дж/(К моль)	50.0867		
<i>А</i> ₂ , Дж/(К моль)	-38.4311		
<i>А</i> ₃ , Дж/(К моль)	-87.1444		
A_4 , Дж/(К моль)	-187.238		
<i>А</i> ₅ , Дж/(К моль)	-178.058		
<i>А</i> ₆ , Дж/(К моль)	-73.1626		
<i>А</i> ₇ , Дж/(К моль)	-10.9788		
Полином (3) 325–1346 К			
<i>k</i> ₀ , Дж/(К моль)	-155.375		
<i>k_{ln}</i> , Дж/(К моль)	42.9802		
<i>k</i> ₁ , Дж/моль	5.06656×10^4		
<i>k</i> ₂ , (Дж К)/моль	-1.54881×10^{7}		
<i>k</i> ₃ , (Дж К ²)/моль	1.35506×10^{9}		

температурной кривой теплоемкости к абсолютному нулю был выбран полином (1). Результаты аппроксимации теплоемкости $MgIn_2O_4$ в интервале температур 0—1346 К представлены в табл. 2

Рис. 4. Теплоемкость MgIn₂O₄ в интервале от 0 до 1346 К: *1*, *2*, *3* – экспериментальная зависимость, полученная методами РК, АК, ДСК; *4* – кривая $C_{p, m}(T)$, полученная с помощью аппроксимирующих полиномов (1)–(3). На вставке показаны участки кривой теплоемкости в интервалах от 0 до 47 К и от 280 до 350 К.

и в виде графика приведены на рис. 4. Относительное отклонение рассчитанных значений теплоемкости от экспериментальных ($\delta C_{p, m}$, %) не превышает погрешности измерений теплоемкости. Максимальное значение $\delta C_{p, m}$ в изученном интервале температур составило 1.02% (при 4.21 K) при среднем отклонении 0.10%.

С использованием зависимостей $C_{p, m} = f(T)$ и $C_{p, m}/T = f(T)$ были рассчитаны температурные зависимости следующих термодинамических функций: приращения энтальпии $\Delta_0^T H_m^{\circ}(T)$ и энтропии $\Delta_0^T S_m^{\circ}(T)$. Функция $\Phi_m^{\circ}(T)$ была рассчитана по формуле: $\Phi_m^{\circ}(T) = -\Delta_0^T H_m^{\circ}(T)/T + \Delta_0^T S_m^{\circ}(T)$. Результаты этих вычислений приведены в табл. 2. Значения стандартных термодинамических функций при 298.15 К составляют: $C_{p,m}^{\circ}$ (298.15 K) = 136.53 ± 0.68 Дж/(К моль); S_m° (298.15 K) = 133.92 ± ± 0.67 Дж/(К моль); Φ_m° (298.15 K) = 59.14 ± ± 0.30 Дж/(К моль).

ЗАКЛЮЧЕНИЕ

Микрокристаллический индат магния получен комбинированием метода глицин-нитратного горения геля с высокотемпературным отжигом. Установлено, что в пределах точности РФА примесные фазы в порошке шпинели отсутствуют, а соотношение металлов близко к стехиометрическому. Впервые с помощью комплекса калориметрических методов исследована зависимость теплоемкости индата магния от температуры. Экспериментально показано, что аномалии, характерные для фазовых переходов, на кривой теплоемкости отсутствуют. Рассчитаны температурные зависимости термодинамических функций MgIn₂O₄ и определено значение его абсолютной энтропии при T = 298.15 К.

БЛАГОДАРНОСТЬ

Исследования выполнены с использованием оборудования ЦКП ФМИ ИОНХ РАН.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при финансовой поддержке Российского научного фонда (грант РНФ № 20-73-00241).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 67 № 8 2022

КОНДРАТЬЕВА и др.

Т, К	<i>С_{р, m}</i> , Дж/(К моль)	$\Delta_0^T H_m^{\circ}(T),$ Дж/моль	$\Delta_0^T S_m^{\circ}(T),$ Дж/(К моль)	$\Phi^\circ_{\it m}$, Дж/(К моль)
1	0.00037757	0.00014899	0.00027145	0.00012246
5	0.021126	0.027701	0.0077476	0.0022075
10	0.17105	0.42231	0.056806	0.014575
15	0.65022	2.2787	0.20096	0.049047
20	1.7319	7.9471	0.51969	0.12233
30	5.9458	44.136	1.9297	0.45849
40	11.987	132.94	4.4427	1.1192
50	18.695	286.01	7.8306	2.1104
60	25.487	507.04	11.842	3.3910
70	32.213	795.85	16.280	4.9111
80	38.583	1150.0	21.001	6.6250
90	44.835	1567.1	25.906	8.4933
100	51.142	2046.9	30.955	10.486
120	63.927	3197.5	41.409	14.763
140	76.407	4602.0	52.209	19.338
160	87.963	6247.6	63.179	24.131
180	98.265	8112.1	74.147	29.080
200	107.24	10169	84.977	34.130
220	114.99	12394	95.571	39.236
240	121.65	14762	105.87	44.362
260	127.42	17254	115.84	49.479
280	132.46	19854	125.47	54.565
300	136.92	22548	134.76	59.603
350	146.33	29639	156.61	71.924
400	153.18	37136	176.62	83.778
500	161.95	52934	211.83	105.97
600	167.26	69413	241.86	126.18
700	170.91	86331	267.94	144.61
800	173.71	103568	290.95	161.49
900	176.03	121057	311.55	177.04
1000	178.05	138763	330.20	191.44
1100	179.90	156662	347.26	204.84
1200	181.61	174738	362.98	217.37
1300	183.22	192980	377.58	229.14
1346	183.94	201425	383.97	234.32

Таблица 2. Стандартные термодинамические функции MgIn₂O₄

Курсивом выделены значения, полученные экстраполяцией.

СПИСОК ЛИТЕРАТУРЫ

- Hirschle C., Schreuer J., Galazka Z. // J. Appl. Phys. 2018. V. 124. P. 065111. https://doi.org/10.1063/1.5037786
- Hirschle C., Schreuer J., Galazka Z. et al. // J. Alloys Compd. 2021. V. 886. 161214. https://doi.org/10.1016/j.jallcom.2021.161214
- van der Laag N.J., Snel M.D., Magusin P.C.M.M. et al. // J. Eur. Ceram. Soc. 2004. V. 4. P. 2417. https://doi.org/10.1016/j.jeurceramsoc.2003.06.001
- Wilkerson K.R., Smith J.D., Sander T.P. et al. // J. Am. Ceram. Soc. 2013. V. 96. P. 859. https://doi.org/10.1111/jace.12125
- Kondrat'eva O.N., Tyurin A.V., Nikiforova G.E. et al. // Thermochim. Acta. 2016. V. 641. P. 49. https://doi.org/10.1016/j.tca.2016.08.015
- 6. Кондратьева О.Н., Никифорова Г.Е., Смирнова М.Н. и др. // Журн. неорган. химии. 2021. Т. 66. № 7. С. 851. [Kondrat'eva O.N., Nikiforova G.E., Smirnova M.N. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 7. Р. 957.] https://doi.org/10.1134/S0036023621070068

- 7. *Galazka Z*. Transparent Semiconducting Oxides: Bulk Crystal Growth and Fundamental Properties. N.Y.: Jenny Stanford Publishing Pte. Ltd., 2020.
- Galazka Z., Klimm D., Irmscher K. et al. // Phys. Status Solidi A. 2015. V. 212. P. 1455. https://doi.org/10.1002/pssa.201431835
- Galazka Z., Ganschow S., Schewski R. et al. // APL Mater. 2019. V. 7. P. 022512. https://doi.org/10.1063/1.5053867
- Glazunov I.V., Malyarevich A.M., Yumashev K.V. et al. // J. Non-Cryst. Solids. 2021. V. 557. P. 120627. https://doi.org/10.1016/j.jnoncrysol.2020.120627
- Wang L., Gong W., Wang S. et al. // J. Am. Ceram. Soc. 1999. V. 82. P. 3321. https://doi.org/10.1111/j.1151-2916.1999.tb02246.x
- Shen T.D., Feng S., Tang M. et al. // Appl. Phys. Lett. 2007. V. 90. P. 263115. https://doi.org/10.1063/1.2753098
- Uberuaga B.P., Tang M., Jiang C. et al. // Nat. Commun. 2015. V. 6. P. 8750. https://doi.org/10.1038/ncomms9750
- Tang M., Valdez J.A., Wang Y. et al. // Scripta Mater. 2016. V. 125. P. 10. https://doi.org/10.1016/j.scriptamat.2016.07.009
- Schlegel N., Ebert S., Mauer G. et al. // J. Therm. Spray Tech. 2015. V. 24. P. 144. https://doi.org/10.1007/s11666-014-0138-6
- Ebert S., Mücke R., Mack D. et al. // J. Eur. Ceram. Soc. 2013. V. 33. P. 3335. https://doi.org/10.1016/j.jeurceramsoc.2013.06.021
- Покровский Б.И., Гапеев А.К., Горяга А.Н. и др. // Ферримагнетизм. М.: Изд-во Моск. ун-та, 1975. С. 137.
- Surble S., Baldinozzi G., Simeone D. et al. // Nucl. Instrum. Methods Phys. Res., Sect. B. 2008. V. 266. P. 3002. https://doi.org/10.1016/j.nimb.2008.03.153
- Moriga T., Sakamoto T., Sato Y. et al. // J. Solid State Chem. 1999. V. 142. P. 206. https://doi.org/10.1006/jssc.1998.8036
- Dali S.E., Chockalingam M.J. // Mater. Chem. Phys. 2002. V. 70. P. 73. https://doi.org/10.1016/S0254-0584(00)00466-1
- Dali S.E., Jayachandran M.J., Chockalingam M.J. // J. Mater. Sci. Lett. 1999. V. 18. P. 915. https://doi.org/10.1023/A:1006625000253
- Biswas K., Varadaraju U.V. // Mater. Res. Bull. 2010. V. 45. P. 659. https://doi.org/10.1016/j.materresbull.2009.11.003

- Ueda N., Omata T., Hikuma N. et al. // Appl. Phys. Lett. 1992. V. 61. 1954. https://doi.org/10.1063/1.108374
- Tanji H., Kurihara N., Yoshida M. // J. Mater. Sci. Lett. 1994. V. 13. P. 1673. https://doi.org/10.1007/BF00451735
- Miyakawa M., Noshiro R., Ogawa T. et al. // J. Appl. Phys. 2002. V. 91. P. 2112. https://doi.org/10.1063/1.1418425
- Muranaka S., Shigematu T. // J. Jpn. Soc. Powder Metall. 2002. V. 47. P. 375. https://doi.org/10.2497/jjspm.47.375
- 27. Moses Ezhil Raj A., Subramanian B., Senthilkumar V. et al. // Physica E. 2008. V. 40. P. 467. https://doi.org/10.1016/j.physe.2007.07.004
- Kimizuka N., Brown F., Flores M.J.R. // J. Solid State Chem. 2000. V. 150. P. 276. https://doi.org/10.1006/jssc.1999.8591
- Surble S., Gosset D., Dolle M. et al. // Solid State Sci. 2011. V. 13. P. 42. https://doi.org/10.1016/j.solidstatesciences.2010.10.004
- 30. Seko A., Yuge K., Oba F. et al. // Phys. Rev. B. 2006. V. 73. P. 184117. https://doi.org/10.1103/PhysRevB.73.184117
- Bouhemadou A., Khenata R., Zerarga F. // Eur. Phys. J. B. 2007. V. 56. P. 1. https://doi.org/10.1140/epjb/e2007-00003-1
- Mahmood Q., Hassan M., Algrafy E. et al. // J. Phys. Chem. Solids. 2020. V. 144. P. 109481. https://doi.org/10.1016/j.jpcs.2020.109481
- Bissengaliyeva M.R., Gogol D.B., Taymasova S.T. et al. // J. Chem. Eng. Data. 2011. V. 56. P. 195. https://doi.org/10.1021/je100658y
- 34. *Стрелков П.Г., Склянкин А.А.* // Прикл. мех. и техн. физика. 1960. № 2. С. 100.
- 35. Archer D.G. // J. Phys. Chem. Ref. Data. 1993. V. 22. P. 1441. https://doi.org/10.1063/1.555931
- Majzlan J., Navrotsky A., Woodfield B.F. et al. // J. Low Temp. Phys. 2003. V. 130. P. 69. https://doi.org/10.1023/a:1021897402158
- 37. Richet P., Fiquet G. // J. Geophys. Res. 1991. V. 96. P. 445. https://doi.org/10.1029/90JB02172
- З8. Гуревич В.М., Хлюстов В.Г. // Геохимия. 1979. № 6. С. 829.